

See Packaging Information Section for outline dimensions.

MC 1540 MC 1440

MAXIMUM RATINGS (T_A = $+25^{\circ}$ C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	V+	+10	Vdc
	v-	-10	Vdc
Differential Input Signal	Vin	±5.0	Vdc
Common Mode Input Voltage	CMVin	±5.0	Vdc
Load Current	1	25	mA
Power Dissipation (Package Limitation)	PD		
Metal Can	_	680	mW
Derate above $T_{\Delta} = +25^{\circ}C$		4.6	mW/ºC
Flat Package		500	mW
Derate above $T_A = +25^{\circ}C$		3.3	mW/ºC
Ceramic Dual In-Line Package		625	mW
Derate above T _A = +25 ^o C		5.0	mW/ºC
Operating Temperature Range	TA		
MC1440F	,G,L	0 to +75	°c
MC1540F	,G,L	-55 to +125	
Storage Temperature Range	T _{stg}	-65 to +150	°C

ELECTRICAL CHARACTERISTICS

 $(V^+ = 6 \text{ Vdc} \pm 1\%, V^- = -6 \text{ Vdc} \pm 1\%, C_{ext} = 0.01 \,\mu\text{F}, T_A = +25^{\circ}\text{C}$ unless otherwise noted) Pin number references are for devices in flat package and metal can.

See block diagram	for dual in-line pa	ckage pin numbers.
-------------------	---------------------	--------------------

Eig No	_							
Fig. No.	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
	V _{th}							m∨
י		14					24	
				-				
		12	17	22	10	17	30	
1	Vio	1	1.0	5.0	1	1.0	6.0	m۷
2	۱ _b							μA
		-	7.5	50	-	7.5	75	
		-	-	100	-	-	100	
2	lio	-	2.0	10	-	2.0	15	μA
3	Voн	5.9		+	5.8	-	-	Vdc
3	VOL		1					mVdc
		-			-	-		
		-		400	-	-	450	
4	Av	: , -	85		-	85	-	-
		$\tau_{\rm el}$						
-	١s	. –	-	1.2	-	-	1.5	mAdc
-	IR.	1.0	1					μAdc
		-			-	-		
		-	-	25	ł.	-	30	
		2 m 1						ns
5	[†] 3+10+	-	10	15	-	10	20	
_								
5	t3+8-	-	20	30	-	20	50	
			50-					
6	^t 9+8-		10	15	-	10	30	
			1.1					
-			20	50		20		ns
'	۲H(dm)	- <u>-</u>	20	30	_	20	90	
		1.	20	50		20	60	
•	۲R(cm)		20	50	_	20	60	
	Pa		120	190		120	250	mW
	2 2 3 3 4 -	1 Vio 2 Ib 2 Ib 2 Io 3 VOH 3 VOL 4 Av - Is - Is 5 t3+10+ 5 t3+8- 6 t9+8- 7 tR(dm)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

 $T_{10w} = -55^{\circ}C$ for MC1540 or 0°C for MC1440, $T_{high} = +125^{\circ}C$ for MC1540 or +75°C for MC1440.

MC1540, MC1440 (continued)

- Av Amplifier Voltage Gain the ratio of output voltage at pin 1 to the input voltage at pin 3 or 4
- Input Bias Current the average input current defined.as (13 + 14)/2
- lio Input Offset Current the difference between input current values, ||3 |4|
- IR Strobe Reverse Current leakage current when the strobe input is high
- IS Strobe Load Current amount of current drain from the circuit when the strobe pin is grounded
- ^PD Power Dissipation amount of power dissipated in the unit as defined by $|l_2 \times V^+| + |l_5 \times V^-|$
- ^tR Recovery Time The time that is required for the device to recover from the specified differential and common-mode overload inputs prior to strobe as reference to the 10% point

of the trailing edge of an input pulse. The device is considered recovered when the threshold after a differential overload disturbance is within 1.0 mV of the threshold value without the disturbance, or, for common-mode disturbance, when the level at pin 10 is within 100 mV of the quiescent value.

- $t_{X\pm y\pm} \begin{array}{c} \mbox{Propagation Delay} \mbox{The time that is required for the output pulse at pin y to achieve 50% of its final value or the 1.5 V level referenced to 50% of the input pulse at pin x. (The + and denote positive and negative-going pulse transition.) \\ \end{array}$
- V_{OH} Output Voltage High high-level output voltage when the output gate is turned off
- VOL Output Voltage Low low-level output voltage when the output gate is turned on
- Vth Input Threshold input pulse amplitude that causes the output to begin saturation
- Vio Input Offset Voltage the difference in V_{th} at each input

FIGURE 3 - OUTPUT VOLTAGE LEVELS

FIGURE 5 - PROPAGATION DELAY (STROBE HIGH)

TEST CIRCUIT +6 Vdc

FIGURE 2 - INPUT BIAS CURRENT

FIGURE 4 - AMPLIFIER VOLTAGE GAIN

FIGURE 6 - PROPAGATION DELAY (STROBE INPUT)

"The MC1540 - An Integrated Core Memory Sense Amplifier."

.

Ication of sense amplifiers, see Motoro Sense Amplifier.''