MC1514L ### **DUAL DIFFERENTIAL COMPARATOR** #### MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR \ldots designed for use in level detection, low-level sensing, and memory applications. #### **Typical Amplifier Features:** - Two Separate Outputs - Strobe Capability - High Output Sink Current 2.8 mA min Each Comparator - Differential Input Characteristics: Input Offset Voltage = 1.0 mV Offset Voltage Drift = 3.0 μV/^OC - Short Propagation Delay Time 40 ns - Output Compatible with All Saturating Logic Forms V_{out} = +3.2 V to -0.5 V typical #### MAXIMUM RATINGS (T_A = 25°C unless otherwise noted) | Rating | Symbol | Value | Unit | |--|------------------|--------------|-------------| | Power Supply Voltage | v+
v- | +14
-7.0 | Vdc
Vdc | | Differential Input Signal | v _{in} | ±5.0 | Volts | | Common Mode Input Swing | CMVin | ±7.0 | Volts | | Peak Load Current | I _L | 10 | mA | | Power Dissipation (package limitation) Ceramic Dual-In-Line Package Derate above $T_A = +25^{\circ}\text{C}$ | P _D | 1000
6. 7 | mW
mW/°C | | Operating Temperature Range | T _A | -55 to +125 | °c | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | ## CIRCUIT SCHEMATIC See Packaging Information Section for outline dimensions. # MC1514L (continued) | ELECTRICAL CHARACTERISTICS | $V^+ = +12 \text{ Vdc}, V^- = -6 \text{ Vdc}, T_A = 25^{\circ}$ | C unless otherwise noted) | (Each Comparator) | |----------------------------|---|---------------------------|-------------------| | | | | | | Characteristic Definitions (linear operation) | Characteristic | Symbol | Min | Тур | Max | Unit | |--|---|-------------------|--------------|--------------|-------------------|-------| | V _{vo} R _S V _{out} | Input Offset Voltage
V _{out} = 1.4 Vdc, T _A = 25°C
V _{out} = 1.8 Vdc, T _A = -55°C
V _{out} = 1.0 Vdc, T _A = +125°C | v _{io} | -
-
- | 1.0 | 2.0
3.0
3.0 | mVdc | | $R_{S} \leq 200\Omega$ | Temperature Coefficient of
Input Offset Voltage | TC _{Vio} | - | 3.0 | | μV/°C | | 0 V _{eut} | Input Offset Current Vout = 1.4 Vdc, T _A = 25° C Vout = 1.8 Vdc, T _A = -55° C Vout = 1.0 Vdc, T _A = +125° C | I _{io} | - | 1.0 | 3.0
7.0
3.0 | μAdc | | $ _{i_0} = _{I_1} - _{I_2}$ $ _{i_0} = \frac{ _{I_1} + _{I_2}}{2}$ | Input Bias Current $V_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ $V_{out} = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}$ $V_{out} = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C}$ | ^Т ь | -
-
- | 12
-
- | 20
45
20 | μAdc | | $A_{VOL} = \frac{e_{out}}{e_{in}}$ $R_{out} = \frac{e_{out}}{e_{out}}$ | Open Loop
Voltage Gain
$T_A = 25^{\circ}C$
$T_A = -55$ to $+125^{\circ}C$ | A _{VOL} | 1250
1000 | 1700
- | - | V/V | | Ť /T | Output Resistance | R out | - | 200 | - | ohms | | | Differential Voltage Range | v _{in} | ±5.0 | - | - | Vdc | | | Positive Output Voltage
V _{in} ≥ 5.0 mV, 0 ≤ I ₀ ≤ 5.0 mA | v _{он} | 2.5 | 3. 2 | 4.0 | Vdc | | V _{in} | Negative Output Voltage
V _{in} ≧ -5.0 mV | V _{OL} | -1.0 | -0.5 | 0 | Vdc | | | Output Sink Current $V_{in} \ge -5.0 \text{ mV}, V_{out} \ge 0,$ $T_A = -55 \text{ to } +125^{\circ}\text{ C}$ | I _s | 2.8 | 3.4 | - | mAdc | | | Input Common Mode Range V = -7.0 Vdc | CMV | ±5.0 | - | - | Volts | | V _{in} = | Common Mode Rejection Ratio $V^- = -7.0$ Vdc, $R_S \le 200\Omega$ | См _{геј} | 80 | 100 | - | dB | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | Propagation Delay Time
For Positive and Negative
Going Input Pulse | ^t pd | - | 40 . | - | ns | | V _{in} 0 | Total Power Supply Current $V_{out} \le 0 \text{ Vdc}$ | г _D - | - | 12. 8
11 | 18 | mAde | | - 10- | Total Power Consumption | | · - | 230 | 300 | mW | TYPICAL CHARACTERISTICS FIGURE 1 - VOLTAGE TRANSFER CHARACTERISTICS 4.0 -55 °C -25 °C -1.0 -8.0 -6.0 V_{in}, INPUT VOLTAGE (mV) FIGURE 3 — INPUT OFFSET CURRENT Versus TEMPERATURE 5.0 4.0 4.0 2.0 -55 -25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C) # MC1514L (continued) FIGURE 8 - POWER DISSIPATION VOISUS TEMPERATURE 300 250 250 150 -55 -25 0 25 50 75 100 125 TA, AMBIENT TEMPERATURE (°C)