

Monolithic IF Amplifier

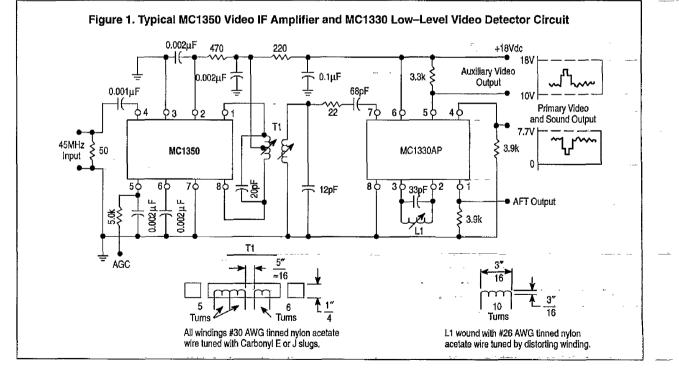
The MC1350 is an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and TV over an operating temperature range of 0° to +75°C.

- Power Gain: 50 dB Typ at 45 MHZ 50 dB Typ at 58 MHZ
- AGC Range: 60 dB Min, DC to 45 MHz
- Nearly Constant Input & Output Admittance over the Entire AGC Range
- Y21 Constant (-- 3.0 dB) to 90 MHz
- Low Reverse Transfer Admittance: < < 1.0 μmho Typ
- 12 V Operation, Single-Polarity Power Supply

MAXIMUM RATINGS ($T_A = +25^{\circ}C$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+18	Vdc
Output Supply Voltage	V ₁ , V ₈	+18	Vdc
AGC Supply Voltage	VAGC	V+	Vdc
Differential Input Voltage	Vin	5.0	Vdc
Power Dissipation (Package Limitation) Plastic Package Derate above 25°C	PD	625 5.0	mW mW/°C
Operating Temperature Range	TA	0 to +75	°C

TECHNICAL DATA


MC1350

CASE 751 (SO-8)

ORDERING INFORMATION

Device	Operating Temperature Range	Package	
MC1350P	- T _A ≠ 0° to +75°C	Plastic DIP]
MC1350D	IA = 0 10 +75 C	SO8	

MOTOROLA ANALOG IC DEVICE DATA

2

9–30

MC1350

ELECTRICAL CHARACTERISTICS ($V^+ = +12$ Vdc, $T_A = +25^{\circ}$ C, unless otherwise noted.)	AL CHARACTERISTICS ($V^+ = +12$ Vdc, $T_A = +25^{\circ}C$, unless otherw	ise noted.)
--	--	-------------

Characteristics	Symbol	Min	Тур	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.0 V) (Figure 1)		60	68	-	dB
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ap	 46 -	48 50 58 62		dB
Maximum Differential Voltage Swing 0 dB AGC –30 dB AGC	Vo	_ 	20 8.0	-	Vpp
Output Stage Current (Pins 1 and 8)	l ₁ +l ₈	-	5.6	_	mA
Total Supply Current (Pins 1, 2 and 8)	^I S	-	14	17	mAdc
Power Dissipation	PD	-	168	204	mW

DESIGN PARAMETERS, Typical Values (V⁺ = +12 Vdc, $T_A = +25^{\circ}C$, unless otherwise noted.)

		Frequency				
Parameter	Symbol	455 kHz	10.7 MHz	45 MHz	58 MHz	Unit
Single-Ended Input Admittance	-911 1011	0.31 0.022	0.36 0.50	0.39 2.30	0.5 2.75	mmho
Input Admittance Variations with AGC (0 dB to 60 dB)	- Δg ₁₁ Δb ₁₁	-	-	60 0	-	µmho
Differential Output Admittance	922 b22	4.0 3.0	4.4 110	30 390	60 510	μmho
Output Admittance Variations with AGC (0 dB to 60 dB)	Δg ₂₂ Δb ₂₂	-		4.0 90	-	μmho
Reverse Transfer Admittance (Magnitude)	ly12	< < 1.0	< < 1.0	< < 1.0	< < 1.0	μmho
Forward Transfer Admittance Magnitude Angle (0 dB AGC) Angle (–30 dB AGC)	y ₂₁ < y ₂₁ < y ₂₁	160 5.0 3.0	160 ~20 -18	200 80 69	180 105 90	mmho Degrees Degrees
Single-Ended Input Capacitance	C _{in}	7.2	7.2	7.4	7.6	pF
Differential Output Capacitance	CO	1.2	1.2	1.3	1.6	pF

