# MC1514L

### **DUAL DIFFERENTIAL COMPARATOR**

#### MONOLITHIC DUAL DIFFERENTIAL VOLTAGE COMPARATOR

 $\ldots$  designed for use in level detection, low-level sensing, and memory applications.

#### **Typical Amplifier Features:**

- Two Separate Outputs
- Strobe Capability
- High Output Sink Current 2.8 mA min Each Comparator
- Differential Input Characteristics: Input Offset Voltage = 1.0 mV Offset Voltage Drift = 3.0 μV/<sup>O</sup>C
- Short Propagation Delay Time 40 ns
- Output Compatible with All Saturating Logic Forms
   V<sub>out</sub> = +3.2 V to -0.5 V typical

#### MAXIMUM RATINGS (T<sub>A</sub> = 25°C unless otherwise noted)

| Rating                                                                                                       | Symbol           | Value        | Unit        |
|--------------------------------------------------------------------------------------------------------------|------------------|--------------|-------------|
| Power Supply Voltage                                                                                         | v+<br>v-         | +14<br>-7.0  | Vdc<br>Vdc  |
| Differential Input Signal                                                                                    | v <sub>in</sub>  | ±5.0         | Volts       |
| Common Mode Input Swing                                                                                      | CMVin            | ±7.0         | Volts       |
| Peak Load Current                                                                                            | I <sub>L</sub>   | 10           | mA          |
| Power Dissipation (package limitation) Ceramic Dual-In-Line Package Derate above $T_A = +25^{\circ}\text{C}$ | P <sub>D</sub>   | 1000<br>6. 7 | mW<br>mW/°C |
| Operating Temperature Range                                                                                  | T <sub>A</sub>   | -55 to +125  | °c          |
| Storage Temperature Range                                                                                    | T <sub>stg</sub> | -65 to +150  | °C          |



## CIRCUIT SCHEMATIC



See Packaging Information Section for outline dimensions.

# MC1514L (continued)

| ELECTRICAL CHARACTERISTICS | $V^+ = +12 \text{ Vdc}, V^- = -6 \text{ Vdc}, T_A = 25^{\circ}$ | C unless otherwise noted) | (Each Comparator) |
|----------------------------|-----------------------------------------------------------------|---------------------------|-------------------|
|                            |                                                                 |                           |                   |

| Characteristic Definitions (linear operation)                          | Characteristic                                                                                                                                                                          | Symbol            | Min          | Тур          | Max               | Unit  |
|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------|--------------|-------------------|-------|
| V <sub>vo</sub> R <sub>S</sub> V <sub>out</sub>                        | Input Offset Voltage<br>V <sub>out</sub> = 1.4 Vdc, T <sub>A</sub> = 25°C<br>V <sub>out</sub> = 1.8 Vdc, T <sub>A</sub> = -55°C<br>V <sub>out</sub> = 1.0 Vdc, T <sub>A</sub> = +125°C  | v <sub>io</sub>   | -<br>-<br>-  | 1.0          | 2.0<br>3.0<br>3.0 | mVdc  |
| $R_{S} \leq 200\Omega$                                                 | Temperature Coefficient of<br>Input Offset Voltage                                                                                                                                      | TC <sub>Vio</sub> | -            | 3.0          |                   | μV/°C |
| 0 V <sub>eut</sub>                                                     | Input Offset Current Vout = 1.4 Vdc, T <sub>A</sub> = 25° C Vout = 1.8 Vdc, T <sub>A</sub> = -55° C Vout = 1.0 Vdc, T <sub>A</sub> = +125° C                                            | I <sub>io</sub>   | -            | 1.0          | 3.0<br>7.0<br>3.0 | μAdc  |
| $ _{i_0} =  _{I_1} -  _{I_2}$ $ _{i_0} = \frac{ _{I_1} +  _{I_2}}{2}$  | Input Bias Current $V_{out} = 1.4 \text{ Vdc}, T_A = 25^{\circ}\text{C}$ $V_{out} = 1.8 \text{ Vdc}, T_A = -55^{\circ}\text{C}$ $V_{out} = 1.0 \text{ Vdc}, T_A = +125^{\circ}\text{C}$ | <sup>Т</sup> ь    | -<br>-<br>-  | 12<br>-<br>- | 20<br>45<br>20    | μAdc  |
| $A_{VOL} = \frac{e_{out}}{e_{in}}$ $R_{out} = \frac{e_{out}}{e_{out}}$ | Open Loop<br>Voltage Gain<br>$T_A = 25^{\circ}C$<br>$T_A = -55$ to $+125^{\circ}C$                                                                                                      | A <sub>VOL</sub>  | 1250<br>1000 | 1700<br>-    | -                 | V/V   |
| Ť /T                                                                   | Output Resistance                                                                                                                                                                       | R out             | -            | 200          | -                 | ohms  |
|                                                                        | Differential Voltage Range                                                                                                                                                              | v <sub>in</sub>   | ±5.0         | -            | -                 | Vdc   |
|                                                                        | Positive Output Voltage<br>V <sub>in</sub> ≥ 5.0 mV, 0 ≤ I <sub>0</sub> ≤ 5.0 mA                                                                                                        | v <sub>он</sub>   | 2.5          | 3. 2         | 4.0               | Vdc   |
| V <sub>in</sub>                                                        | Negative Output Voltage<br>V <sub>in</sub> ≧ -5.0 mV                                                                                                                                    | V <sub>OL</sub>   | -1.0         | -0.5         | 0                 | Vdc   |
|                                                                        | Output Sink Current $V_{in} \ge -5.0 \text{ mV}, V_{out} \ge 0,$ $T_A = -55 \text{ to } +125^{\circ}\text{ C}$                                                                          | I <sub>s</sub>    | 2.8          | 3.4          | -                 | mAdc  |
|                                                                        | Input Common Mode Range V = -7.0 Vdc                                                                                                                                                    | CMV               | ±5.0         | -            | -                 | Volts |
| V <sub>in</sub> =                                                      | Common Mode Rejection Ratio $V^- = -7.0$ Vdc, $R_S \le 200\Omega$                                                                                                                       | См <sub>геј</sub> | 80           | 100          | -                 | dB    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                  | Propagation Delay Time<br>For Positive and Negative<br>Going Input Pulse                                                                                                                | <sup>t</sup> pd   | -            | 40 .         | -                 | ns    |
| V <sub>in</sub> <b>0</b>                                               | Total Power Supply Current $V_{out} \le 0 \text{ Vdc}$                                                                                                                                  | г <sub>D</sub> -  | -            | 12. 8<br>11  | 18                | mAde  |
| - 10-                                                                  | Total Power Consumption                                                                                                                                                                 |                   | · -          | 230          | 300               | mW    |

TYPICAL CHARACTERISTICS

FIGURE 1 - VOLTAGE TRANSFER CHARACTERISTICS

4.0

-55 °C

-25 °C

-1.0

-8.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

-6.0

V<sub>in</sub>, INPUT VOLTAGE (mV)



FIGURE 3 — INPUT OFFSET CURRENT Versus TEMPERATURE

5.0

4.0

4.0

2.0

-55

-25

0

25

50

75

100

125

TA, AMBIENT TEMPERATURE (°C)







# MC1514L (continued)



FIGURE 8 - POWER DISSIPATION VOISUS TEMPERATURE

300
250
250
150
-55 -25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (°C)





