2.5V / 3.3V ECL 1:2 **Differential Fanout Buffer**

Description

The MC10/100LVEP11 is a differential 1:2 fanout buffer. The device is pin and functionally equivalent to the EP11 device. With AC performance the same as the EP11 device, the LVEP11 is ideal for applications requiring lower voltage. Single-ended CLK input operation is limited to a $V_{CC} \ge 3.0 \text{ V}$ in PECL mode, or $V_{EE} \le$ -3.0 V in NECL mode.

The 100 Series contains temperature compensation.

Features

- 240 ps Typical Propagation Delay
- Maximum Frequency > 3.0 GHz Typical
- PECL Mode Operating Range: V_{CC} = 2.375 V to 3.8 V with $V_{EE} = 0 \text{ V}$
- NECL Mode Operating Range: V_{CC} = 0 V with $V_{EE} = -2.375 \text{ V}$ to -3.8 V
- Open Input Default State
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- LVDS Input Compatible
- Pb-Free Packages are Available

ON Semiconductor®

http://onsemi.com

MARKING DIAGRAMS*

SOIC-8 **D SUFFIX CASE 751**

TSSOP-8 **DT SUFFIX** CASE 948R

DFN8 **MN SUFFIX CASE 506AA**

= MC10 Κ = MC100

5X = MC10

= MC100

L = Wafer Lot

Y= Year

W = Work Week \overline{M} = Date Code

= Pb-Free Package

A = Assembly Location

(Note: Microdot may be in either location)

*For additional marking information, refer to Application Note ANDS002/D.

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 9 of this data sheet.

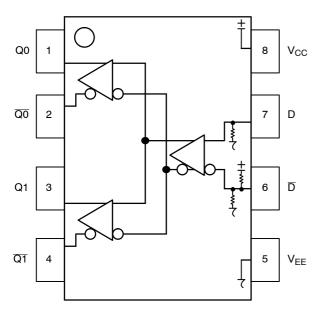


Figure 1. 8-Lead Pinout (Top View) and Logic Diagram

Table 1. PIN DESCRIPTION

PIN	FUNCTION
D*, D **	ECL Data Inputs
Q0, Q0, Q1, Q1	ECL Data Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply
EP	(DFN8 only) Thermal exposed pad must be connected to a sufficient thermal conduit. Electrically connect to the most negative supply (GND) or leave unconnected, floating open.

^{*}Pins will default to 2/3 $\rm V_{CC}$ when left open. **Pins will default LOW when left open.

Table 2. ATTRIBUTES

Characteris	tics	Value
Internal Input Pulldown Resistor		75 kΩ
Internal Input Pullup Resistor	37.5 kΩ	
ESD Protection	> 4 kV > 200 V > 2 kV	
Moisture Sensitivity, Indefinite Time	Out of Drypack (Note 1)	Level 1
Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in
Transistor Count	110 Devices	
Meets or exceeds JEDEC Spec EIA	/JESD78 IC Latchup Test	

^{1.} For additional information, see Application Note AND8003/D.

Table 3. MAXIMUM RATINGS

Symbol	Parameter	Condition 1	Condition 2	Rating	Unit
V _{CC}	PECL Mode Power Supply	V _{EE} = 0 V		6	V
V _{EE}	NECL Mode Power Supply	V _{CC} = 0 V		-6	V
VI	PECL Mode Input Voltage NECL Mode Input Voltage	V _{EE} = 0 V V _{CC} = 0 V	$V_{I} \leq V_{CC}$ $V_{I} \geq V_{EE}$	6 -6	V V
l _{out}	Output Current	Continuous Surge		50 100	mA mA
T _A	Operating Temperature Range			-40 to +85	°C
T _{stg}	Storage Temperature Range			-65 to +150	°C
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	SOIC-8 SOIC-8	190 130	°C/W °C/W
θЈС	Thermal Resistance (Junction-to-Case)	Standard Board	SOIC-8	41 to 44	°C/W
θ_{JA}	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	TSSOP-8 TSSOP-8	185 140	°C/W
θJC	Thermal Resistance (Junction-to-Case)	Standard Board	TSSOP-8	41 to 44	°C/W
$\theta_{\sf JA}$	Thermal Resistance (Junction-to-Ambient)	0 lfpm 500 lfpm	DFN8 DFN8	129 84	°C/W °C/W
T _{sol}	Wave Solder Pb Pb-Free	<2 to 3 sec @ 248°C <2 to 3 sec @ 260°C		265 265	°C
θ_{JC}	Thermal Resistance (Junction-to-Case)	(Note 2)	DFN8	35 to 40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