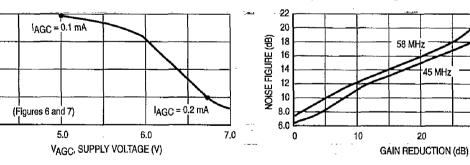
Figure 2. Typical Gain Reduction

0

GAIN REDUCTION (dB) 00 05 05

80

4.0


Figure 3. Noise Figure versus Gain Reduction

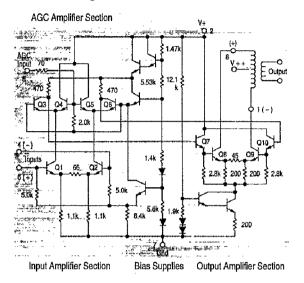
-45 MHz

20

(Figure 6)

30

40


:

MC1350

GENERAL OPERATING INFORMATION

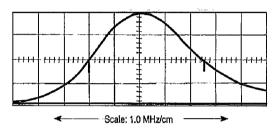
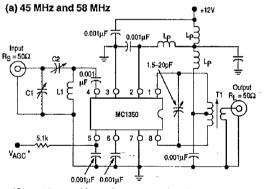

The input amplifiers (Q1 and Q2) operate_at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

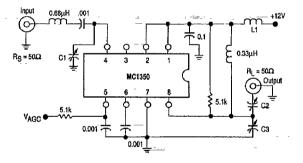
Figure 4. Circuit Schematic



AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center-tapped tuning coil to Pins 1 and 8. The 12 V supply (V⁺) at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15 V supply (V⁺ +) is used, because the base voltage on the output amplifier varies with AGC bias.

Figure 5. Frequency Response Curve (45 MHz and 58 MHz)

Figure 6. Power Gain, AGC and Noise Figure Test Circuits


*Connect to ground for maximum power gain test. All power supply chokes (Lp), are self-resonant at input frequency. Lp \geq 20 k Ω . See Figure 5 for Frequency Response Curve.

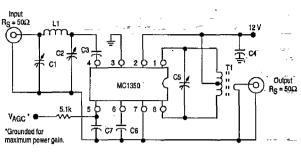
L1 @ 45 MHz = 7 1/4 Turns on a 1/4" coil form @ 58 MHz = 6 Turns on a 1/4" coil form

T1 Primary Winding = 18 Turns on a 1/4" coil form, center-tapped, #25 AWG Secondary Winding = 2 Turns centered over Primary Winding @ 45 MHz = 1 Turn @ 58 MHz

Slug = Carbonyl E or J

(b) Alternate 45 MHz

	L1	Ferrite Core 14 Turns 28 S.W.G.
-	C1	5–25 pF
	C2	5–25 pF
	C3	5–25 pF


45 MHz 58 MHz L1 0.4 μΗ Q ≥ 100 0.3 µH Q ≥ 100 T1 1.3 uH to 3.4 uH Q ≥ 100 @ 2.0 µH Q ≥ 100 @ 2.0 µH 1.2 μH to 3.8 μH C1 50 pF to160 pF 8.0 pF to 60 pF C2 8.0 pF to 60 pF 3.0 pF to 35 pF

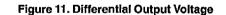
MOTOROLA ANALOG IC DEVICE DATA

9--32

•

MC1350

Figure 7		n and Ind 10		
			[Fr


	Frequ	iency	
Component	455 kHz	10.7 MHz	
C1	-	80-450 pF	
C2	-	5.0-80 pF	
C3	0.05 μF	0.001 µF	
C4	0.05 μF	0.05 µF	
Ċ5	0.001 μF	36 pF	
C8	0.05 μF	0.05 μF	
C7	0.05 µF	0.05 µF	
L1		4.6 µF	
T1	Note 1	Note 2	

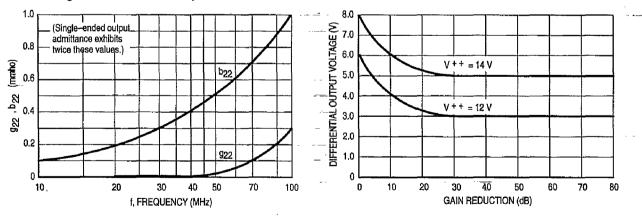

NOTES: 1. Primary: 120 μH (center-tapped) Q_u = 140 at 455 kHz Primary: 5econdary turns ratio ≈ 13 2. Primary: 6.0 μH Primary winding = 24 turns #36 AWG (close-wound on 1/4" dia. form) Core = Carbonyl E or J Secondary winding = 1-1/2 turns #36 AWG, 1/4" dia. (wound over center-tap)

Figure 8. Single-Ended Input Admittance 5.0 4.0 (mmhos) b₁₁ 3.0 J) 11q' 116 1.0 **9**11 0 10 20 30 40 50 70 100 f, FREQUENCY (MHz)

Figure 9. Forward Transfer Admittance 500 I 0 ∠ Y₂₁ (-30 dB gain) 400 -40 ∠ Y21 (max gain) (southung) 1 1,200 (DEGREES) -80 -120 ۲2¹ N Y21 100 -160 0 -200 1.0 2.0 3.0 5.0 10 20 30 50 100 f, FREQUENCY (MHz)

[: