

MC15482L •MC17482L* MC25482L •MC27482L*

LOW-LEVEL "AND-OR-INVERT" GATE

HIGH-LEVEL "AND-OR-INVERT" GATE

ADVANCE INFORMATION/NEW PRODUCT

Each bit of this device performs the logical addition of two binary numbers. The sum outputs, the carry output for the second bit, and Exclusive OR outputs for each bit are available. A look-ahead carry is provided internally. The Exclusive OR outputs of the MC25482/MC27482 can be used for lookahead carry when adding more than two bits.

This device is constructed from low and high-level NAND and AND-OR-INVERT gates as shown in the logic diagram to maximize output drive capability and minimize power dissipation.

TRUTH TABLE											
INPUT				OUTPUT							
A1	81	A2	B2	$C_{\text {in }}=0$			$C_{\text {in }}=1$			¢ 1^{\dagger}	$\stackrel{+}{ } 2^{\dagger}$
				S1	S2	C_{0}	S1	S2	C_{0}		
0	0	0	0	0	0	0	1	0	0	0	0
1	0	0	0	1	0	0	0	1	0	1	0
0	1	0	0	1	0	0	0	1	0	1	0
1	1	0	0	0	1	0	1	1	0	0	0
0	0	1	0	0	1	0	1	1	0	0	1
1	0	1	0	1	1	0	0	0	1	1	1
0	1	1	0	1	1	0	0	0	1	1	1
1	1	1	0	0	0	1	1	0	1	0	1
0	0	0	1	0	1	0	1	1	0	0	1
1	0	0	1	1	1	0	0	0	1	1	1
0	1	0	1	1	1	0	0	0	1	1	1
1	1	0	1	0	0	1	1	0	1	0	1
0	0	1	1	0	0	1	1	0	1	0	0
1	0	1	1	1	0	1	0	1	1	1	0
0	1	1	1	1	0	1	0	1	1	1	0
1	1	1	1	0	1	1	1	1	1	0	0

'Available only on MC25482/27482.

TYPICAL PROPAGATION DELAY TIMES$T_{A}=25^{\circ} \mathrm{C}$								
	${ }^{\text {tpd- }}$ (ns)				${ }^{\text {t }} \mathrm{pd}+(\mathrm{ns})$			
	OUTPUT				OUTPUT			
InPut	S1	S2	c_{0}	\bigcirc	S1	S2	c_{0}	\oplus
82	-	18.5	-	9.5	-	27	-	14
C_{i}	5.5	13	9.5	-	9.0	18.5	14	-

[^0]MC15482, MC17482, MC25482, MC27482 (continued)

DC ELECTRICAL CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$ for MC17482 and MC27482
$T_{A}=-55$ to $+125^{\circ} \mathrm{C}$ for MC15482 and MC25482

Characteristic	Symbol	Value	Conditions
Input $\begin{aligned} & \text { Forward Current }-A, B \\ & \qquad C_{i} \end{aligned}$	I_{F}	-3.2 mAdc max -4.8 mAdc max	$\mathrm{V}_{\text {in }}=0.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{Vdc}$ (1) or 5.25 Vdc (2)
$\begin{aligned} & \text { Leakage Current }-\mathbf{A}, \mathbf{B} \\ & \qquad C_{\mathbf{i}} \\ & \text { A, B, } \boldsymbol{C}_{\mathbf{i}} \end{aligned}$	I_{R}	$\begin{aligned} & 80 \mu \text { Adc } \max \\ & 120 \mu \text { Adc } \max \\ & 1.0 \text { mAdc } \max \end{aligned}$	$\mathrm{V}_{\text {in }}=2.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{Cc}}=5.5 \mathrm{Vdc}(1)$ or 5.25 Vdc (2) $\mathrm{V}_{\text {in }}=5.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{Vdc}(1)$ or 5.25 Vdc (2)
Threshold Voltage	$V_{\text {th }}$ " 1 "	2.0 Vdc	
	$\mathrm{V}_{\text {th }}$ " 0 "	0.8 Vdc	
Output			
Output Voltage	V_{OL}	0.4 Vdc max	$\begin{array}{r} \mathrm{I}_{\mathrm{OL}}=16 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{Vdc}(1) \\ \text { or } 4.75 \mathrm{Vdc}(2) \end{array} \begin{aligned} & \text { Tested according } \\ & \text { to truth table. } \\ & \text { Logical " } 1 "= \end{aligned}$
	$\mathrm{VOH}^{\text {O }}$	2.4 Vdc min	
Short-Circuit Current	${ }^{\text {I }} \mathrm{SC}$	(1) -20 to -57 mAdc (2) -18 to -57 mAdc	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{Vdc}$, output grounded. Tested according to truth table. Logical " 1 " $=4.5 \mathrm{Vdc}$; Logical " 0 " $=$ Gnd.

[^1]
[^0]: *L suffix $=$ TO.116 ceramic dual in-line package (Case 632).

[^1]: (1) MC15482, MC25482
 (2) MC17482, MC27482

