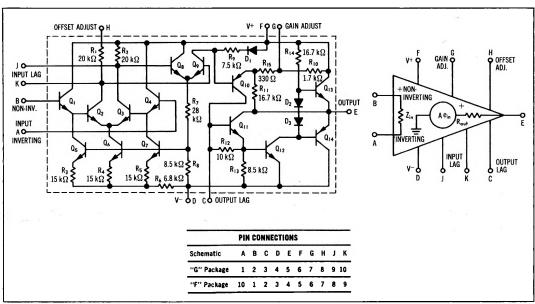

OPERATIONAL AMPLIFIER

OPERATIONAL AMPLIFIERS

MC1533

. . . designed for use as a summing amplifier, integrator, or amplifier with operating characteristics as a function of the external feedback components.

Typical Amplifier Features:


- High-Performance Open Loop Gain Characteristics
 AVOL = 60,000 typical
- Low Temperature Drift ±5.0 μV/°C
- Large Output Voltage Swing –
 ±13 V Typical @ ±15 V Supply
- Low Output Impedance —
 Z_{OUt} = 100 ohms typical
- Input Offset Voltage Adjustable to Zero

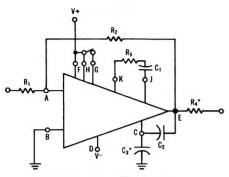
MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	v ⁺ v ⁻	+20 -20	Vdc Vdc
Differential Input Signal	V _{in}	±10	Volts
Common Mode Input Swing	CMV _{in}	±V ⁺	Volts
Load Current	IL	10	mA
Output Short Circuit Duration	t _S	1.0	s
Power Dissipation (Package Limitation) Metal Can Derate above T _A = 25 ^o C Flat Package Derate above T _A = 25 ^o C	P _D	680 4.6 500 3.3	mW mW/ ^O C mW mW/ ^O C
Operating Temperature Range	T _A	-55 to +125	°c
Storage Temperature Range	T _{stg}	-65 to +150	°c

CIRCUIT SCHEMATIC

EQUIVALENT CIRCUIT

ELECTRICAL CHARACTERISTICS (V+ = +15 Vdc, V- = -15 Vdc, T_A = 25°C unless otherwise noted)


Characteristic Definitions ^①	Characteristic	Symbol	Min	Тур	Max	Unit
Arox - 5-20	Open Loop Voltage Gain (V @ Pin G =+15 Vdc) (Pin G open) (V@Pin G =+15 Vdc, T _A =-55°C, +125°C) (Pin G open, T _A = -55°C, +125°C)	Avol	40,000 15,000 35,000 12,000	60,000 30,000 50,000 25,000	150,000 60,000 150,000 60,000	
	Output Impedance (Pin G open, f = 20 Hz)	Zout	-	100	150	Ω
	Input Impedance (Pin G open, f = 20 Hz)	z _{in}	500	1000	-	kΩ
© \$\sqrt{1}\text{ }\text{ }\te	Output Voltage Swing $(R_L = 10 \text{ k}\Omega)$ $(R_L = 2 \text{ k}\Omega)$	Vout	±12	±13 ±12		V _{peak}
60 B F N	Input Common Mode Voltage Swing	CMV _{in}	+9	+10	-	v _{peak}
$= \frac{1}{2} \frac{1}{h_{CM} - h_{CM} - h_{CM}} \frac{\epsilon_{uv}}{h_{CM} - \epsilon_{uv}}$	Common Mode Rejection Ratio (V @ Pin G=+15 Vdc) (Pin G open)	CM _{rej}	90 80	100 94		dВ
	Input Bias Current $ \left(I_{b} = \frac{I_{1} + I_{2}}{2}\right)' (T_{A} = +25^{\circ}C) $ $ (T_{A} = -55^{\circ}C) $	Ъ	-	0.5	1.0 3.0	μА
	Input Offset Current $(I_{10} = I_1 - I_2)$ $(I_{10} = I_1 - I_2)$, $T_A = -55$ °C) $(I_{10} = I_1 - I_2)$, $T_A = +125$ °C)	I _{io}	-	0.03	0.15 0.5 0.2	μА
V _n = 0 V _n = 0	Input Offset Voltage ② (T _A = 25°C) (T _A = -55°C, + 125°C)	v _{io}	-	1.0	5.0 6.0	mV
**************************************	$ \begin{cases} \text{Step Response} \\ \text{Gain} = 100, \ 15\% \ \text{overshoot,} \\ \text{R}_1 = 1 \ \text{k}\Omega, \ \text{R}_2 = 100 \ \text{k}\Omega, \\ \text{R}_3 = 100 \ \Omega, \ \text{C}_1 = 0.002 \ \mu\text{F} \end{cases} $	tf tpd dV _{out} /dt ③	-	0.15 0.06 11.0	-	μs μs V/μs
50 mV R, K0 mV	$ \begin{cases} \text{Gain} = 10, \text{ no overshoot,} \\ \text{R}_1 = 1 \text{ k}\Omega, \text{ R}_2 = 10 \text{ k}\Omega, \\ \text{R}_3 = 10 \Omega, \text{ C}_1 = 0.05 \mu\text{F} \end{cases} $	t _f t _{pd} dV _{out} /dt ③	-	0.3 0.1 1.5	-	μs μs V/μs
OVUESHOOT B C C S pF	$\left\{ \begin{array}{l} {\rm Gain} = 1, \ 20\% \ {\rm overshoot}, \\ {\rm R}_1 = 10 \ {\rm k}\Omega, \ {\rm R}_2 = 10 \ {\rm k}\Omega, \\ {\rm R}_3 = 5 \ {\rm \alpha}, \ {\rm C}_1 = 0.1 \ \mu{\rm F} \end{array} \right\}$	t _f t _{pd} dV _{out} /dt ③	-	0.2 0.3 0.8	-	μs μs V/μs
	Average Temperature Coefficient of Input Offset Voltage (T _A = -55°C to +25°C) (T _A = +25°C to +125°C)	TC _{Vio}	-	8. 0 5. 0	-	μV/°C
	Average Temperature Coefficient of Input Offset Current (T _A = -55°C to +125°C) (T _A = +25°C to +125°C)	TC _{lio}	-	0.1 0.05	-	nA/ ⁰ C
	DC Power Dissipation (Power Supply = ±15 V, V _{out} = 0)	P _D	-	120	170	mW
SPRINTIMITY - S	Positive Supply Sensitivity (V constant)	s ⁺	-	50	150	μV/V
S = ΔV _{ss} Δ V _s V _{ss}	Negative Supply Sensitivity (V ⁺ constant)	s ⁻	-	50	150	μV/V

 \bigcirc dV_{out}/dt = Slew Rate

① All definitions imply linear operation
② Input offset voltage (V_{io}) may be adjusted to zero by varying the potential on pin H

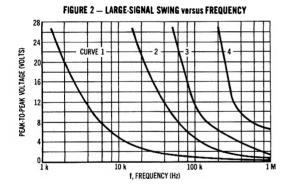

TYPICAL OUTPUT CHARACTERISTICS

FIGURE 1 — TEST CIRCUIT V+ = +15 Vdc, V- = -15 Vdc, T_A = 25°C

Fig.	Curve No.	Test Conditions					
No.		$R_1(\Omega)$	$R_2(\Omega)$	$R_3(\Omega)$	C ₁	C ₂ (pF)	C ₃ (pF)
2	1	10k	10k	5	1 µF	10	47
	2	10k	100k	10	0.1 µF	10	47
	3	1k	1 M	510	820 pF	10	47
	3	10k	1 M	100	0.05 µF	10	47
	4	1k	1 M	100	0.05 µF	3	47
	4	1k	1 M	510	820 pF	3	47
3	1 (Low Gain)	1k	1 M	10	1000 pF	10	47
	1 (High Gain)	1k	1M	510	820 pF	10	47
	2 (Low Gain)	10k	1 M	10	0.01 µF	10	47
	2 (High Gain)	10k	1 M	100	0.01 µF	10	47
	3 (Low Gain)	10k	100k	10	0.1 µF	10	47
	3 (High Gain)	10k	100k	10	0.1 µF	10	47
	4 (Low Gain)	10k	10k	10	1 µF	10	47
	4 (High Gain)	10k	10k	5	1 μF	10	47
4	1	0	8	10	1 μF	10	47
	2	0		10	0.1 µF	10	47
	. 3	0	-	10	0.01 µF	10	47
	1 4	0		10	1000 pF	10	47
	5	0	~	10	100 pF	10	47
5	1	0	8	10	1 µF	10	47
	2	0	•	10	0.1 µF	10	47
	3	0	œ	10	0.01 µF	10	47
	4	0	- ∞	10	1000 pF	10	47
	5	0	6 0	10	100 pF	10	47

*FOR CAPACITIVE LOADS, $R_4=47\ \Omega$ Or $C_3=47\ pF$

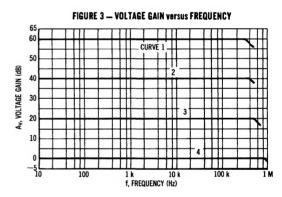
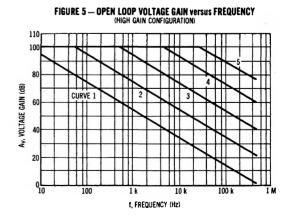


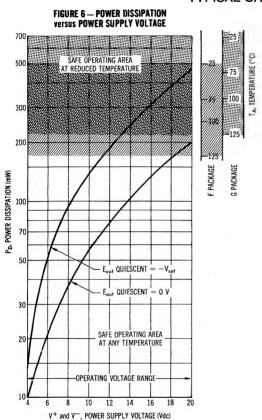
FIGURE 4 — OPEN LOOP VOLTAGE GAIN VERSUS FREQUENCY
(LOW GAIN CONFIGURATION)

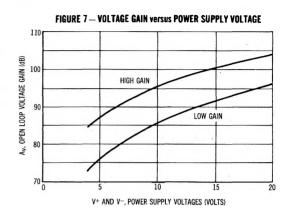
110

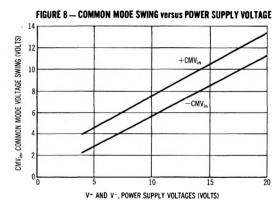
20

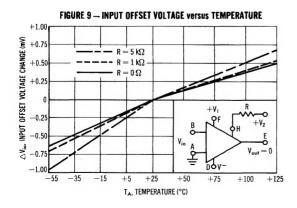

CURVE 1

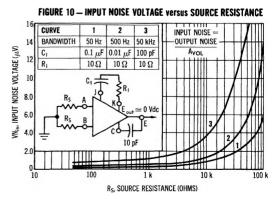
40


100


1 k 10 k 100 k 1 M


f, FREQUENCY (Hz)




TYPICAL CHARACTERISTICS