^{2.} JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

Table 4. 10LVEP DC CHARACTERISTICS, PECL V_{CC} = 2.5 V, V_{EE} = 0 V (Note 3)

			-40°C				25°C					
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		25	33	40	29	33	40	32	34	42	mA
V _{OH}	Output HIGH Voltage (Note 4)		1365	1490	1615	1430	1555	1680	1490	1615	1740	mV
V _{OL}	Output LOW Voltage (Note 4)		565	740	865	630	805	930	690	865	990	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 5)		1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}	Input LOW Current	D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 3. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -1.3 V.
- 4. All loading with 50 Ω to V_{CC} 2.0 V.
- V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Single–Ended input CLK pin operation is limited to V_{CC} ≥ 3.0 V in PECL mode.

Table 5. 10LVEP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 6)

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current		25	33	40	29	33	40	32	34	42	mA
V _{OH}	Output HIGH Voltage (Note 7)		2165	2290	2415	2230	2355	2480	2290	2415	2540	mV
V _{OL}	Output LOW Voltage (Note 7)		1365	1540	1665	1430	1605	1730	1490	1665	1790	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 8)		2090		2415	2155		2480	2215		2540	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 8)		1365		1690	1430		1755	1490		1815	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 9)		1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current				150			150			150	μΑ
I _{IL}	Input LOW Current	$\frac{D}{D}$	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 6. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.5 V.
- All loading with 50 Ω to V_{CC} 2.0 V.
- 8. Single-Ended input CLK pin operation is limited to V_{CC} ≥ 3.0 V in PECL mode.
 9. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 6. 10LVEP DC CHARACTERISTICS, NECL V_{CC} = 0 V, V_{EE} = -3.8 V to -2.375 V (Note 10)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	33	40	29	33	40	32	34	42	mA
V _{OH}	Output HIGH Voltage (Note 11)	-1135	-1010	-885	-1070	-945	-820	-1010	-885	-760	mV
V _{OL}	Output LOW Voltage (Note 11)	-1935	-1760	-1635	-1870	-1695	-1570	-1810	-1635	-1510	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 12)	-1210		-885	-1145		-820	-1085		-760	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 12)	-1935		-1610	-1870		-1545	-1810		-1485	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 13)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current D D	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 10. Input and output parameters vary 1:1 with V_{CC}.
- 11. All loading with 50 Ω to V_{CC} 2.0 V.
- 12. Single–Ended input CLK pin operation is limited to $V_{EE} \leq -3.0 \text{ V}$ in NECL mode.

Table 7. 100LVEP DC CHARACTERISTICS, PECL $V_{CC} = 2.5 \text{ V}$, $V_{EE} = 0 \text{ V}$ (Note 14)

			−40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	35	42	29	38	46	32	41	50	mA
V _{OH}	Output HIGH Voltage (Note 15)	135	1480	1605	1355	1480	1605	1355	1480	1605	mV
V _{OL}	Output LOW Voltage (Note 15)	555	730	900	555	730	900	555	730	900	mV
V _{IH}	Input HIGH Voltage (Single-Ended)	133	;	1620	1335		1620	1335		1620	mV
V _{IL}	Input LOW Voltage (Single-Ended)	555		900	555		900	555		900	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 16)	1.2		2.5	1.2		2.5	1.2		2.5	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current [)		0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

 $^{13.} V_{IHCMR} \ \text{min varies 1:1 with V}_{EE}, V_{IHCMR} \ \text{max varies 1:1} \ \text{with V}_{CC}. \ \text{The V}_{IHCMR} \ \text{range is referenced to the most positive side of the differential like the like t$ input signal.

