Monolithic IF Amplifier

The MC1350 is an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and TV over an operating temperature range of 0° to $+75^{\circ} \mathrm{C}$.

- Power Gain: 50 dB Typ at 45 MHZ

50 dB Typ at 58 MHZ

- AGC Range: 60 dB Min, DC to 45 MHz
- Nearly Constant Input \& Output Admittance over the Entire AGC Range
- Y21 Constant (-3.0 dB) to 90 MHz
- Low Reverse Transfer Admittance: \ll 1.0μ mho Typ
- 12 V Operation, Single-Polarity Power Supply

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V^{+}	+18	Vdc
Output Supply Voltage	$\mathrm{V}_{1}, \mathrm{~V}_{8}$	+18	Vdc
AGC Supply Voltage	VAGC	V^{+}	Vdc
Differential Input Voltage	V_{in}	5.0	Vdc
Power Dissipation (Package Limitation)	P_{D}		
Plastic Package Derate above $\mathbf{2 5}^{\circ} \mathrm{C}$$\therefore \therefore$		625	mW
Operating Temperature Range		TA_{A}	0 to +75

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC1350P	$T_{A}=0^{\circ}$ to $+75^{\circ} \mathrm{C}$	Plastic DIP
MC1350D	SO-8	

Figure 1. Typical MC1350 Video IF Amplifier and MC1330 Low-Level Video Detector Circuit

All windings \#30 AWG tinned nylon acetate wire tuned with Carbonyl E or J sluggs.

MC1350

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted. $)$

Characteristics	Symbol	Min	Typ	Max	Unit
AGC Range, 45 MHz (5.0 V to 7.0 V) (Figure 1)		60	68	-	dB
$\begin{array}{ll} \text { Power Gain (Pin } 5 \text { grounded via a } 5.1 \mathrm{kS} \text { resistor) } \\ \begin{array}{l} f=58 \mathrm{MHz}, \mathrm{BW}=4.5 \mathrm{MHz} \\ f=45 \mathrm{MHz}, \mathrm{BW}=4.5 \mathrm{MHz} \end{array} & \text { See Figure 6(a) } \\ f=10.7 \mathrm{MHz}, \mathrm{BW}=350 \mathrm{kHz} & \text { See Figure 6(a), (b) } \\ f=455 \mathrm{kHz}, \mathrm{BW}=20 \mathrm{kHz} & \end{array}$	A_{p}	- 46 -	$\begin{aligned} & 48 \\ & 50 \\ & 58 \\ & 62 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & \hline \end{aligned}$	dB
```Maximum Differential Voltage Swing 0 dB AGC -30 dB AGC```	Vo	-	$\begin{aligned} & 20 \\ & 8.0 \end{aligned}$	-	$V_{p p}$
Output Stage Current (Pins 1 and 8)	$11+18$	-	5.6	-	mA
Total Supply Current (Pins 1,2 and 8)	Is	-	14	17	mAdc
Power Dissipation	$P_{\text {D }}$	-	168	204	mW

DESIGN PARAMETERS, Typical Values ( $\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Frequency				Unit
		455 kHz	10.7 MHz	45 MHz	58 MHz	
Single-Ended Input Admittance	$\begin{aligned} & g_{11} \\ & b_{11} \end{aligned}$	$\begin{aligned} & 0.31 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 2.30 \end{aligned}$	$\begin{gathered} 0.5 \\ 2.75 \end{gathered}$	mmho
Input Admittance Variations with AGC   $(0 \mathrm{~dB}$ to 60 dB )	$\Delta g_{11}$   $\Delta b_{11}$	-	-	$\begin{gathered} 60 \\ 0 \end{gathered}$	-	$\mu \mathrm{mho}$
Differential Output Admittance	$\begin{aligned} & \mathrm{g}_{22} \\ & \mathrm{~b}_{22} \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 110 \end{aligned}$	$\begin{gathered} 30 \\ 390 \end{gathered}$	$\begin{gathered} 60 \\ 510 \end{gathered}$	$\mu \mathrm{mho}$
Output Admittance Variations with AGC ( 0 dB to 60 dB )	$\begin{aligned} & \Delta \mathrm{g}_{22} \\ & \Delta \mathrm{~b}_{22} \end{aligned}$	$-$	-	4.0 90	-	$\mu \mathrm{mho}$
Reverse Transfer Admittance (Magnitude)	$\mathrm{ly}_{12}$	\ll 1.0	<<1.0	<<1.0	< $<1.0$	$\mu \mathrm{mho}$
Forward Transfer Admittance   Magnitude   Angle ( 0 dB AGC)   Angle ( -30 dB AGC)	$\begin{aligned} & \left\|y_{21}\right\| \\ & <y_{21} \\ & <y_{21} \end{aligned}$	$\begin{array}{r} 160 \\ -5.0 \\ -3.0 \\ \hline \end{array}$	$\begin{array}{r} 160 \\ -20 \\ -18 \end{array}$	$\begin{array}{r} 200 \\ -80 \\ -69 \\ \hline \end{array}$	$\begin{gathered} 180 \\ -105 \\ -90 \end{gathered}$	mmho   Degrees   Degrees
Single-Ended Input Capacitance	$\mathrm{C}_{\text {in }}$	7.2	7.2	7.4	7.6	pF
Differential Output Capācitance --	$\mathrm{Co}_{0}$	1.2	1.2	1.3	1.6	pF

Figure 2. Typical Gain Reduction


Figure 3. Noise Figure versus Gain Reduction


## MC1350

## GENERAL OPERATING INFORMATION

The input amplifiers (Q1 and Q2) operate at constant emitier currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

Figure 4. Circuit Schematic


AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center-tapped tuning coil to Pins 1 and 8. The 12 V supply $\left(\mathrm{V}^{+}\right)$at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15 V supply $\left(\mathrm{V}^{+}+\right.$) is used, because the base voltage on the output amplifier varies with AGC bias.

Figure 5. Frequency Response Curve ( 45 MHz and 58 MHz )


Figure 6. Power Gain, AGC and Noise Figure Test Clrcuits


	45 MHz		58 MHz	
L 1	$0.4 \mu \mathrm{H}$	Q	Q 100	$0.3 \mu \mathrm{H}$
T 1	$1.3 \mu \mathrm{H}$ to $3.4 \mu \mathrm{H}$	$\mathrm{Q} \geq 100$	$\mathrm{Q} 2.0 \mu \mathrm{H}$	$1.2 \mu \mathrm{H}$ to $3.8 \mu \mathrm{H}$
C 1	50 pF to 160 pF		$Q \geq 10002.0 \mu \mathrm{H}$	
C 2	8.0 pF to 60 pF		8.0 pF to 60 pF	

## MC1350

Figure 7. Power Gain and AGC Test Circuit
( 455 kHz and 10.7 MHz )


Component	Frequency	
	$\mathbf{4 5 5} \mathrm{kHz}$	$\mathbf{1 0 . 7} \mathrm{MHz}$
C 1	-	$80-450 \mathrm{pF}$
C 2	-	$5.0-80 \mathrm{pF}$
C 3	$0.05 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$
C 4	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
C	$0.001 \mu \mathrm{~F}$	36 pF
CB	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
C 7	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
L 1	-	$4.6 \mu \mathrm{~F}$
T 1	Note 1	Note 2

NOTES: 1. Primary: $120 \mu \mathrm{H}$ (centei-tapped)
$\mathrm{Q}_{\mathrm{u}}=140$ at 455 kHz
Primary: Secondary tums ratio $=13$
2. Primary: $6.0 \mu \mathrm{H}$

Primary winding $=\mathbf{2 4}$ turns $\# 36$ AWG
(close-wound on $1 / 4^{\prime \prime}$ dia. form)
Core $=$ Carbonyl E or $J$
Secondary winding $=1-1 / 2$ tums \#36 AWG, $1 / 4^{*}$ die. (wound over conter-tap)

Figure 8. Single-Ended Input Admittance


Figure 10. Differential Output Admittance


Figure 9. Forward Transfer Admittance


Figure 11. Differential Output Voltage


