HIGH FREQUENCY AMPLIFIERS # **MC1110** #### **Typical Amplifier Features:** - DC − 300 MHz Performance - Intended for IF and RF Applications - 26 dB typ. Gain at 100 MHz - High Stability Through Low Internal Feedback ### MAXIMUM RATINGS ($T_A = 25$ °C unless otherwise noted) | Rating | Symbol | Value | Unit | | |--|------------------|------------|---------|--| | Power Supply Voltage | v _{cc} | 10 | Vdc | | | Power Supply Voltage | v _{EE} | 14 | Vdc | | | Total Power Dissipation (Derate 5 mW/ $^{\circ}$ C above T _A = 25 $^{\circ}$ C) | PD | 0.5 | Watt | | | Operating Temperature Range | T _j | -55 to+125 | °C | | | Storage Temperature Range | T _{stg} | -65 to+200 | °C | | | Maximum Input Level (RMS) | V _{in} | 2 | V (RMS) | | ### **CIRCUIT SCHEMATIC** ### CIRCUIT DESCRIPTION #### CIRCUIT OPERATION The input terminal (Pin 1) of the device should be DC ground for optimum DC operating point. Pin 3 is to be supplied with a positive voltage ($V_{\rm CC}$) for transistor collector and Pin 5 with a negative voltage ($V_{\rm EE}$) to supply emitter bias current. AGC may be accomplished by variation of $V_{\rm EE}$. The output of the circuit (Pin 7) should be operated at the same DC potential as is Pin 3. Pin 9 should be AC and DC grounded. Resistor $R_{\rm e}$ is a diffused silicon resistor, and $C_{\rm 1}$ is a silicon oxide capacitor. ELECTRICAL CHARACTERISTICS (at $T_A = 25^{\circ}C$ unless otherwise noted) | Characteristic | Symbol | Min | Typ | Max | Unit | |---|--------------------------------|----------------|------------------------------|--------------|-------| | CHARACTERISTICS | | | | | | | Input Leakage Current (V ₃ = 5 Vdc; I ₅ , I ₇ , I ₉ = 0) | 11 | | | 10 | nAdc | | Output Leakage Current (V ₇ = 5 Vdc; I ₁ , I ₃ , I ₅ = 0) | r ₉ | | | 10 | nAde | | Operating Current $(V_{CC} = 5 \text{ Vdc}, V_{EE} = -4.7 \text{ Vdc}, V_{in} = 0)$ Figure 1 | ^I CT | 3.8 | 4 | 4. 2 | mAdc | | Input Operating Current $V_{CC} = 5$ Vdc, $(V_{EE} = -10$ Vdc, $V_{in} = 0)$ Figure 1 | I ₁ | 14-24 | | 250 | μ Adc | | Reference Operating Current $V_{CC} = 5$ Vdc, $(V_{EE} = -10$ Vdc, $V_{in} = 0)$ Figure 1 | 19 | | | 250 | μ Adc | | $\begin{array}{ll} \text{Current Balance} & & & & & \\ V_{CC} = 5 \text{ Vdc, } (V_{EE} = -10 \text{ Vdc, } V_{in} = 0) & & & \text{Figure 1} \\ V_{CC} = 5 \text{ Vdc, } V_{EE} = -4.7 \text{ Vdc, } V_{in} = 0) & & & \text{Figure 1} \\ \end{array}$ | I ₃ /I ₇ | 0. 90
0. 90 | - | 1.10
1.10 | | | Large Signal Transconductance (V_{CC} = 5 Vdc, V_{EE} = -4 Vdc, ΔV_{in} = 50 mV) | G ₂₁ | 26 | 28 | | m-mh | | ALL-SIGNAL CHARACTERISTICS | | | | | | | Small Signal Current Gain ($V_{CC} = 5 \text{ V}, I_E = -4 \text{ mA}, f = 100 \text{ MHz}$) | h ₂₁ | 6.0 | 9.0 | | | | Short Circuit Admittances (V _{CC} = 5 V, V _{EE} = -4V, f = 100 MHz) Input Admittance Reverse Transfer Admittance Forward Transfer Admittance Output Admittance | |
 | 2.0
0.064
16.3
1. 2 | | m-mbo | | Transducer Power Gain (V _{CC} = 5V, V _{EE} = -4V, f = 100 MHz, BW = 3 MHz) Figure 20 (V _{CC} = 5V, V _{EE} = -4V, f = 200 MHz, BW = 6 MHz) Figure 21 | G _T | 22
15 | 26
18 | | dΒ | | Noise Figure $(V_{CC} = 5V, V_{EE} = -4V, f = 100 \text{ MHz}, R_{\alpha} = R_{SO})$ | NF | | 4 | 6 | dB | FIGURE 1 — DC CHARACTERISTICS TEST CIRCUIT FIGURE 2 — SHORT CIRCUIT ADMITTANCE TEST CIRCUIT (GENERAL RADIO 1607 A BRIDGE) ### MC1110 (continued) REVERSE TRANSFER ADMITTANCE versus FREQUENCY FIGURE 6 REVERSE TRANSFER ADMITTANCE VERSUS EMITTER CURRENT FIGURE 7 REVERSE TRANSFER ADMITTANCE VERSUS EMITTER CURRENT FIGURE 8 ### MC1110 (continued) FIGURE 12 FIGURE 10 G,, 200 MC Y₁₂ B22 0.7 0.6 OUTPUT CONDUCTANCE (mmhos) V_{CB} = 5.0 VOLTS 0.00 OUTPUT SUSCEPTANCE (mmhos) 0.5 0.4 0.3 0.2 0 0 6.0 10 IE, EMITTER CURRENT (mA) **OUTPUT ADMITTANCE versus EMITTER CURRENT** FORWARD TRANSFER ADMITTANCE VERSUS EMITTER CURRENT FIGURE 11 FIGURE 14 ### MC1110 (continued) OPTIMUM NOISE FIGURE, OPTIMUM SOURCE RESISTANCE, AND AVAILABLE POWER GAIN VS. FREQUENCY FIGURE 17 FIGURE 18 FIGURE 20 - 100 MC POWER GAIN TEST SET FIGURE 21 - 200 MC POWER GAIN TEST SET