MC3303, MC3403 QUADRUPLE LOW-POWER OPERATIONAL AMPLIFIERS SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002 - Wide Range of Supply Voltages, Single Supply . . . 3 V to 36 V or Dual Supplies - Class AB Output Stage - True Differential Input Stage - Low Input Bias Current - Internal Frequency Compensation - Short-Circuit Protection - Designed to Be Interchangeable With Motorola MC3303, MC3403 MC3303 . . . D, N, OR PW PACKAGE MC3403 . . . D, DB, N, NS, OR PW PACKAGE (TOP VIEW) #### description The MC3303 and the MC3403 are quadruple operational amplifiers similar in performance to the μ A741, but with several distinct advantages. They are designed to operate from a single supply over a range of voltages from 3 V to 36 V. Operation from split supplies also is possible, provided the difference between the two supplies is 3 V to 36 V. The common-mode input range includes the negative supply. Output range is from the negative supply to $V_{CC} = 1.5$ V. Quiescent supply currents are less than one-half those of the μ A741. The MC3303 is characterized for operation from –40°C to 85°C, and the MC3403 is characterized for operation from 0°C to 70°C. #### **AVAILABLE OPTIONS** | | | PACKAGE | | | | | | | | | |---------------|--------------------------------|-------------------------------------|---|-----------------------|---|--|--|--|--|--| | TA | V _{IO} MAX
AT 25°C | PLASTIC
SMALL OUTLINE
(D, NS) | PLASTIC SHRINK
SMALL OUTLINE
(DB) | PLASTIC
DIP
(N) | PLASTIC
THIN SHRINK
SMALL OUTLINE
(PW) | | | | | | | 0°C to 70°C | 10 mV | MC3403D
MC3403NS | MC3403DB | MC3403N | MC3403PW | | | | | | | -40°C to 85°C | 8 mV | MC3303D | _ | MC3303N | MC3303PW | | | | | | The D package is available taped and reeled. Add R suffix to the device type (e.g., MC3403DR). The DB, NS, and PW packages are only available taped and reeled. #### logic diagram (each amplifier) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. #### schematic (each amplifier) Component values shown are nominal. ### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† | Supply voltage (see Note 1): V _{CC+} | | | |---|------------------|----------------| | V _{CC} | | –18 V | | Supply voltage, V _{CC+} with respect to V _{CC-} | | 36 V | | Differential input voltage (see Note 2) | | ±36 V | | Input voltage (see Notes 1 and 3) | | ±18 V | | Package thermal impedance, θ _{JA} (see Note 4): | : D package | 86°C/W | | | DB package | 96°C/W | | | N package | 80°C/W | | | NS package | 76°C/W | | | PW package | 113°C/W | | Lead temperature 1,6 mm (1/16 inch) from case | e for 10 seconds | 260°C | | Storage temperature range, T _{stq} | | −65°C to 150°C | [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - NOTES: 1. These voltage values are with respect to the midpoint between V_{CC+} and V_{CC-} - 2. Differential voltages are at IN+ with respect to IN-. - 3. Neither input must ever be more positive than V_{CC+} or more negative than V_{CC-} . - 4. The package thermal impedance is calculated in accordance with JESD 51-7. SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002 #### recommended operating conditions | | | | MIN | MAX | UNIT | |-----|--------------------------------|-------------------|------|-----|------| | Vcc | Supply voltage | | 5 | 30 | V | | | Dual gunnhy voltage | | 2.5 | 15 | V | | | Dual-supply voltage | V _{CC} - | -2.5 | -15 | V | | т. | Operating free-air temperature | MC3303 | -40 | 85 | °C | | TA | Operating nee-all temperature | MC3403 | 0 | 70 | | ## electrical characteristics at specified free-air temperature, V_{CC+} = 14 V, V_{CC-} = 0 V for MC3303, $V_{CC\pm}$ = ± 15 V for MC3403 (unless otherwise noted) | | DADAMETED | | + | | MC3303 | | | MC3403 | | | | |-------------------|--|--|------------|----------------------------|------------------------------|------|----------------------------|------------------------------|------|--------|--| | | PARAMETER | TEST CONDITION | NS1 | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | | V. 0 | Input offset voltage | See Note 5 | 25°C | | 2 | 8 | | 2 | 10 | mV | | | VIO | input onset voltage | See Note 3 | Full range | | | 10 | | | 12 | IIIV | | | $\alpha_{V_{IO}}$ | Temperature coefficient of input offset voltage | See Note 5 | Full range | | 10 | | | 10 | | μV/°C | | | li o | Input offset current | See Note 5 | 25°C | | 30 | 75 | | 30 | 50 | nA | | | liO | input onset current | See Note 3 | Full range | | | 250 | | | 200 | ПА | | | $\alpha_{I_{IO}}$ | Temperature coefficient of input offset current | See Note 5 | Full range | | 50 | | | 50 | | pA/C | | | 1 | Input bigg ourrent | Coo Noto F | 25°C | | -0.2 | -0.5 | | -0.2 | -0.5 | | | | IB | Input bias current | See Note 5 | Full range | | | -1 | | | -0.8 | μΑ | | | VICR | Common-mode input voltage range‡ | | 25°C | V _{CC} -
to 12 | V _{CC} -
to 12.5 | | V _{CC} -
to 13 | V _{CC} -
to 13.5 | | V | | | | | $R_L = 10 \text{ k}\Omega$ | 25°C | 12 | 12.5 | | ±12 | ±13.5 | | | | | Vом | Peak output voltage swing | $R_L = 2 k\Omega$ | 25°C | 10 | 12 | | ±10 | ±13 | | V | | | | voltage swing | $R_L = 2 k\Omega$ | Full range | 10 | | | ±10 | | | | | | Λ. σ | Large-signal differential | $V_O = \pm 10 \text{ V}, R_L = 2 \text{ k}\Omega$ | 25°C | 20 | 200 | | 20 | 200 | | V/mV | | | AVD | voltage amplification | V() = ±10 V, K[= 2 K22 | Full range | 15 | | | 15 | | | V/IIIV | | | ВОМ | Maximum-output-swing bandwidth | $V_{OPP} = 20 \text{ V, } A_{VD} = 1,$
THD \leq 5%, R _L = 2 k Ω | 25°C | | 9 | | | 9 | | kHz | | | B ₁ | Unity-gain bandwidth | $V_O = 50$ mV, $R_L = 10$ k Ω | 25°C | | 1 | | | 1 | | MHz | | | φm | Phase margin | $C_L = 200 \text{ pF}, R_L = 2 \text{ k}\Omega$ | 25°C | | 60° | | | 60° | | | | | rį | Input resistance | f = 20 Hz | 25°C | 0.3 | 1 | | 0.3 | 1 | | MΩ | | | r _O | Output resistance | f = 20 Hz | 25°C | | 75 | | | 75 | | Ω | | | CMRR | Common-mode rejection ratio | V _{IC} = V _{ICR} min | 25°C | 70 | 90 | | 70 | 90 | | dB | | | ksvs | Supply voltage sensitivity (ΔV _{IO} /ΔV _{CC}) | $V_{CC\pm} = \pm 2.5 \text{ to } \pm 15 \text{ V}$ | 25°C | | 30 | 150 | | 30 | 150 | μV/V | | | los | Short-circuit output current§ | | 25°C | ±10 | ±30 | ±45 | ±10 | ±30 | ±45 | mA | | | Icc | Total supply current | No load, See Note 5 | 25°C | | 2.8 | 7 | | 2.8 | 7 | mA | | [†] All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range for T_A is –40°C to 85°C for MC3303, and 0°C to 70°C for MC3403. NOTE 5: V_{IO} , I_{IO} , I_{IB} , and I_{CC} are defined at V_{O} = 0 for MC3403 and V_{O} = 7 V for MC3303. $^{^{\}ddagger}$ The V_{ICR} limits are linked directly, volt-for-volt, to supply voltage; the positive limit is 2 V less than V_{CC+}. [§] Temperature and/or supply voltages must be limited to ensure that the dissipation rating is not exceeded. SLOS101C - FEBRUARY 1979 - REVISED FEBRUARY 2002 ## electrical characteristics, V_{CC+} = 5 V, V_{CC-} = 0 V, T_A = 25°C (unless otherwise noted) | | PARAMETER | TEST CONDITIONS [†] | ľ | /IC3303 | | N | /IC3403 | | LINUT | |-----------------|---|--|---------------------------|---------|------|---------------------------|---------|------|-------| | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | MIN | TYP | MAX | UNIT | | VIO | Input offset voltage | V _O = 2.5 V | | | 10 | | 2 | 10 | mV | | IIO | Input offset current | V _O = 2.5 V | | | 75 | | 30 | 50 | nA | | I _{IB} | Input bias current | V _O = 2.5 V | | | -0.5 | | -0.2 | -0.5 | μΑ | | | | $R_L = 10 \text{ k}\Omega$ | 3.3 | 3.5 | | 3.3 | 3.5 | | | | VOM | Peak output voltage swing‡ | R_L = 10 kΩ,
V_{CC+} = 5 V to 30 V | V _{CC+}
- 1.7 | | | V _{CC+}
- 1.7 | | | V | | A _{VD} | Large-signal differential voltage amplification | $V_O = 1.7 \text{ V to } 3.3 \text{ V}, R_L = 2 \text{ k}\Omega$ | 20 | 200 | | 20 | 200 | | V/mV | | kSVS | Supply-voltage sensitivity $(\Delta V_{IO}/\Delta V_{CC\pm})$ | $V_{CC\pm} = \pm 2.5 \text{ V to } \pm 15 \text{ V}$ | | | 150 | | | 150 | μV/V | | Icc | Supply current | V _O = 2.5 V, No load | | 2.5 | 7 | | 2.5 | 7 | mA | | VO1/VO2 | Crosstalk attenuation | f = 1 kHz to 20 kHz | | 120 | | | 120 | | dB | [†] All characteristics are measured under open-loop conditions with zero common-mode input voltage unless otherwise specified. # operating characteristics, V_{CC+} = 14 V, V_{CC-} = $\,$ 0 V for MC3303, $V_{CC\pm}$ = ± 15 V for MC3403, T_A = 25°C, A_{VD} = 1 (unless otherwise noted) | | PARAMETER | | TEST CONDITIONS | | | | | | | | |----------------|-------------------------|-------------------------------|--------------------------|------------------------------|--------------|------|------|--|--|--| | SR | Slew rate at unity gain | $V_{I} = \pm 10 \text{ V},$ | $C_L = 100 pF$, | $R_L = 2 k\Omega$, | See Figure 1 | 0.6 | V/μs | | | | | t _r | Rise time | $\Delta V_O = 50 \text{ mV},$ | $C_L = 100 pF$, | $R_L = 10 \text{ k}\Omega$, | See Figure 1 | 0.35 | μs | | | | | t _f | Fall time | $\Delta V_O = 50 \text{ mV},$ | $C_L = 100 pF$, | $R_L = 10 \text{ k}\Omega$, | See Figure 1 | 0.35 | μs | | | | | | Overshoot factor | $\Delta V_O = 50 \text{ mV},$ | C _L = 100 pF, | $R_L = 10 \text{ k}\Omega$, | See Figure 1 | 20 | % | | | | | | Crossover distortion | $V_{I(PP)} = 30 \text{ mV},$ | V _{OPP} = 2 V, | f = 10 kHz | | 1 | % | | | | #### PARAMETER MEASUREMENT INFORMATION Figure 1. Unity-Gain Amplifier [‡]Output will swing essentially to ground. #### TYPICAL CHARACTERISTICS[†] ## MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE VS SUPPLY VOLTAGE #### **MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE** ## VOLTAGE-FOLLOWER Figure 5 [†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. #### TYPICAL CHARACTERISTICS[†] [†] Operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Packag
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp (3) | |------------------|-----------------------|-----------------|--------------------|------|---------------|---------------------------|------------------|--------------------| | MC3303D | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303DE4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303DG4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303DR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303DRE4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303DRG4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303N | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | MC3303NE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | MC3303PW | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303PWE4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303PWG4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303PWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303PWRE4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3303PWRG4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403D | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403DE4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403DG4 | ACTIVE | SOIC | D | 14 | 50 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403DR | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403DRE4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403DRG4 | ACTIVE | SOIC | D | 14 | 2500 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403N | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | MC3403NE4 | ACTIVE | PDIP | N | 14 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | | MC3403NSLE | OBSOLETE | SO | NS | 14 | | TBD | Call TI | Call TI | | MC3403NSR | ACTIVE | SO | NS | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403NSRG4 | ACTIVE | SO | NS | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | #### PACKAGE OPTION ADDENDUM 24-May-2007 | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------| | MC3403PW | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403PWE4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403PWG4 | ACTIVE | TSSOP | PW | 14 | 90 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403PWR | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403PWRE4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MC3403PWRG4 | ACTIVE | TSSOP | PW | 14 | 2000 | Green (RoHS &
no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. **Green (RoHS & no Sb/Br):** TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 #### TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |-----------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | MC3303DR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | MC3303PWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | MC3403DR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | MC3403DR | SOIC | D | 14 | 2500 | 330.0 | 16.4 | 6.5 | 9.0 | 2.1 | 8.0 | 16.0 | Q1 | | MC3403NSR | SO | NS | 14 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | MC3403PWR | TSSOP | PW | 14 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 14-Jul-2012 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |-----------|--------------|-----------------|------|------|-------------|------------|-------------| | MC3303DR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | MC3303PWR | TSSOP | PW | 14 | 2000 | 367.0 | 367.0 | 35.0 | | MC3403DR | SOIC | D | 14 | 2500 | 333.2 | 345.9 | 28.6 | | MC3403DR | SOIC | D | 14 | 2500 | 367.0 | 367.0 | 38.0 | | MC3403NSR | SO | NS | 14 | 2000 | 367.0 | 367.0 | 38.0 | | MC3403PWR | TSSOP | PW | 14 | 2000 | 367.0 | 367.0 | 35.0 | ## N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ## D (R-PDSO-G14) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AB. ## D (R-PDSO-G14) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. PW (R-PDSO-G14) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 ## PW (R-PDSO-G14) ## PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### **MECHANICAL DATA** ### NS (R-PDSO-G**) ## 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. #### Products Applications Audio Automotive and Transportation www.ti.com/automotive www.ti.com/audio **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers DI P® Products Consumer Electronics www.dlp.com www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/medical Interface interface.ti.com Medical www.ti.com/security Power Mgmt <u>power.ti.com</u> Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u> Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>