^{14.} Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.125 V to -1.3 V.

^{15.} All loading with 50 Ω to V_{CC} − 2.0 V.

16. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal. Single–Ended input CLK pin operation is limited to V_{CC} ≥ 3.0 V in PECL mode.

Table 8. 100LVEP DC CHARACTERISTICS, PECL V_{CC} = 3.3 V, V_{EE} = 0 V (Note 17)

			-40°C			25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	35	42	29	38	46	32	41	50	mA
V _{OH}	Output HIGH Voltage (Note 18)	2155	2280	2405	2155	2280	2405	2155	2280	2405	mV
V _{OL}	Output LOW Voltage (Note 18)	1355	1530	1700	1355	1530	1700	1355	1530	1700	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 19)	2135		2420	2135		2420	2135		2420	mV
V _{IL}	Input LOW Voltage (Single-Ended) (Note 19)	1355		1700	1355		1700	1355		1700	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 20)	1.2		3.3	1.2		3.3	1.2		3.3	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current [0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 17. Input and output parameters vary 1:1 with V_{CC} . V_{EE} can vary +0.925 V to -0.5 V.
- 18. All loading with 50 Ω to V_{CC} 2.0 V.
- 19. Single–Ended input CLK pin operation is limited to $V_{CC} \geq 3.0 \ V$ in PECL mode.
- 20. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

Table 9. 100LVEP DC CHARACTERISTICS, NECL V_{CC} = 0 V; V_{EE} = -3.8 V to -2.375 V (Note 21)

		-40°C				25°C			85°C		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
I _{EE}	Power Supply Current	25	35	42	29	38	46	32	41	50	mA
V _{OH}	Output HIGH Voltage (Note 22)	-1145	-1020	-895	-1145	-1020	-895	-1145	-1020	-895	mV
V _{OL}	Output LOW Voltage (Note 22)	-1945	-1770	-1600	-1945	-1770	-1600	-1945	-1770	-1600	mV
V _{IH}	Input HIGH Voltage (Single-Ended) (Note 23)	-1165		-880	-1165		-880	-1165		-880	mV
V _{IL}	Input LOW Voltage (Single–Ended) (Note 23)	-1945	-1425	-1600	-1945	-1425	-1600	-1945	-1425	-1600	mV
V _{IHCMR}	Input HIGH Voltage Common Mode Range (Differential Configuration) (Note 24)	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V _{EE}	+1.2	0.0	V
I _{IH}	Input HIGH Current			150			150			150	μΑ
I _{IL}	Input LOW Current DDD	0.5 -150			0.5 -150			0.5 -150			μΑ

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

- 21. Input and output parameters vary 1:1 with V_{CC}.
- 22. All loading with 50 Ω to V_{CC} 2.0 V.
- 23. Single–Ended input CLK pin operation is limited to $V_{EE} \le -3.0 \text{ V}$ in NECL mode.
- 24. V_{IHCMR} min varies 1:1 with V_{EE}, V_{IHCMR} max varies 1:1 with V_{CC}. The V_{IHCMR} range is referenced to the most positive side of the differential input signal.

