MC3100/MC3000 series **HEX INVERTER** ## MC3108F • MC3008F MC3108L • MC3008L,P CIRCUIT SCHEMATIC 1/6 OF CIRCUIT SHOWN VCC 14 2.8 k 760 4 k 760 7 Gnd This device offers six independent inverting gates in a single package. Each gate consists of a single input driving an output inverter. Positive Logic: 2 = 1 Input Loading Factor = 1 Output Loading Factor = 10 Total Power Dissipation = 140 typ/pkg Propagation Delay Time = 6 ns typ Pin numbers for the 54H04F/74H04F device are shown in the chart. These devices are available on special request. | DEVICE | | - | | | | PIN | NU | MBE | RS | | | | | | |---------------------|---|----|---|---|---|-----|----|-----|----|----|----|----|----|----| | MC3108F,L/3008F,L,P | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | 54H04F/74H04F | 1 | 14 | 3 | 2 | 5 | 6 | 11 | 8 | 7 | 10 | 9 | 12 | 13 | 14 | ## SWITCHING TIME TEST CIRCUIT AND WAVEFORMS See General Information section for packaging. ## **ELECTRICAL CHARACTERISTICS** Test procedures are shown for only one inverter. The other inverters are tested in the same manner. | Pin MC3108 Test Limits MC3008 M | | | 11 | = | 1 | -10 | | | | | | | | | | | | | | | | TE | ST CUR | RENT / VC | TEST CURRENT / VOLTAGE VALUES | UES | | | | | |--|--|-----------------|-----------|----------|----------|---------|----------|--------|---------|--------------|--------------|--------|----------|------|-------|---------|----------------|--------------|--------------|---|--------|-------|--------|-----------|-------------------------------|-----------|--------|------|------------------|-----------| | 13 | | | | | ۷ ۷ | | | | | | | | | | (| 1 | | μM | | | | | | | > | olts | | | | | | Pin | | | 72 | 2 | 1 | -12 | | | | | | | * | | Temp | erature | _6 | -F | _ <u>.</u> £ | ٥ | >" | > | >" | >" | V _{RH} | Vmax | | Vccı | V _{CCH} | r | | Paris Pari | | | | | | | | | | | | | | | • | -55°C | | -2.0 | | • | 1.1 | 2.0 | 9.4 | 2.4 | 4.0 | - | 5.0 | 4.5 | 5.5 | - | | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | | | | | | | | | | | | | | W | ~ | +25°C | | -2.0 | _ | _ | 1.1 | 1.8 | 0.4 | 2.4 | 4.0 | 7.0 | 5.0 | 4.5 | 5.5 | | | Paris Pari | | | | | | | | | | | | | | | ٺ | +125°C | | -2.0 | , | | 0.8 | 1.8 | 0.4 | 2.4 | 4.0 | • | 5.0 | 4.5 | 5.5 | | | | | | | | | | | | | | | | | | _ | ٥°C | | -2.0 | _ | | 1.1 | 2.0 | 9.0 | 2.5 | 4.0 | | 5.0 | 4.75 | 5.25 | | | Physical Pick Pic | | | | | | | | | | | | | | W | _ | +25°C | | -2.0 | - | - | 1.1 | 1.8 | 0.4 | 2.5 | 4.0 | 4.0 | 5.0 | 4.75 | 5.25 | _ | | | | | | | | | | | | - | | | | | _ | +75°C | 20 | -2.0 | _ | , | 6.0 | 1.8 | 9.0 | 2.5 | 4.0 | - | 5.0 | 4.75 | 5.25 | | | | . W | | Pin | | × | C3108 | | mits | | | 2 | 103008 | Test Lin | nits | | | | , | | | TEST C | URREN | 1/00/ | AGE APP | LIED TO PIL | VS LISTEL | D BELO | . × | | | | Symbol Test Min Max | | | Under | _ | -55°C | + | 25°C | + | 125°C | | ٥ <u>.</u> 0 | + | 2°C | + | . 2°C | | | L | | | | - | - | | | | 1 | 1 | | | | I _R 1 -2.0 - | Characteristic | Symbol | Test | 4 | Max | | - | - | Max | - | - | - | Max | - | Max | Unit | ا _و | _ĕ | _ <u>.</u> E | ۵ | >" | >= | >" | >" | > RH | > × | ۶ | VccL | VCCH | Gnd | | Harror H | nput
Forward Current | 4 | - | 3 | -2.0 | | -2.0 | - | -2. (| _ | - | _ | -2.0 | _ | -2.0 | | | - | | | 1 | | - | | | - | 1 | Ŀ | 14 | 1. | | BV _{III} 1 - - 5.5 - - - 1.5 - - - 5.5 - - - Vdc - - 1 - - - 1 - - - | Leakage Current | IR | 1 | ' | 20 | 1 | 20 | - | 20 | - | 20 | ' | 20 | 1. | 20 | μAdc | | | | | | | - | | | 1. | | | 14 | *1 | | VD 1 - | Breakdown Voltage | BVin | - | ' | - | 5.5 | _ | 1 | 1 | 1 | - | 5.5 | - | | 1 | Vdc | | | - | , | | | 1 | | | | - | | 14 | *- | | VOL. 2 2.4 - 0.4 - | Clamp Voltage | v _D | 1 | 1 | .1 . | | -1.5 | - | ' | 1 | ' | ' | -1.5 | | | Vdc | | | - | - | | | 1 | | | | - | 14 | 1 | ** | | VoH 2 2 2.4 - 2.4 - 2.5 - 2.5 - 2.5 - 0.4dc - 100 400 100 40 10 10 10 10 10 10 10 10 10 10 10 10 10 | Output
Output Voltage | vol. | 23 | - | 0.4 | - | 0.4 | | 0.4 | | | | 0.4 | , | 0.4 | Vdc | 2 | ' | | - | 1 | - | , | , | | , | - | 14 | | ** | | Secondary Fig. Secondary | | МОЛ | 2 | 2.4 | | 2.4 | _ | 2.4 | | 2.5 | | 2.5 | | 2.5 | - | Vdc | | 62 | | | - | | | , | | | | 14 | • | ** | | The control of | Short-Circuit
Current | I _{SC} | 2 | -40 | - | - | - | - | _ | | 1 | - | -100 | | -100 | mAdc | | | 1 | , | | , | , | 1 - | | , | | ' | 14 | 1,2,7* | | Taylor 14 - 58 - 58 - 58 - 58 - 58 make - 6 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 | ower Requirements
(Total Device)
Maximum Power
Supply Current | | 14 | | 2 1 | | 37.5 | | | | , | , | 37.5 | | , | mAdc | , | | , | | , | -1 | , | | , | 14 | , | , | , | 1,3,5,7,9 | | IppL 14 26 27 2 | Power Supply Drain | | 14 | - | 28 | 1 | 28 | 1 | 28 | ' | 28 | 1 | 28 | | 28 | mAdc | 1 | | 1 | • | , | 1. | , | | 1,3,5,9, | | .1 | , | 14 | 7 | | Police Pulse Pulse in a large and | | IDDL | 14 | 1 | 26 | . 1 | 56 | ' | 26 | ' | 26 | 1 | 56 | 1 | 26 | mAde | 1 | , | ' | 1 | | | 1 | , | | 1 | | , | 41 | 1,3,5,7,9 | | . 1.2 | Switching
Parameters
Turn-On Delay | t pd+ | 1,2 | | 1 | - 1 | 10 | r | | 1 | | | 01 | | 1 | su | Pulse
In | Pulse
Out | | | | | , | | | | 14 | , | | * 2 | | -pd, | Turn-Off Delay | t pd- | 1,2 | | | 1 | 10 | ' | 1 | 1 | - | - | 10 | - | , | su | 1 | 64 | , | , | | , | 1 | 1 | | ' | 14 | | | ** | | where the second section is a second section and the second second section is a second section to the second section s | * Since this is an inv. | erting gate, | power dra | ain is i | ninimize | d by gr | Suipuno. | the in | outs to | gates n | ot under | test. | | | | | | | | | | | | | | | | | | |