VIDEO AMPLIFIER

HIGH FREQUENCY AMPLIFIERS

MC1552G MC1553G

...a three-stage, direct-coupled, common-emitter cascade incorporating series-series feedback to achieve stable voltage gain, low distortion, and wide bandwidth. Employs a temperature-compensated dc feedback loop to stabilize the operating point and a current-biased emitter follower output. Intended for use as either a wide-band linear amplifier or as a fast rise pulse amplifier.

Typical Amplifier Features:

- High Gain 34 dB ±1.0 dB (MC1552) 52 dB ±1.0 dB (MC1553)
- Wide Bandwidth 40 MHz (MC1552) 35 MHz (MC1553)
- Low Distortion − 0.2% at 200 kHz
- Low Temperature Drift − ±0.002 dB/^OC

MAXIMUM RATINGS (T_A = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 9	v ⁺	9	Vdc
Input Voltage, Pin 1 to Pin 2 (R _S = 500 ohms)	v _{in}	1.0	V(RMS)
Power Dissipation (Package Limitation) Derate above 25°C	P _D	680 4.6	mW mW/°C
Operating Temperature Range	T _A	-55 to +125	°C
Storage Temperature Range	Tstg	-65 to +150	°C

CIRCUIT SCHEMATICS

ELECTRICAL CHARACTERISTICS (V+ = +6 Vdc, T_A = 25°C unless otherwise noted)

Character	istic	Fig. No.	Gain . Option	Symbol	Min	Тур	Max	Unit
Voltage Gain	MC1552	3	50 100	v _{out} /v _{in}	44 87	50 100	56 113	V/V
	MC1553		200 400		175 350	200 400	225 450	
Voltage Gain Variation (T _A = -55°C to +125°C)		3	All	-	_	±0. 2	_	dB
Bandwidth	MC1552	3,6	50 100	BW	21 17	40 35	=	MHz
MC1	MC1553		200 400		17 7.5	35 15	_	
Input Impedance (f = 100 kHz, R _L = 1 kΩ)		-	A 11	Zin	7	10		kΩ
Output Impedance (f = 100 kHz, $R_S = 50 \Omega$)		_	All	Zout	_	16	50	Ω
DC Output Voltage		3	All	Vout (dc)	2. 5	2.9	3.2	Vdc
DC Output Voltage Variatio (T _A = -55°C to +125°C)	n	3	All	ΔV _{out} (dc)	_	±0.05		Vdc
Output Voltage Swing $(Z_L \ge 1 \text{ k}\Omega, V_{\text{in}} = 100 \text{ m})$	V rms)	3	All	v _{out}	3.6	4.2	_	V _{p-1}
Power Dissipation		T -	All	P _D	-	75	120	mW
Delay Time	MC1552	3, 4	50 100	^t pd	=	8 9	=	ns
M	MC 1553		200 400		=	10 25	=	
Rise Time	MC1552	3, 4	50 100	t _r	=	9 12	16 20	ns
MC15	MC1553		200 400		Ξ	11 30	20 45	
Overshoot		3, 4	All	(V _{os} /V _p)100	_	5	_	%
Noise Figure (R _S = 400 Ω, f ₀ = 30 MHz	z, BW = 3 MHz)	-	All	NF	_	5	_	dB
Total Harmonic Distortion (V _{out} = 2 V _{p-p} , f = 200 k	Hz, R ₁ = 1 kΩ)	-	All	THD	_	0.2		%

*To obtain the voltage-gain characteristic desired, use the following pin connections:

		• ,
Туре	Voltage Gain	Pin Connections
MC1552	50	Pin 3 Open
11101332	100	Ground Pin 3
MC1553	200	Connect Pin 3 to Pin 4
MC1333	400	Pins 3 and 4 Open

NOTES

- $1. \ \mbox{Ground Pin } 6$ as close to can as possible to minimize overshoot. Best results by directly grounding can,
- $2.\ \mbox{If large input and output coupling capacitors are used, place shield between them to avoid input-output coupling.}$
- 3. A high-frequency capacitor must always be used to bypass the power supply. This capacitor should be as close to the circuit as possible.
- 4. Voltage gain can be adjusted to any value between 50 and 3000 by connecting an external resistor from Pin 4 to ground on MC1552, or from Pin 3 to ground on MC1553, as shown in

Figure 8. Under these conditions, the following equations must be used to determine C_1 and C_2 rather than the circuits shown in Figure 5.

Fig. 5b C₁ =
$$\frac{1}{2\pi f_c (1.7 \times 10^4)}$$
 Farads; C₂ = $\frac{8 \text{ C}_1 (V_{out}/V_{in})}{V_{out}/V_{in}}$ Farads

Fig. 5c C₁ =
$$\frac{V_{out}/V_{in}}{2\pi f_c (1.5 \times 10^4)}$$
 Farads

Fig. 5d
$$C_2 = \frac{V_{out}/V_{in}}{2\pi f_c (3 \times 10^3)}$$
 Farads

FIGURE 3 - TEST CIRCUIT

FIGURE 4 — PULSE RESPONSE DEFINITIONS

TYPICAL CHARACTERISTICS

TEST CIRCUITS FOR FREQUENCY RESPONSE FIGURE 5b — CAPACITIVE COUPLED INPUT (R, < 5k Ω)

0.1

10

2A	0.01	30
2B	0.01	18
2C	0.01	8.0
2D	0.01	4.0
	(pF)	
3A	1000	3.0
3B	1000	1.8
3C	1000	0.8
3D	1000	0.4
4A	100	0.3
4B	100	0.18
4C	100	0.08
4D-	100	0.04

C2 (µF)

FIGURE 5c — CAPACITIVE COUPLED INPUT (R, < 500 Ω)

70

Curve No.	C ₁ (µF)	Curve No.	C, (μF)
1A	20	3A	0.4
1B	10	3B	0.2
1C	7.0	3C	0.1
ID 1	3.0	3D	0.06
2A	3.0	4A	0.04
2B	1.0	4B	0.02
2C	0.8	4C	0.01
2D	0.5	4D	0.007

FIGURE 5d — TRANSFORMER COUPLED INPUT

Curve No.	C2 (µF)	Curve No.	C2 (µF)
1A	200	3A	2.0
1B	100	3B	1.0
1C	70	3C	0.7
1D	30	3D	0.3
2A	20	4A	0.2
2B	10	4B	0.1
2C	7.0	4C	0.07
2D	3.0	4D	0.03

FIGURE 7 — MAXIMUM NEGATIVE SWING SLEW RATE VERSUS LOAD CAPACITANCE

MC1552G, MC1553G (continued)

