# **2.5V / 3.3V ECL Differential Receiver/Driver**

### Description

The MC10/100LVEP16 is a world class differential receiver/driver. The device is functionally equivalent to the EL16, EP16 and LVEL16 devices. With output transition times significantly faster than the EL16 and LVEL16, the LVEP16 is ideally suited for interfacing with high frequency and low voltage (2.5 V) sources. Single–ended CLK input operation is limited to a  $V_{CC} \geq 3.0$  V in PECL mode, or  $V_{EE} \leq -3.0$  V in NECL mode.

The V<sub>BB</sub> pin, an internally generated voltage supply, is available to this device only. For single–ended input conditions, the unused differential input is connected to V<sub>BB</sub> as a switching reference voltage. V<sub>BB</sub> may also rebias AC coupled inputs. When used, decouple V<sub>BB</sub> and V<sub>CC</sub> via a 0.01  $\mu$ F capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V<sub>BB</sub> should be left open.

The 100 Series contains temperature compensation.

# Features

- 240 ps Propagation Delay
- Maximum Frequency > 4 GHz Typical
- PECL Mode Operating Range:  $V_{CC} = 2.375$  V to 3.8 V with  $V_{EE} = 0$  V
- NECL Mode Operating Range:  $V_{CC} = 0 V$ with  $V_{EE} = -2.375 V$  to -3.8 V
- V<sub>BB</sub> Output
- Open Input Default State
- LVDS Input Compatible
- Pb-Free Packages are Available



| 1                                 |
|-----------------------------------|
| TSSOP-8<br>DT SUFFIX<br>CASE 948B |
|                                   |







DFN8 MN SUFFIX CASE 506AA

| Н   | = MC10           | А    | = Assembly Location   |
|-----|------------------|------|-----------------------|
| Κ   | = MC100          | L    | = Wafer Lot           |
| 5Y  | = MC10           | Υ    | = Year                |
| 4L  | = MC100          | W    | = Work Week           |
| М   | = Date Code      | •    | = Pb-Free Package     |
| (No | te: Microdot may | y be | e in either location) |

\*For additional marking information, refer to Application Note AND8002/D.

#### **ORDERING INFORMATION**

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.





### Table 1. PIN DESCRIPTION

| Pin               | Function                                                                                                                                                                                         |
|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| D*, <u>D</u> **   | ECL Data Inputs                                                                                                                                                                                  |
| $Q, \overline{Q}$ | ECL Data Outputs                                                                                                                                                                                 |
| V <sub>BB</sub>   | Ref. Voltage Output                                                                                                                                                                              |
| V <sub>CC</sub>   | Positive Supply                                                                                                                                                                                  |
| V <sub>EE</sub>   | Negative Supply                                                                                                                                                                                  |
| NC                | No Connect                                                                                                                                                                                       |
| EP                | (DFN8 only) Thermal exposed pad must<br>be connected to a sufficient thermal con-<br>duit. Electrically connect to the most neg-<br>ative supply (GND) or leave unconnec-<br>ted, floating open. |

\* Pins will default LOW when left open. \*\*Pins will default to  $V_{CC}\!/2$  when left open.

| Characteristics                                        | Value                                                 |  |  |  |  |  |  |  |  |  |  |
|--------------------------------------------------------|-------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
| Internal Input Pulldown Resistor                       | 75 kΩ                                                 |  |  |  |  |  |  |  |  |  |  |
| Internal Input Pullup Resistor                         | 37.5 kΩ                                               |  |  |  |  |  |  |  |  |  |  |
| Ma                                                     | Body Model> 4 kVuchine Model> 200 VDevice Model> 2 kV |  |  |  |  |  |  |  |  |  |  |
| Moisture Sensitivity, Indefinite Time Out of Drypack ( | Note 1) Level 1                                       |  |  |  |  |  |  |  |  |  |  |
| Flammability Rating Oxygen Index: 28 to 34             | UL 94 V–0 @ 0.125 in                                  |  |  |  |  |  |  |  |  |  |  |
| Transistor Count                                       | 167 Devices                                           |  |  |  |  |  |  |  |  |  |  |
| Meets or exceeds JEDEC Spec EIA/JESD78 IC Latc         | hup Test                                              |  |  |  |  |  |  |  |  |  |  |

# **Table 2. ATTRIBUTES**

1. For additional information, see Application Note AND8003/D.

### **Table 3. MAXIMUM RATINGS**

| Symbol               | Parameter                                          | Condition 1                                    | Condition 2                                                           | Rating      | Unit         |
|----------------------|----------------------------------------------------|------------------------------------------------|-----------------------------------------------------------------------|-------------|--------------|
| V <sub>CC</sub>      | PECL Mode Power Supply                             | V <sub>EE</sub> = 0 V                          |                                                                       | 6           | V            |
| $V_{EE}$             | NECL Mode Power Supply                             | $V_{CC} = 0 V$                                 |                                                                       | -6          | V            |
| VI                   | PECL Mode Input Voltage<br>NECL Mode Input Voltage | V <sub>EE</sub> = 0 V<br>V <sub>CC</sub> = 0 V | $\begin{array}{l} V_{I} \leq V_{CC} \\ V_{I} \geq V_{EE} \end{array}$ | 6<br>-6     | V<br>V       |
| l <sub>out</sub>     | Output Current                                     | Continuous<br>Surge                            |                                                                       | 50<br>100   | mA<br>mA     |
| I <sub>BB</sub>      | V <sub>BB</sub> Sink/Source                        |                                                |                                                                       | ± 0.5       | mA           |
| T <sub>A</sub>       | Operating Temperature Range                        |                                                |                                                                       | -40 to +85  | °C           |
| T <sub>stg</sub>     | Storage Temperature Range                          |                                                |                                                                       | -65 to +150 | °C           |
| $\theta_{JA}$        | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | SOIC-8<br>SOIC-8                                                      | 190<br>130  | °C/W<br>°C/W |
| $\theta_{JC}$        | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | SOIC-8                                                                | 41 to 44    | °C/W         |
| $\theta_{JA}$        | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | TSSOP-8<br>TSSOP-8                                                    | 185<br>140  | °C/W<br>°C/W |
| $\theta_{\text{JC}}$ | Thermal Resistance (Junction-to-Case)              | Standard Board                                 | TSSOP-8                                                               | 41 to 44    | °C/W         |
| $\theta_{JA}$        | Thermal Resistance (Junction-to-Ambient)           | 0 lfpm<br>500 lfpm                             | DFN8<br>DFN8                                                          | 129<br>84   | °C/W<br>°C/W |
| T <sub>sol</sub>     | Wave Solder Pb<br>Pb-Free                          | <2 to 3 sec @ 248°C<br><2 to 3 sec @ 260°C     |                                                                       | 265<br>265  | °C           |
| θJC                  | Thermal Resistance (Junction-to-Case)              | (Note 2)                                       | DFN8                                                                  | 35 to 40    | °C/W         |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 2. JEDEC standard multilayer board – 2S2P (2 signal, 2 power)

|                 |                                                                                      |        | -40°C       |      |      | 25°C        |      |      |             |      |      |      |
|-----------------|--------------------------------------------------------------------------------------|--------|-------------|------|------|-------------|------|------|-------------|------|------|------|
| Symbol          | Characteristic                                                                       |        | Min         | Тур  | Max  | Min         | Тур  | Max  | Min         | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current                                                                 |        | 17          | 22   | 27   | 17          | 22   | 27   | 17          | 22   | 28   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 4)                                                         |        | 1365        | 1490 | 1615 | 1430        | 1555 | 1680 | 1490        | 1615 | 1740 | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 4)                                                          |        | 565         | 740  | 865  | 630         | 805  | 930  | 690         | 865  | 990  | mV   |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Notes 5, 6) |        | 1.2         |      | 2.5  | 1.2         |      | 2.5  | 1.2         |      | 2.5  | V    |
| I <sub>IH</sub> | Input HIGH Current                                                                   |        |             |      | 150  |             |      | 150  |             |      | 150  | μΑ   |
| IIL             | Input LOW Current                                                                    | D<br>D | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | μΑ   |

# Table 4. 10EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 2.5 V, V<sub>EE</sub> = 0 V (Note 3)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

3. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.125 V to –1.3 V.

4. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V. 5. Do not use V<sub>BB</sub> at V<sub>CC</sub> < 3.0 V. Single ended input CLK pin operation is limited to V<sub>CC</sub>  $\ge$  3.0 V in PECL mode.

6. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

| Table 5. 10EP DC CHARACTERISTICS, | <b>PECL</b> V <sub>CC</sub> = 3.3 V, V <sub>EE</sub> = 0 V (Note 7) |
|-----------------------------------|---------------------------------------------------------------------|
|-----------------------------------|---------------------------------------------------------------------|

|                 |                                                                                   |        |             | <b>−40°C</b> |      |             | 25°C |      | 85°C        |      |      |      |
|-----------------|-----------------------------------------------------------------------------------|--------|-------------|--------------|------|-------------|------|------|-------------|------|------|------|
| Symbol          | Characteristic                                                                    |        | Min         | Тур          | Max  | Min         | Тур  | Max  | Min         | Тур  | Max  | Unit |
| I <sub>EE</sub> | Power Supply Current                                                              |        | 17          | 22           | 27   | 17          | 22   | 27   | 17          | 22   | 28   | mA   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 8)                                                      |        | 2165        | 2290         | 2415 | 2230        | 2355 | 2480 | 2290        | 2415 | 2540 | mV   |
| V <sub>OL</sub> | Output LOW Voltage (Note 8)                                                       |        | 1365        | 1540         | 1665 | 1430        | 1605 | 1730 | 1490        | 1665 | 1790 | mV   |
| V <sub>IH</sub> | Input HIGH Voltage (Single Ended)                                                 |        | 2090        |              | 2415 | 2155        |      | 2480 | 2215        |      | 2540 | mV   |
| V <sub>IL</sub> | Input LOW Voltage (Single Ended)                                                  |        | 1365        |              | 1690 | 1430        |      | 1755 | 1490        |      | 1815 | mV   |
| V <sub>BB</sub> | Output Voltage Reference (Note 9)                                                 |        | 1790        | 1890         | 1990 | 1855        | 1955 | 2055 | 1915        | 2015 | 2115 | mV   |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 10) |        | 1.2         |              | 3.3  | 1.2         |      | 3.3  | 1.2         |      | 3.3  | V    |
| I <sub>IH</sub> | Input HIGH Current                                                                |        |             |              | 150  |             |      | 150  |             |      | 150  | μA   |
| IIL             | Input LOW Current                                                                 | D<br>D | 0.5<br>-150 |              |      | 0.5<br>-150 |      |      | 0.5<br>-150 |      |      | μA   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

7. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.925 V to -0.5 V.

8. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V.

9. Single ended input CLK pin operation is limited to  $V_{CC} \geq$  3.0 V in PECL mode.

10. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

|                    |                                                                                   | 00              |                      | -     |                         | -     | -                  |             |           |       |      |
|--------------------|-----------------------------------------------------------------------------------|-----------------|----------------------|-------|-------------------------|-------|--------------------|-------------|-----------|-------|------|
|                    |                                                                                   |                 | <b>−40°C</b>         |       |                         | 25°C  |                    |             | 85°C      |       |      |
| Symbol             | Characteristic                                                                    | Min             | Тур                  | Max   | Min                     | Тур   | Max                | Min         | Тур       | Max   | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                              | 17              | 22                   | 27    | 17                      | 22    | 27                 | 17          | 22        | 28    | mA   |
| VOH                | Output HIGH Voltage (Note 12)                                                     | -1135           | -1010                | -885  | -1070                   | -945  | -820               | -1010       | -885      | -760  | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 12)                                                      | -1935           | -1760                | -1635 | -1870                   | -1695 | -1570              | -1810       | -1635     | -1510 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single Ended)                                                 | -1210           |                      | -885  | -1145                   |       | -820               | -1085       |           | -760  | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single Ended)                                                  | -1935           |                      | -1610 | -1870                   |       | -1545              | -1810       |           | -1485 | mV   |
| $V_{BB}$           | Output Voltage Reference (Note 13)                                                | -1510           | -1410                | -1310 | -1445                   | -1345 | -1245              | -1385       | -1285     | -1185 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 14) | V <sub>EE</sub> | V <sub>EE</sub> +1.2 |       | 0.0 V <sub>EE</sub> +1. |       | 0.0 V <sub>E</sub> |             | E+1.2 0.0 |       | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                |                 |                      | 150   |                         |       | 150                |             |           | 150   | μA   |
| IIL                | Input LOW Current D                                                               | 0.5<br>-150     |                      |       | 0.5<br>-150             |       |                    | 0.5<br>-150 |           |       | μA   |

#### Table 6. 10EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}, V_{EE} = -3.8 \text{ V}$ to -2.375 V (Note 11)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

11. Input and output parameters vary 1:1 with V<sub>CC</sub>.

12. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V.

13. Single ended input CLK pin operation is limited to  $V_{EE} \leq -3.0$  V in NECL mode.

14. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

Unit

mΑ

mV mV v

> μA μA

| Table 7.        | 100EP DC CHARACTERISTICS, F                                                            | PEC | L V <sub>CC</sub> = | 2.5 V, V <sub>I</sub> | <sub>EE</sub> = 0 V | (Note 15 | 5)   |      |      |      |      |
|-----------------|----------------------------------------------------------------------------------------|-----|---------------------|-----------------------|---------------------|----------|------|------|------|------|------|
|                 |                                                                                        |     |                     | –40°C                 |                     |          | 25°C |      |      | 85°C |      |
| Symbol          | Characteristic                                                                         |     | Min                 | Тур                   | Max                 | Min      | Тур  | Max  | Min  | Тур  | Max  |
| I <sub>EE</sub> | Power Supply Current                                                                   |     | 19                  | 24                    | 29                  | 22       | 28   | 34   | 24   | 30   | 36   |
| V <sub>OH</sub> | Output HIGH Voltage (Note 16)                                                          |     | 1355                | 1480                  | 1605                | 1355     | 1480 | 1605 | 1355 | 1480 | 1605 |
| V <sub>OL</sub> | Output LOW Voltage (Note 16)                                                           |     | 555                 | 730                   | 900                 | 555      | 730  | 900  | 555  | 730  | 900  |
| VIHCMR          | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Notes 17, 18) |     | 1.2                 |                       | 3.3                 | 1.2      |      | 3.3  | 1.2  |      | 3.3  |
| I <sub>IH</sub> | Input HIGH Current                                                                     |     |                     |                       | 150                 |          |      | 150  |      |      | 150  |
| I <sub>IL</sub> | Input LOW Current                                                                      | D   | 0.5                 |                       |                     | 0.5      |      |      | 0.5  |      |      |

#### Table 7 100ED DC CHARACTERISTICS DECL V 0 5 1 / 1 /

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

-150

-150

15. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.125 V to -1.3 V.

16. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V. 17. Do not use V<sub>BB</sub> at V<sub>CC</sub> < 3.0 V. Single ended input CLK pin operation is limited to V<sub>CC</sub>  $\geq$  3.0 V in PECL mode.

D

-150

18. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

#### -40°C 25°C 85°C Symbol Characteristic Min Тур Max Min Тур Max Min Тур Max Unit Power Supply Current 19 24 29 22 28 34 24 30 36 mΑ IFF 2155 V<sub>OH</sub> Output HIGH Voltage (Note 20) 2155 2280 2405 2280 2405 2155 2280 2405 mV 1355 1700 Output LOW Voltage (Note 20) 1355 1530 1700 1530 1355 1530 1700 mV VOL Input HIGH Voltage (Single Ended) 2135 2420 2135 2420 2135 2420 mV VIH 1700 VII Input LOW Voltage (Single Ended) 1355 1700 1355 1355 1700 mV V<sub>RR</sub> Output Voltage Reference (Note 21) 1775 1875 1975 1775 1875 1975 1775 1875 1975 mV V VIHCMR Input HIGH Voltage Common Mode 1.2 3.3 1.2 3.3 1.2 3.3 Range (Differential Configuration) (Note 22) Input HIGH Current 150 150 150 Ι<sub>Η</sub> μΑ Input LOW Current D 0.5 0.5 0.5 μA $I_{\rm IL}$ D -150-150 -150

# Table 8. 100EP DC CHARACTERISTICS, PECL V<sub>CC</sub> = 3.3 V, V<sub>EE</sub> = 0 V (Note 19)

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

19. Input and output parameters vary 1:1 with V<sub>CC</sub>. V<sub>EE</sub> can vary +0.925 V to -0.5 V.

20. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V.

21. Single ended input CLK pin operation is limited to V\_{CC}  $\geq$  3.0 V in PECL mode.

22. VIHCMR min varies 1:1 with VEE, VIHCMR max varies 1:1 with VCC. The VIHCMR range is referenced to the most positive side of the differential input signal.

# Table 9. 100EP DC CHARACTERISTICS, NECL $V_{CC} = 0 \text{ V}$ , $V_{EE} = -3.8 \text{ V}$ to -2.375 V (Note 23)

|                    |                                                                                   |                 | –40°C |       |                 | 25°C  |       |                 |       |       |      |
|--------------------|-----------------------------------------------------------------------------------|-----------------|-------|-------|-----------------|-------|-------|-----------------|-------|-------|------|
| Symbol             | Characteristic                                                                    | Min             | Тур   | Max   | Min             | Тур   | Max   | Min             | Тур   | Max   | Unit |
| I <sub>EE</sub>    | Power Supply Current                                                              | 19              | 24    | 29    | 22              | 28    | 34    | 24              | 30    | 36    | mA   |
| V <sub>OH</sub>    | Output HIGH Voltage (Note 24)                                                     | -1145           | -1020 | -895  | -1145           | -1020 | -895  | -1145           | -1020 | -895  | mV   |
| V <sub>OL</sub>    | Output LOW Voltage (Note 24)                                                      | -1945           | -1770 | -1600 | -1945           | -1770 | -1600 | -1945           | -1770 | -1600 | mV   |
| V <sub>IH</sub>    | Input HIGH Voltage (Single Ended)                                                 | -1165           |       | -880  | -1165           |       | -880  | -1165           |       | -880  | mV   |
| V <sub>IL</sub>    | Input LOW Voltage (Single Ended)                                                  | -1945           |       | -1600 | -1945           |       | -1600 | -1945           |       | -1600 | mV   |
| $V_{BB}$           | Output Voltage Reference (Note 25)                                                | -1525           | -1425 | -1325 | -1525           | -1425 | -1325 | -1525           | -1425 | -1325 | mV   |
| V <sub>IHCMR</sub> | Input HIGH Voltage Common Mode<br>Range (Differential Configuration)<br>(Note 26) | V <sub>EE</sub> | +1.2  | 0.0   | V <sub>EE</sub> | +1.2  | 0.0   | V <sub>EE</sub> | +1.2  | 0.0   | V    |
| I <sub>IH</sub>    | Input HIGH Current                                                                |                 |       | 150   |                 |       | 150   |                 |       | 150   | μA   |
| IIL                | Input LOW Current D                                                               | 0.5<br>-150     |       |       | 0.5<br>-150     |       |       | 0.5<br>-150     |       |       | μΑ   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

23. Input and output parameters vary 1:1 with V<sub>CC</sub>.

24. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V.

25. Single ended input CLK pin operation is limited to  $V_{EE} \leq -3.0$  V in NECL mode. 26.  $V_{IHCMR}$  min varies 1:1 with  $V_{EE}$ ,  $V_{IHCMR}$  max varies 1:1 with  $V_{CC}$ . The  $V_{IHCMR}$  range is referenced to the most positive side of the differential input signal.

|                                        |                                                                                                                                                                                                   |     | <b>−40°C</b>                                       |                                               |     | 25°C                                               |                                               | 85°C |                                                    |                                               |      |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------------------------------------------------|-----------------------------------------------|-----|----------------------------------------------------|-----------------------------------------------|------|----------------------------------------------------|-----------------------------------------------|------|
| Symbol                                 | Characteristic                                                                                                                                                                                    | Min | Тур                                                | Max                                           | Min | Тур                                                | Max                                           | Min  | Тур                                                | Max                                           | Unit |
| f <sub>max</sub>                       | Maximum Frequency<br>(See Figure 2. F <sub>max</sub> /JITTER)                                                                                                                                     |     | > 4                                                |                                               |     | > 4                                                |                                               |      | > 4                                                |                                               | GHz  |
| t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | Propagation Delay to<br>Output Differential                                                                                                                                                       | 150 | 220                                                | 300                                           | 170 | 240                                                | 320                                           | 190  | 260                                                | 330                                           | ps   |
| t <sub>SKEW</sub>                      | Duty Cycle Skew (Note 28)                                                                                                                                                                         |     | 5.0                                                | 20                                            |     | 5.0                                                | 20                                            |      | 5.0                                                | 20                                            | ps   |
| <b>UITTER</b>                          | CLOCK Random Jitter (RMS)<br>@ $\leq 1.0 \text{ GHz}$<br>@ $\leq 1.5 \text{ GHz}$<br>@ $\leq 2.0 \text{ GHz}$<br>@ $\leq 2.5 \text{ GHz}$<br>@ $\leq 3.0 \text{ GHz}$<br>@ $\leq 3.5 \text{ GHz}$ |     | 0.134<br>0.077<br>0.115<br>0.117<br>0.122<br>0.123 | 0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2 |     | 0.147<br>0.104<br>0.141<br>0.132<br>0.143<br>0.145 | 0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 |      | 0.166<br>0.145<br>0.153<br>0.156<br>0.177<br>0.202 | 0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3<br>0.3 | ps   |
| V <sub>PP</sub>                        | Input Voltage Swing<br>(Differential Configuration)                                                                                                                                               | 150 | 800                                                | 1200                                          | 150 | 800                                                | 1200                                          | 150  | 800                                                | 1200                                          | mV   |
| t <sub>r</sub><br>t <sub>f</sub>       | Output Rise/Fall Times $Q, \overline{Q}$<br>(20% – 80%)                                                                                                                                           | 70  | 120                                                | 170                                           | 80  | 130                                                | 180                                           | 100  | 150                                                | 200                                           | ps   |

NOTE: Device will meet the specifications after thermal equilibrium has been established when mounted in a test socket or printed circuit board with maintained transverse airflow greater than 500 lfpm. Electrical parameters are guaranteed only over the declared operating temperature range. Functional operation of the device exceeding these conditions is not implied. Device specification limit values are applied individually under normal operating conditions and not valid simultaneously.

27. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50  $\Omega$  to V<sub>CC</sub> – 2.0 V. 28. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.



Figure 2. F<sub>max</sub>/Jitter



Figure 3. Typical Termination for Output Driver and Device Evaluation (See Application Note AND8020/D – Termination of ECL Logic Devices.)

#### **ORDERING INFORMATION**

| Device           | Package              | Shipping <sup>†</sup> |
|------------------|----------------------|-----------------------|
| MC10LVEP16D      | SOIC-8               | 98 Units / Rail       |
| MC10LVEP16DG     | SOIC-8<br>(Pb-Free)  | 98 Units / Rail       |
| MC10LVEP16DR2    | SOIC-8               | 2500 / Tape & Reel    |
| MC10LVEP16DR2G   | SOIC–8<br>(Pb–Free)  | 2500 / Tape & Reel    |
| MC10LVEP16DT     | TSSOP-8              | 100 Units / Rail      |
| MC10LVEP16DTG    | TSSOP-8<br>(Pb-Free) | 100 Units / Rail      |
| MC10LVEP16DTR2   | TSSOP-8              | 2500 / Tape & Reel    |
| MC10LVEP16DTR2G  | TSSOP-8<br>(Pb-Free) | 2500 / Tape & Reel    |
| MC10LVEP16MNR4   | DFN8                 | 1000 / Tape & Reel    |
| MC10LVEP16MNR4G  | DFN8<br>(Pb–Free)    | 1000 / Tape & Reel    |
| MC100LVEP16D     | SOIC-8               | 98 Units / Rail       |
| MC100LVEP16DG    | SOIC–8<br>(Pb–Free)  | 98 Units / Rail       |
| MC100LVEP16DR2   | SOIC-8               | 2500 / Tape & Reel    |
| MC100LVEP16DR2G  | SOIC–8<br>(Pb–Free)  | 2500 / Tape & Reel    |
| MC100LVEP16DT    | TSSOP-8              | 100 Units / Rail      |
| MC100LVEP16DTG   | TSSOP-8<br>(Pb-Free) | 100 Units / Rail      |
| MC100LVEP16DTR2  | TSSOP-8              | 2500 / Tape & Reel    |
| MC100LVEP16DTR2G | TSSOP-8<br>(Pb-Free) | 2500 / Tape & Reel    |
| MC100LVEP16MNR4  | DFN8                 | 1000 / Tape & Reel    |
| MC100LVEP16MNR4G | DFN8<br>(Pb–Free)    | 1000 / Tape & Reel    |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

## **Resource Reference of Application Notes**

| AN1405/D  | - | ECL Clock Distribution Techniques           |
|-----------|---|---------------------------------------------|
| AN1406/D  | - | Designing with PECL (ECL at +5.0 V)         |
| AN1503/D  | - | ECLinPS <sup>™</sup> I/O SPiCE Modeling Kit |
| AN1504/D  | - | Metastability and the ECLinPS Family        |
| AN1568/D  | - | Interfacing Between LVDS and ECL            |
| AN1672/D  | - | The ECL Translator Guide                    |
| AND8001/D | - | Odd Number Counters Design                  |
| AND8002/D | - | Marking and Date Codes                      |
| AND8020/D | - | Termination of ECL Logic Devices            |
| AND8066/D | - | Interfacing with ECLinPS                    |
| AND8090/D | - | AC Characteristics of ECL Devices           |
|           |   |                                             |

### PACKAGE DIMENSIONS

SOIC-8 NB CASE 751-07 **ISSUE AH** 



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION.
- 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
- MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
  DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.
  751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07.

