Single Supply Quad Operational Amplifiers

The MC3403 is a low cost, quad operational amplifier with true differential inputs. The device has electrical characteristics similar to the popular MC1741C. However, the MC3403 has several distinct advantages over standard operational amplifier types in single supply applications. The quad amplifier can operate at supply voltages as low as 3.0 V or as high as 36 V with quiescent currents about one third of those associated with the MC1741C (on a per amplifier basis). The common mode input range includes the negative supply, thereby eliminating the necessity for external biasing components in many applications. The output voltage range also includes the negative power supply voltage.

- Short Circuit Protected Outputs
- Class AB Output Stage for Minimal Crossover Distortion
- True Differential Input Stage
- Single Supply Operation: 3.0 V to 36 V
- Split Supply Operation: ±1.5 V to ±18 V
- Low Input Bias Currents: 500 nA Max
- Four Amplifiers Per Package
- Internally Compensated
- Similar Performance to Popular MC1741C
- Industry Standard Pinouts
- ESD Diodes Added for Increased Ruggedness

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltages Single Supply Split Supplies	V _{CC} V _{CC} , V _{EE}	36 ±18	Vdc
Input Differential Voltage Range (Note 1)	V _{IDR}	±36	Vdc
Input Common Mode Voltage Range (Notes 1 and 2)	V _{ICR}	±18	Vdc
Storage Temperature Range	T _{stg}	–55 to +125	°C
Operating Ambient Temperature Range MC3303 MC3403	T _A	–40 to +85 0 to +70	°C
Junction Temperature	TJ	150	°C

1. Split power supplies.

2. For supply voltages less than ± 18 V, the absolute maximum input voltage is equal to the supply voltage.

ON Semiconductor™

http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
MC3303D	SO-14	55 Units/Rail
MC3303DR2	SO-14	2500 Tape & Reel
MC3303P	PDIP-14	25 Units/Rail
MC3403D	SO-14	55 Units/Rail
MC3403DR2	SO-14	2500 Tape & Reel
MC3403P	PDIP-14	25 Units/Rail

ELECTRICAL CHARACTERISTICS	$(V_{CC} = +15 \text{ V}, V_{EE} = -15 \text{ V} \text{ for MC3403}; V_{CC} = +14 \text{ V}, V_{EE} = \text{Gnd for MC3303 T}_{A} = 25^{\circ}\text{C},$
unless otherwise noted.)	

			MC3403		MC3303			
Characteristic	Symbol	Min	Тур	Мах	Min	Тур	Мах	Unit
Input Offset Voltage	V _{IO}	-	2.0	10	-	2.0	8.0	mV
$T_A = T_{high}$ to T_{low} (Note 1)		-	-	12	-	-	10	
Input Offset Current	I _{IO}	-	30	50	-	30	75	nA
$T_A = T_{high}$ to T_{low}		-		200	-		250	March
Large Signal Open Loop Voltage Gain V_{O} = ±10 V, R _L = 2.0 k Ω	A _{VOL}	20	200		20	200	_	V/mV
$T_A = T_{high}$ to T_{low}		15	_	-	15	_	-	
Input Bias Current	I _{IB}	-	-200	-500	-	-200	-500	nA
T _A = T _{high} to T _{low}		-	=	-800	-	-	-1000	
Output Impedance f = 20 Hz	z _o	-	75	-	-	75	-	Ω
Input Impedance f = 20 Hz	zi	0.3	1.0	-	0.3	1.0	-	MΩ
Output Voltage Range	Vo							V
$R_L = 10 k\Omega$		±12	±13.5	-	12	12.5	-	
R _L = 2.0 kΩ R _L = 2.0 kΩ, T _A = T _{high} to T _{low}		±10 ±10	±13 _		10 10	12	_	
Input Common Mode Voltage Range	V _{ICR}	+13 V	+13 V	-	+12 V	+12.5 V		v
input common mode tenage nange	•ICR	-V _{EE}	-V _{EE}		-V _{EE}	-V _{EE}		
Common Mode Rejection $R_S \leq$ 10 k Ω	CMR	70	90	-	70	90	-	dB
Power Supply Current (V _O = 0) R _L = ∞	I _{CC} , I _{EE}	_	2.8	7.0	_	2.8	7.0	mA
Individual Output Short-Circuit Current (Note 2)	I _{SC}	±10	±20	±45	±10	±30	±45	mA
Positive Power Supply Rejection Ratio	PSRR+	-	30	150	-	30	150	μV/V
Negative Power Supply Rejection Ratio	PSRR-	-	30	150	-	30	150	μV/V
Average Temperature Coefficient of Input Offset Current	ΔΙ _{ΙΟ} /ΔΤ	-	50	-	-	50	. –	pA/°C
$T_A = T_{high}$ to T_{low}								
Average Temperature Coefficient of Input Offset Voltage	$\Delta V_{IO} / \Delta T$	-	10	-	-	10	-	µV/°C
$T_A = T_{high}$ to T_{low}								
Power Bandwidth A_V = 1, R_L = 10 k\Omega, V_O = 20 V(p–p), THD = 5%	BWp	-	9.0	-	-	9.0	-	kHz
Small–Signal Bandwidth A_V = 1, R_L = 10 k Ω , V_O = 50 mV	BW	-	1.0	-	-	1.0	-	MHz
Slew Rate A_V = 1, V_i = -10 V to +10 V	SR	-	0.6	-	-	0.6	-	V/µs
Rise Time A _V = 1, R _L = 10 k Ω , V _O = 50 mV	t _{TLH}	-	0.35	-	-	0.35	-	μs
Fall Time A _V = 1, R _L = 10 k Ω , V _O = 50 mV	t _{TLH}	-	0.35	-	-	0.35	-	μs
Overshoot A _V = 1, R _L = 10 k Ω , V _O = 50 mV	os	-	20	-	-	20	-	%
Phase Margin A _V = 1, R _L = 2.0 k Ω , V _O = 200 pF	φm	-	60	-	-	60	-	Degree
Crossover Distortion (V _{in} = 30 mVpp,V _{out} = 2.0 Vpp, f = 10 kHz)	-	-	1.0	-	-	1.0	2-	%

MC3303: T_{low} = -40°C, T_{high} = +85°C MC3403: T_{low} = 0°C, T_{high} = +70°C
Not to exceed maximum package power dissipation.

ELECTRICAL CHARACTERISTICS	(V _{CC} = 5.0 V, V _{EE} = Gnd, T_A = 25°C, unless otherwise noted.)
----------------------------	---

		MC3403			MC3303			
Characteristic	Symbol	Min	Тур	Мах	Min	Тур	Max	Unit
Input Offset Voltage	V _{IO}	- 1	2.0	10	_	-	10	mV
Input Offset Current	I _{IO}	-	30	50	-	-	75	nA
Input Bias Current	I _{IB}	-	-200	-500	-	-	-500	nA
Large Signal Open Loop Voltage Gain R _L = 2.0 k Ω	A _{VOL}	10	200	-	10	200	-	V/mV
Power Supply Rejection Ratio	PSRR	-	-	150	-	-	150	μV/V
Output Voltage Range (Note 3) $R_L = 10 \text{ k}\Omega, \text{ V}_{CC} = 5.0 \text{ V}$ $R_L = 10 \text{ k}\Omega, 5.0 \le \text{V}_{CC} \le 30 \text{ V}$	V _{OR}	3.3 V _{CC} -2.0	3.5 V _{CC} -1.7		3.3 V _{CC} –2.0	3.5 V _{CC} -1.7	-	Vpp
Power Supply Current	Icc	-	2.5	7.0	-	2.5	7.0	mA
Channel Separation f = 1.0 kHz to 20 kHz (Input Referenced)	CS	-	-120	-	-	-120	-	dB

3. Output will swing to ground with a 10 k Ω pull down resistor.

CIRCUIT DESCRIPTION

Figure 2. Inverter Pulse Response

The MC3403/3303 is made using four internally compensated, two-stage operational amplifiers. The first stage of each consists of differential input device Q24 and Q22 with input buffer transistors Q25 and Q21 and the differential to single ended converter Q3 and Q4. The first

Figure 3. Sine Wave Response

stage performs not only the first stage gain function but also performs the level shifting and transconductance reduction functions. By reducing the transconductance, a smaller compensation capacitor (only 5.0 pF) can be employed, thus saving chip area. The transconductance reduction is accomplished by splitting the collectors of Q24 and Q22. Another feature of this input stage is that the input common mode range can include the negative supply or ground, in single supply operation, without saturating either the input devices or the differential to single–ended converter. The second stage consists of a standard current source load amplifier stage.

The output stage is unique because it allows the output to swing to ground in single supply operation and yet does not exhibit any crossover distortion in split supply operation. This is possible because Class AB operation is utilized.

Each amplifier is biased from an internal voltage regulator which has a low temperature coefficient, thus giving each amplifier good temperature characteristics as well as excellent power supply rejection.

Figure 4. Open Loop Frequency Response

Figure 11. High Impedance Differential Amplifier

Figure 12. Comparator with Hysteresis

 $A(f_0) = gain at center frequency$

Choose value fo, C

Then: R3 =
$$\frac{Q}{\pi f_0 C}$$
 R1 = $\frac{R3}{2 A(f_0)}$ R2 = $\frac{R1 R5}{4Q^2 R1 - R5}$

For less than 10% error from operational amplifier $\frac{O_o f_o}{BW} < 0.1$ where f_o and BW are expressed in Hz.

If source impedance varies, filter may be preceded with voltage follower buffer to stabilize filter parameters.

Figure 15. Multiple Feedback Bandpass Filter