 $\textbf{Table 10. AC CHARACTERISTICS} \ \ V_{CC} = 0 \ \ V; \ \ V_{EE} = -3.8 \ \ V \ \ to \ -2.375 \ \ V \ \ or \ \ V_{CC} = 2.375 \ \ V \ \ to \ 3.8 \ \ V; \ \ V_{EE} = 0 \ \ V \ \ (Note \ 25)$

				-40°C			25°C			85°C		
Symbol	Characteristic		Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
f _{max}	Maximum Frequency (Figure 2)			3			3			3		GHz
t _{PLH} , t _{PHL}	Propagation Delay (Differential Configuration) CLK to	o Q, \overline{Q}	170	230	300	180	240	310	210	270	360	ps
t _{SKEW}	Within Device Skew Device to Device Skew (Note 26)	Q, Q		5.0	20 130		5.0	20 130		5.0	20 150	ps
UITTER	CLOCK Random Jitter (RMS) @ ≤1.0 GHz @ ≤1.5 GHz @ ≤2.0 GHz @ ≤2.5 GHz @ ≤3.0 GHz			0.126 0.112 0.111 0.112 0.155	0.3 0.2 0.3 0.2 0.2		0.142 0.162 0.122 0.172 0.217	0.4 0.3 0.2 0.3 0.3		0.209 0.162 0.170 0.235 0.368	0.3 0.2 0.3 0.3 0.6	ps
V _{PP}	Input Voltage Swing (Differential Configuration)		150	800	1200	150	800	1200	150	800	1200	mV
t _r t _f	Output Rise/Fall Times (20% – 80%)	Q, Q	70	110	170	80	120	180	100	140	200	ps

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

25. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to VCC – 2.0 V.

26. Skew is measured between outputs under identical transitions.

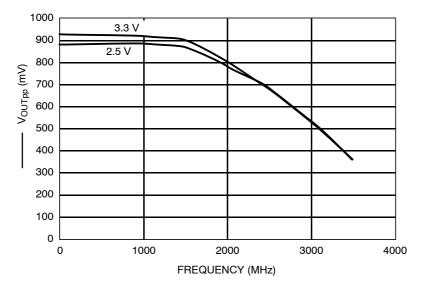


Figure 2. F_{max} Typical

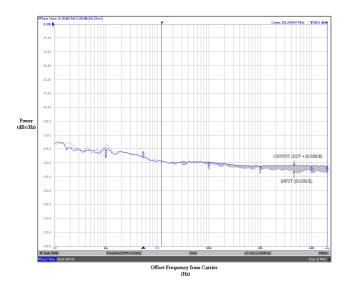


Figure 3. Typical Phase Noise Plot at f_{carrier} = 156.25 MHz

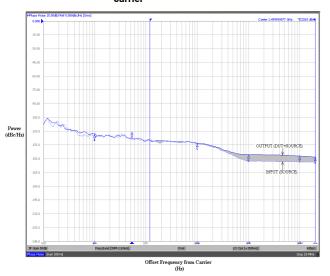


Figure 5. Typical Phase Noise Plot at $f_{carrier} = 1.5 \text{ GHz}$

The above phase noise plots captured using Agilent E5052A show additive phase noise of the MC100LVEP11 device at frequencies 156.25 MHz, 311.04 MHz, 1.5 GHz and 2 GHz respectively at an operating voltage of 3.3 V in room temperature. The RMS Phase Jitter contributed by the

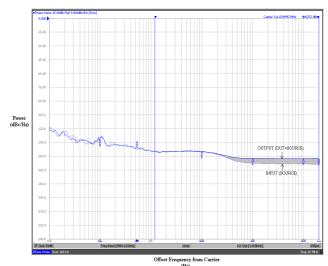


Figure 4. Typical Phase Noise Plot at f_{carrier} = 311.04 MHz

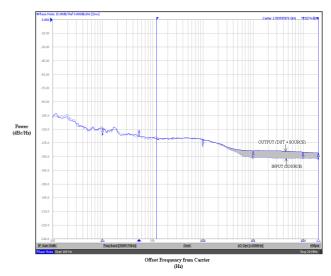


Figure 6. Typical Phase Noise Plot at f_{carrier} = 2 GHz

device (integrated between 12 kHz and 20 MHz; as shown in the shaded region of the plot) at each of the frequencies is 66 fs, 37 fs, 14 fs and 13 fs respectively. The input source used for the phase noise measurements is Agilent E8663B.

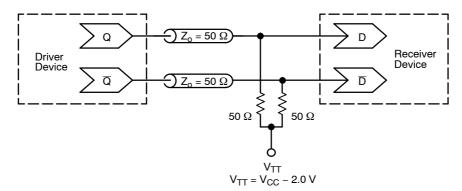


Figure 7. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

ORDERING INFORMATION

Device	Package	Shipping [†]				
MC10LVEP11D	SOIC-8	98 Units / Rail				
MC10LVEP11DG	SOIC-8 (Pb-Free)	98 Units / Rail				
MC10LVEP11DR2	SOIC-8	2500 / Tape & Reel				
MC10LVEP11DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel				
MC10LVEP11DT	TSSOP-8	100 Units / Rail				
MC10LVEP11DTG	TSSOP-8 (Pb-Free)	100 Units / Rail				
MC10LVEP11DTR2	TSSOP-8	2500 / Tape & Reel				
MC10LVEP11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel				
MC10LVEP11MNR4	DFN8	1000 / Tape & Reel				
MC10LVEP11MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel				
MC100LVEP11D	SOIC-8	98 Units / Rail				
MC100LVEP11DG	SOIC-8 (Pb-Free)	98 Units / Rail				
MC100LVEP11DR2	SOIC-8	2500 / Tape & Reel				
MC100LVEP11DR2G	SOIC-8 (Pb-Free)	2500 / Tape & Reel				
MC100LVEP11DT	TSSOP-8	100 Units / Rail				
MC100LVEP11DTG	TSSOP-8 (Pb-Free)	100 Units / Rail				
MC100LVEP11DTR2	TSSOP-8	2500 / Tape & Reel				
MC100LVEP11DTR2G	TSSOP-8 (Pb-Free)	2500 / Tape & Reel				
MC100LVEP11MNR4	DFN8	1000 / Tape & Reel				
MC100LVEP11MNR4G	DFN8 (Pb-Free)	1000 / Tape & Reel				

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

Resource Reference of Application Notes

AN1405/D - ECL Clock Distribution Techniques

AN1406/D - Designing with PECL (ECL at +5.0 V)

AN1503/D - ECLinPS™ I/O SPiCE Modeling Kit

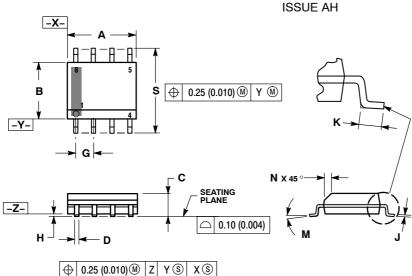
AN1504/D - Metastability and the ECLinPS Family

AN1568/D - Interfacing Between LVDS and ECL

AND8001/D - The ECL Translator Guide

AND8001/D - Odd Number Counters Design

AND8002/D - Marking and Date Codes

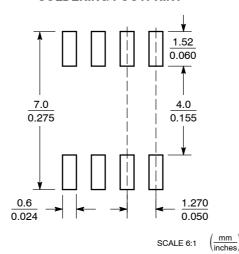

AND8020/D - Termination of ECL Logic Devices

AND8066/D - Interfacing with ECLinPS

AND8090/D - AC Characteristics of ECL Devices

PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07

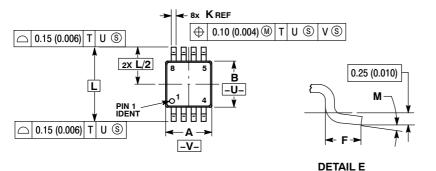

NOTES:

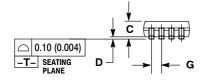
- DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
 CONTROLLING DIMENSION: MILLIMETER.
 DIMENSION A AND B DO NOT INCLUDE
 MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
- PER SIDE.

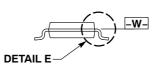
 DIMENSION D DOES NOT INCLUDE DAMBAR
 PROTRUSION. ALLOWABLE DAMBAR
 PROTRUSION SHALL BE 0.127 (0.005) TOTAL
 IN EXCESS OF THE D DIMENSION AT
- MAXIMUM MATERIAL CONDITION.
 6. 751–01 THRU 751–06 ARE OBSOLETE. NEW STANDARD IS 751–07.

	MILLIN	IETERS	INC	HES
DIM	MIN	MAX	MIN	MAX
Α	4.80	5.00	0.189	0.197
В	3.80	4.00	0.150	0.157
С	1.35	1.75	0.053	0.069
D	0.33	0.51	0.013	0.020
G	1.27	7 BSC	0.05	0 BSC
Н	0.10	0.25	0.004	0.010
J	0.19	0.25	0.007	0.010
K	0.40	1.27	0.016	0.050
M	0 °	8 °	0 °	8 °
N	0.25	0.50	0.010	0.020
S	5.80	6.20	0.228	0.244

SOLDERING FOOTPRINT*

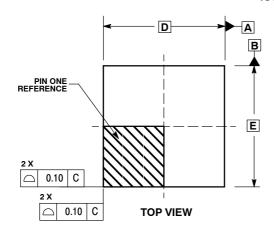


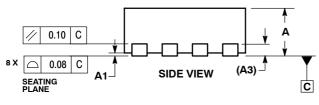

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

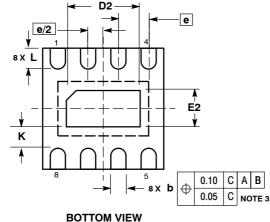

PACKAGE DIMENSIONS

TSSOP-8 **DT SUFFIX**

PLASTIC TSSOP PACKAGE CASE 948R-02 ISSUE A


NOTES:


- NOTES:
 1 DIMENSIONING AND TOLERANCING PER ANSI
 Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH.
 PROTRUSIONS OR GATE BURRS, MOLD FLASH
- PROTRUSIONS OR GATE BURRS. MOLD FLASH
 OR GATE BURRS SHALL NOT EXCEED 0.15
 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD
 FLASH OR PROTRUSION. INTERLEAD FLASH OR
 PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
 PER SIDE.
 5. TERMINAL NUMBERS ARE SHOWN FOR
 REFERENCE ONLY.
 6. DIMENSION A AND B ARE TO BE DETERMINED
 AT DATUM PLANE –W-.


	MILLIN	IETERS	INCHES	
DIM	MIN	MAX	MIN	MAX
Α	2.90	3.10	0.114	0.122
В	2.90	3.10	0.114	0.122
С	0.80	1.10	0.031	0.043
D	0.05	0.15	0.002	0.006
F	0.40	0.70	0.016	0.028
G	0.65 BSC		0.026 BSC	
K	0.25	0.40	0.010	0.016
L	4.90 BSC		0.193 BSC	
M	0°	6 °	0°	6°

PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994 .
 CONTROLLING DIMENSION: MILLIMETERS.
- DIMENSION b APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN
 0.25 AND 0.30 MM FROM TERMINAL.
 COPLANARITY APPLIES TO THE EXPOSED
 PAD AS WELL AS THE TERMINALS.

	MILLIMETERS		
DIM	MIN	MAX	
Α	0.80	1.00	
A1	0.00	0.05	
АЗ	0.20 REF		
b	0.20	0.30	
D	2.00 BSC		
D2	1.10	1.30	
Е	2.00 BSC		
E2	0.70	0.90	
е	0.50 BSC		
K	0.20		
L	0.25	0.35	

ECLinPS is a trademark of Semiconductor Components Industries, LLC (SCILLC).

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and war engineer trademarks of semiconductor components industries, Ite (SciLLC) solitate services are injective to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada

Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative