HIGH FREQUENCY AMPLIFIERS

MC1110

Typical Amplifier Features:

- DC − 300 MHz Performance
- Intended for IF and RF Applications
- 26 dB typ. Gain at 100 MHz
- High Stability Through Low Internal Feedback

MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted)

Rating	Symbol	Value	Unit	
Power Supply Voltage	v _{cc}	10	Vdc	
Power Supply Voltage	v _{EE}	14	Vdc	
Total Power Dissipation (Derate 5 mW/ $^{\circ}$ C above T _A = 25 $^{\circ}$ C)	PD	0.5	Watt	
Operating Temperature Range	T _j	-55 to+125	°C	
Storage Temperature Range	T _{stg}	-65 to+200	°C	
Maximum Input Level (RMS)	V _{in}	2	V (RMS)	

CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

CIRCUIT OPERATION

The input terminal (Pin 1) of the device should be DC ground for optimum DC operating point. Pin 3 is to be supplied with a positive voltage ($V_{\rm CC}$) for transistor collector and Pin 5 with a negative voltage ($V_{\rm EE}$) to supply emitter bias current. AGC may be accomplished by variation of $V_{\rm EE}$. The output of the circuit (Pin 7) should be operated at the same DC potential as is Pin 3. Pin 9 should be AC and DC grounded. Resistor $R_{\rm e}$ is a diffused silicon resistor, and $C_{\rm 1}$ is a silicon oxide capacitor.

ELECTRICAL CHARACTERISTICS (at $T_A = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
CHARACTERISTICS					
Input Leakage Current (V ₃ = 5 Vdc; I ₅ , I ₇ , I ₉ = 0)	11			10	nAdc
Output Leakage Current (V ₇ = 5 Vdc; I ₁ , I ₃ , I ₅ = 0)	r ₉			10	nAde
Operating Current $(V_{CC} = 5 \text{ Vdc}, V_{EE} = -4.7 \text{ Vdc}, V_{in} = 0)$ Figure 1	^I CT	3.8	4	4. 2	mAdc
Input Operating Current $V_{CC} = 5$ Vdc, $(V_{EE} = -10$ Vdc, $V_{in} = 0)$ Figure 1	I ₁	14-24		250	μ Adc
Reference Operating Current $V_{CC} = 5$ Vdc, $(V_{EE} = -10$ Vdc, $V_{in} = 0)$ Figure 1	19			250	μ Adc
$\begin{array}{ll} \text{Current Balance} & & & & & \\ V_{CC} = 5 \text{ Vdc, } (V_{EE} = -10 \text{ Vdc, } V_{in} = 0) & & & \text{Figure 1} \\ V_{CC} = 5 \text{ Vdc, } V_{EE} = -4.7 \text{ Vdc, } V_{in} = 0) & & & \text{Figure 1} \\ \end{array}$	I ₃ /I ₇	0. 90 0. 90	-	1.10 1.10	
Large Signal Transconductance (V_{CC} = 5 Vdc, V_{EE} = -4 Vdc, ΔV_{in} = 50 mV)	G ₂₁	26	28		m-mh
ALL-SIGNAL CHARACTERISTICS					
Small Signal Current Gain ($V_{CC} = 5 \text{ V}, I_E = -4 \text{ mA}, f = 100 \text{ MHz}$)	h ₂₁	6.0	9.0		
Short Circuit Admittances (V _{CC} = 5 V, V _{EE} = -4V, f = 100 MHz) Input Admittance Reverse Transfer Admittance Forward Transfer Admittance Output Admittance		 	2.0 0.064 16.3 1. 2		m-mbo
Transducer Power Gain (V _{CC} = 5V, V _{EE} = -4V, f = 100 MHz, BW = 3 MHz) Figure 20 (V _{CC} = 5V, V _{EE} = -4V, f = 200 MHz, BW = 6 MHz) Figure 21	G _T	22 15	26 18		dΒ
Noise Figure $(V_{CC} = 5V, V_{EE} = -4V, f = 100 \text{ MHz}, R_{\alpha} = R_{SO})$	NF		4	6	dB

FIGURE 1 — DC CHARACTERISTICS TEST CIRCUIT

FIGURE 2 — SHORT CIRCUIT ADMITTANCE TEST CIRCUIT (GENERAL RADIO 1607 A BRIDGE)

MC1110 (continued)

REVERSE TRANSFER ADMITTANCE versus FREQUENCY
FIGURE 6

REVERSE TRANSFER ADMITTANCE VERSUS EMITTER CURRENT FIGURE 7

REVERSE TRANSFER ADMITTANCE VERSUS EMITTER CURRENT FIGURE 8

MC1110 (continued)

FIGURE 12

FIGURE 10

G,, 200 MC Y₁₂ B22 0.7 0.6 OUTPUT CONDUCTANCE (mmhos) V_{CB} = 5.0 VOLTS 0.00 OUTPUT SUSCEPTANCE (mmhos) 0.5 0.4 0.3 0.2 0 0 6.0 10 IE, EMITTER CURRENT (mA) **OUTPUT ADMITTANCE versus EMITTER CURRENT**

FORWARD TRANSFER ADMITTANCE VERSUS EMITTER CURRENT FIGURE 11

FIGURE 14

MC1110 (continued)

OPTIMUM NOISE FIGURE, OPTIMUM SOURCE RESISTANCE, AND AVAILABLE POWER GAIN VS. FREQUENCY

FIGURE 17

FIGURE 18

FIGURE 20 - 100 MC POWER GAIN TEST SET

FIGURE 21 - 200 MC POWER GAIN TEST SET