MC1711C ## **DIFFERENTIAL COMPARATORS** # DUAL DIFFERENTIAL COMPARATOR ... designed for use in level detection, low level sensing, and memory applications. ## **Typical Amplifier Features:** - Differential Input Input Offset Voltage = 1.0 mV Offset Voltage Drift = 5.0 μV/^OC - Fast Response Time 40 ns - Output Compatible with All Saturating Logic Forms V_{OUT} = +4.5 V to -0.5 V typical - Low Output Impedance − 200 ohms #### MAXIMUM RATINGS (T_A = 25 °C unless otherwise noted) | Rating | Symbol | Value | Unit | | |---|-------------------|-------------|-------------|--| | Power Supply Voltage | v+
v- | +14
-7.0 | Vdc
Vdc | | | Differential Input Signal | v _{in} | ±5.0 | Volts | | | Common Mode Input Swing | CMV _{in} | ±7.0 | Volts | | | Peak Load Current | I _L | 50 | mA | | | Power Dissipation (package limitation)
Metal Can
Derate above T _A = 25°C | P _D | 680
4.6 | mW
mW/°C | | | Flat Package
Derate above T _A = 25°C | | 500
3.3 | mW
mW/°C | | | Ceramic Dual In-Line Package
Derate above TA = 25°C | l | 1000
6 7 | mW
mW/°C | | | Operating Temperature Range | T _A | 0 to +75 | °C | | | Storage Temperature Range | T _{stg} | -65 to +150 | °C | | ## **CIRCUIT SCHEMATIC** ### **EQUIVALENT CIRCUIT** See Packaging Information Section for outline dimensions. ## MC1711C (continued) **ELECTRICAL CHARACTERISTICS** (each comparator) $V^+ = +12 \text{ Vdc. } V^- = -6.0 \text{ Vdc. } T_A = 25^{\circ}\text{C}$ unless otherwise noted) | Characteristic Definitions | Characteristic | Symbol | Min | Тур | Max | Unit | |--|--|---------------------------------|------------|---------------|----------------------------|--------------| | V _{io} | $\begin{split} & \text{Input Offset Voltage} \\ & \text{CMV}_{\text{in}} = 0 \text{ Vdc}, \text{ T}_{\text{A}} = +25 ^{\circ}\text{C} \\ & \text{CMV}_{\text{in}} \neq 0 \text{ Vdc}, \text{ T}_{\text{A}} = +25 ^{\circ}\text{C} \\ & \text{CMV}_{\text{in}} \neq 0 \text{ Vdc}, \text{ T}_{\text{A}} = 0 \text{ to } +70 ^{\circ}\text{C} \\ & \text{CMV}_{\text{in}} \neq 0 \text{ Vdc}, \text{ T}_{\text{A}} = 0 \text{ to } +70 ^{\circ}\text{C} \end{split}$ | v _{io} | - | 1.0 | 5. 0
7. 5
6. 0
10 | mVdc | | V _{out} = 1.5 Vdc @ 0°C
V _{out} = 1.2 Vdc @ +70°C | Temperature Coefficient of Input Offset
Voltage | $^{\mathrm{TC}}_{\mathrm{Vio}}$ | - | 5.0 | - | μV/°C | | V _{out} | Input Offset Current $V_{out} = 1.4 \text{ Vdc}, \ T_A = +25^{\circ}\text{C}$ $V_{out} = 1.5 \text{ Vdc}, \ T_A = 0^{\circ}\text{C}$ $V_{out} = 1.2 \text{ Vdc}, \ T_A = +70^{\circ}\text{C}$ Input Bias Current | I _{io} | - | 0.5
-
- | 15
25
25 | μAdc
μAdc | | $\begin{array}{c} I_{10} = I_1 - I_2 \\ I_0 = \frac{I_1 + I_2}{2} \end{array}$ | $\dot{V}_{\rm out} = 1.4 {\rm Vdc}, \; T_{\rm A} = +25^{\circ} {\rm C}$ $V_{\rm out} = 1.5 {\rm Vdc}, \; T_{\rm A} = 0^{\circ} {\rm C}$ $V_{\rm out} = 1.2 {\rm Vdc}, \; T_{\rm A} = +70^{\circ} {\rm C}$ | ь | - | 25
-
- | 100
150
150 | | | Avol = eout ein eout | Voltage Gain $T_A = +25^{\circ}C$ $T_A = -55 \text{ to } +125^{\circ}C$ | A _{VOL} | 700
500 | 1500 | - | V/V | | | Output Resistance | Rout | • | 200 | - | ohms | | 0 | Differential Voltage Range | v _{in} | ±5.0 | | - | Vdc | | | Positive Output Voltage
$V_{in} \ge 10 \text{ mVdc}, \ 0 \le I_{o} \le 5.0 \text{ mA}$ | v _{он} | 2.5 | 3. 2 | 5.0 | Vdc | | V _{in} | Negative Output Voltage
V _{in} ≧ -10 mVdc | V _{OL} | -1.0 | -0.5 | 0 | Vdc | | 10 | Strobed Output Level V _{strobe} ≤ 0.3 Vdc | V _{OL(st)} | -1.0 | - | 0 | Vdc | | | Output Sink Current $V_{in} \ge -10 \text{ mV}, V_{out} \ge 0$ | I _S | 0.5 | 0.8 | - | mAdc | | | Strobe Current V _{strobe} = 100 mVdc | Ist | - | 1.2 | 2.5 | mAde | | v _{in} | Input Common Mode Range
V = -7.0 Vdc | CM _{Vin} | ±5.0 | - | - | Volts | | e _{in} 100mV 1.4V 1.8 1.4V 1.8 1.4V 1.3 1.4V 1.3 1.4V 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 | Response Time V _b = 5.0 mV + V _{io} | t _R | - | 40 | - | ns | | estrobe t SR | Strobe Release Time | t _{SR} | - | 12 | - | ns | | V _{in} 0 | Power Supply Current Vout ≤ 0 Vdc | I _D + | | 8. 6
3. 9 | - | mAdc | | - t t _{1p} - | Power Consumption | | - | 130 | 200 | mW |