|     | MILLIN | IETERS | INCHES |       |
|-----|--------|--------|--------|-------|
| DIM | MIN    | MAX    | MIN    | MAX   |
| Α   | 4.80   | 5.00   | 0.189  | 0.197 |
| В   | 3.80   | 4.00   | 0.150  | 0.157 |
| С   | 1.35   | 1.75   | 0.053  | 0.069 |
| D   | 0.33   | 0.51   | 0.013  | 0.020 |
| G   | 1.27   | 7 BSC  | 0.05   | 0 BSC |
| н   | 0.10   | 0.25   | 0.004  | 0.010 |
| J   | 0.19   | 0.25   | 0.007  | 0.010 |
| к   | 0.40   | 1.27   | 0.016  | 0.050 |
| М   | 0 °    | 8 °    | 0 °    | 8 °   |
| Ν   | 0.25   | 0.50   | 0.010  | 0.020 |
| S   | 5.80   | 6.20   | 0.228  | 0.244 |

#### SOLDERING FOOTPRINT\*





# **PACKAGE DIMENSIONS**

**TSSOP-8** DT SUFFIX PLASTIC TSSOP PACKAGE CASE 948R-02 **ISSUE A** 











| NOT | TES:                                  |
|-----|---------------------------------------|
| 1.  | DIMENSIONING AND TOLERANCING PER ANSI |
|     |                                       |

- DIMENSIONED AND FOLLIANDING FEITAINSI Y14.5M, 1982.
  CONTROLLING DIMENSION: MILLIMETER.
  DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH. OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
  DIMENSION D DOES NOT INCLUDE INTERLEAD
- (0.006) FER SIDE.
  4. DIMENSION B DOES NOT INCLUDE INTERLEAD
  FLASH OR PROTRUSION. INTERLEAD FLASH OR
  PROTRUSION SHALL NOT EXCEED 0.25 (0.010)
  PER SIDE.
  TERMINAL NUMBERS ARE SHOWN FOR
  REFERENCE ONLY.
  DIMENSION A AND R ADE TO BE DETERMINED
- 6. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

|     | MILLIN   | IETERS | INCHES    |       |
|-----|----------|--------|-----------|-------|
| DIM | MIN      | MAX    | MIN       | MAX   |
| Α   | 2.90     | 3.10   | 0.114     | 0.122 |
| В   | 2.90     | 3.10   | 0.114     | 0.122 |
| С   | 0.80     | 1.10   | 0.031     | 0.043 |
| D   | 0.05     | 0.15   | 0.002     | 0.006 |
| F   | 0.40     | 0.70   | 0.016     | 0.028 |
| G   | 0.65 BSC |        | 0.026 BSC |       |
| Κ   | 0.25     | 0.40   | 0.010     | 0.016 |
| L   | 4.90 BSC |        | 0.193 BSC |       |
| М   | 0°       | 6 °    | 0°        | 6 °   |

#### PACKAGE DIMENSIONS

DFN8 CASE 506AA-01 ISSUE D



NOTES

- 1. DIMENSIONING AND TOLERANCING PER
- ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSION & APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 2. З.
- 0.25 AND 0.30 MM FROM TERMINAL. COPLANARITY APPLIES TO THE EXPOSED 4
- PAD AS WELL AS THE TERMINALS.

|     | MILLIMETERS |      |  |
|-----|-------------|------|--|
| DIM | MIN         | MAX  |  |
| Α   | 0.80        | 1.00 |  |
| A1  | 0.00        | 0.05 |  |
| A3  | 0.20 REF    |      |  |
| b   | 0.20        | 0.30 |  |
| D   | 2.00 BSC    |      |  |
| D2  | 1.10        | 1.30 |  |
| E   | 2.00 BSC    |      |  |
| E2  | 0.70        | 0.90 |  |
| е   | 0.50 BSC    |      |  |
| ĸ   | 0.20        |      |  |
| L   | 0.25        | 0.35 |  |

ECLinPS is a trademark of Semiconductor Components INdustries, LLC (SCILLC).

ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILIC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILIC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILIC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILIC obsent or any liability nor the rights of others. SCILIC products are not designed, intended, or authorized for use a components in systems intended for surgical implant into the body, or other applications are specified to the SCILIC of the S intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative