

HIGH FREQUENCY AMPLIFIERS

MC1550G

. . . a versatile, common-emitter, commonbase cascode circuit for use in communications applications.

Typical Amplifier Features:

- Constant Input Impedance over entire AGC range
- Extremely Low $y_{12} 0.001$ mmho
- High Power Gain 30 dB @ 60 MHz (0.5 MHz BW)
- Good Noise Figure 5.0 dB @ 60 MHz
- High Voltage-Gain-Bandwidth Product 2.0 GHz

MAXIMUM RATINGS (TA = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit	
Power Supply Voltage, Pin 9	V+	20	Vdc	
AGC Supply Voltage	VAGC	20	Vdc	
Differential Input Voltage, Pin 1 to Pin 4 (R _S = 500 ohms)	v _{in}	±5	V (RMS)	
Power Dissipation (Package Limitation) Derate above 25°C	P _D	680 4.6	mW mW/°C	
Operating Temperature Range	TA	-55 to +125	°C	
Storage Temperature Range	Tstg	-65 to +150	°C	

CIRCUIT SCHEMATIC

CIRCUIT DESCRIPTION

The MC1550 is built with monolithic fabrication techniques utilizing diffused resistors and small-geometry transistors. Excellent AGC performance is obtained by shunting the signal through the AGC transistor Q_1 , maintaining the operating point of the input transistor Q_1 . This keeps the input impedance constant over the entire AGC range. The amplifuer is instanded to be used in a surface to the surface term.

The amplifier is intended to be used in a common-emitter, common-base configuration $(Q_1 \text{ and } Q_2)$ with Q_1 acting as an AGC transistor. The input signal is applied between pins 1 and 4, where pin 4 is ac-coupled to ground. DC source resistance between pins 1 and 4 should be small (less than 100 ohms). Pins 2 and 3 should be connected together and grounded. Pins 8 and 10 should be bypassed to ground. The positive supply voltage is applied at pin 9 and a thigher frequencies, pin 9 should also be bypassed to ground. The output is taken between pins 6 and 9. The substrate is connected to pin 7.

Characteristic	Conditions	Figure	Symbol	Min	Тур	Max	Unit
C CHARACTERISTICS	-						
Output Voltage	$V_{AGC} = 0 Vdc$ $V_{AGC} = +6 Vdc$	1	Vout	3,80 5,90	_	4.65 6.00	Vdc
Test Voltage	$V_{AGC} = 0 Vdc$ $V_{AGC} = +6 Vdc$	1	v ₈	2.85 3.25	_	3.40 3.80	Vdc
Supply Drain Current	$V_{AGC} = 0 Vdc$ $V_{AGC} = +6 Vdc$	1	^I D	-	_	2.2 2.5	mAdc
AGC Supply Drain Current	$V_{AGC} = 0 Vdc$ $V_{AGC} = +6 Vdc$	1	IAGC	-	-	-0.2 0.18	mAdc
MALL-SIGNAL CHARACTERISTICS	6						
Small-Signal Voltage Gain •	f = 500 kHz	2	Av	22	_	29	dB
Bandwidth	- 3, 0 dB	2	BW	22	-	-	MHz
Transducer Power Gain	f = 60 MHz, BW = 6 MHz f = 100 MHz, BW = 6 MHz	3	Ap	-	25 21	=	dB

ELECTRICAL CHARACTERISTICS ($V^* = +6 Vdc$, $T_A = 25^{\circ}C$)

FIGURE 1 - DC CHARACTERISTICS TEST CIRCUIT

FIGURE 3 - POWER GAIN TEST CIRCUIT @ 60 MHz

FIGURE 2 --- VOLTAGE GAIN AND BANDWIDTH TEST CIRCUIT

FIGURE 4 - DRAIN CURRENT TEMPERATURE CHARACTERISTICS

FIGURE 8 — OUTPUT RESISTANCE AND CAPACITANCE versus AGC VOLTAGE

FIGURE 10 — FORWARD TRANSFER ADMITTANCE versus AGC VOLTAGE

MC1550G (continued)

FIGURE 13 - TRANSDUCER POWER BANDWIDTH versus AGC VOLTAGE

FIGURE 14 -- NOISE FIGURE AND OPTIMUM SOURCE RESISTANCE