

Quad Bidirectional Instrumentation Bus (GPIB) Transceiver

This bidirectional bus transceiver is intended as the interface between TTL or MOS logic and the IEEE Standard Instrumentation Bus (488–1978, often referred to as GPIB). The required bus termination is internally provided.

Each driver/receiver pair forms the complete interface between the bus and an instrument. Either the driver or the receiver of each channel is enabled by its corresponding Send/Receive input with the disabled output of the pair forced to a high impedance state. An additional option allows the driver outputs to be operated in an open collector* or active pull-up configuration. The receivers have input hysteresis to improve noise margin, and their input loading follows the bus standard specifications.

- Four Independent Driver/Receiver Pairs
- Three-State Outputs
- High Impedance Inputs
- Receiver Hysteresis 600 mV (Typical)
- Fast Propagation Times 15 to 20 ns (Typical)
- TTL Compatible Receiver Outputs
- Single 5.0 V Supply
- Open Collector Driver Output Option*
- Power Up/Power Down Protection (No Invalid Information Transmitted to Bus)
- No Bus Loading When Power Is Removed From Device
- Terminations Provided: Termination Removed When Device is Unpowered

* Selection of the "Open Collector" configuration in fact, selects an open collector device with a passive pull-up load/termination which conforms to Figure 7, IEEE 488-1976 Bus Standard.

TRUTH TABLE

Send/Rec.	Enable	Info.	Flow	Comments
0	х	Bus	Data	-
1	1	Data	Bus	Active Pull-Up
1	0	Data	Bus	Open Col.

X = Don't Care

MC3448A

ORDERING INFORMATION

Device	Operating Temperature Range	Package	
MC3448AP	$T_{\Delta} = 0$ to +70°C	Plastic DIP	
MC3448AD	IA = 010 +70°C	SO-16	

MAXIMUM RATINGS (T_A = 25°C, unless otherwise noted)

Rating	Symbol	Value	Unit
Power Supply Voltage	Vcc	7.0	Vdc
Input Voltage	VI	5.5	Vdc
Driver Output Current	lO(D)	150	mA
Junction Temperature	Тj	150	°C
Operating Ambient Temperature Range	TA	0 to +70	°C
Storage Temperature Range	T _{stg}	- 65 to +150	°C

ELECTRICAL CHARACTERISTICS (Unless otherwise noted, $4.75 \text{ V} \le \text{V}_{CC} \le 5.25 \text{ V}$ and $0 \le \text{T}_{A} \le 70^{\circ}\text{C}$; typical values are at T_A = 25°C, V_{CC} = 5.0 V)

Characteristic	Symbol	Min	Тур	Max	Unit
Bus Voltage (Bus Pin Open) (V _{I(S/R)} = 0.8 V) (I _(BUS) = -12 mA)	V _(BUS) VIC(BUS)	2.75	-	3.7 - 1.5	v
Bus Current (5.0 V ≤ V(BUS) ≤ 5.5 V) (V(BUS) = 0.5 V) (V _{CC} = 0 V, 0 V ≤ V(BUS) ≤ 2.75 V)	I(BUS)	0.7	-	2.5 - 3.2 +0.04	mA
Receiver Input Hysteresis (VI(S/R) = 0.8 V)	- 🖑	400	600	-	mV
Receiver Input Threshold (VI(S/R) = 0.8 V, Low to High) (VI(S/R) = 0.8 V, High to Low)	XILH(B) VIHL(B)	6.9 0.9	1.6 1.0	1.8 -	v
Receiver Output Voltage – High Logic State (VI(S/R) = 0.8 V, IOH(R) = -800 μA, V(BUS) = 2.0 V)	VOH(R)	2.7	-	-	v
Receiver Output Voltage – Low Logic State (VI(S/R) = 0.8 V, IOL(R) = 16 mA, V(BUS) = 0.8 V)	VOL(R)	-	-	0.5	v
Receiver Output Short Circuit Current (VI(S/R) = 0.8 V, V(Bus) = 2.0 V)	IOS(R)	- 15	_	-75	mA
Driver Input Voltage - High Logic State (VI(S/R) = 2.0 V)	VIH(D)	2.0	-	-	v
Driver Input Voltage – Low Logic State (VI(S/B) = 2.0 M)	VIL(D)	-	-	0.8	v
Driver Input Current – Data Pins ($V_{I(S/R)} = V_{I(E)} = 2.0 V$) (0.5 $\leq V_{I(D)} \leq 2.7 V$) ($V_{I(D)} = 5.5 V$)	lı(D) liB(D)	-200 -	-	40 200	μ A
Input Current – Send/Receive ($0.5 \le V_{I(S/R)} \le 2.7 V$) ($V_{I(S/R)} = 5.5 V$)	^I I(S/R) ^I IB(S/R)	100 	-	20 100	μA
Input Current – Enable (0.5 ≤ VI(E) ≤ 2.7 V) (VI(E) = 5.5 V)	ll(E) lIB(E)	-200 -	- -	20 100	μA
Driver Input Clamp Voltage (VI(S/R) = 2.0 V, IIC(D) = -18 mA)	VIC(D)	_	_	-1.5	v
Driver Output Voltage – High Logic State (VI(S/R) = 2.0 V, VIH(D) = 2.0 V, VIH(E) = 2.0 V, I _{OH} = - 5.2 mA)	VOH(D)	2.5	-	-	v
Driver Output Voltage – Low Logic State (Note 1) (VI(S/R) = 2.0 V, IOL(D) = 48 mA)	V _{OL} (D)	-	-	0.5	v
Output Short Circuit Current (VI(S/R) = 2.0 V, VIH(D) = 2.0 V, VIH(E) = 2.0 V)	IOS(D)	-30	-	- 120	mA
Power Supply Current (Listening Mode – All Receivers On) (Talking Mode – All Drivers On)	ICCL ICCH		63 106	85 125	mA

6367253 0101814 896 📟

SWITCHING CHARACTERISTICS (V_{CC} = 5.0 V, T_A = 25°C, unless otherwise noted)

Propagation Delay of Driver					ns
(Output Low to High)	^t PLH(D)	-	-	15	
(Output High to Low)	tPHL(D)	-	-	17	
Propagation Delay of Receiver					ns
(Output Low to High)	^t PLH(R)	-	_	25	
(Output High to Low)	^t PHL(R)	-	-	23	

NOTE: 1. A modification of the IEEE 488-1978 Bus Standard changes VOL(D) from 0.4 to 0.5 V maximum to permit the use of Schottky technology.

SWITCHING CHARACTERISTICS (continued) (V_{CC} = 5.0 V, T_A = 25°C, unless otherwise noted)

	Symbol	Min	Тур	Max	Unit
Propagation Delay Time - Send/Receive to Data					ns
Logic High to Third State	^t PHZ(R)	-	-	30	
Third State to Logic High	^t PZH(R)	-	-	30	
Logic Low to Third State	^t PLZ(R)	- 1	-	30	
Third State to Logic Low	^t PZL(R)		<u> </u>	30	
Propagation Delay Time - Send/Receive to Bus					ns
Logic High to Third State	^t PHZ(D)		- "	30	
Third State to Logic High	^t PZH(D)		-	30	1
Logic Low to Third State	^t PLZ(D)		all and	30	
Third State to Logic Low	tPZL(D)			30	
Turn-On Time - Enable to Bus		V . K			ns
Pull–Up Enable to Open Collector	terester		-	30	
Open Collector to Pull-Up Enable		0. S.M.	_	20	
	\mathbf{V}				
NOT OF RECONN					

🖬 6367253 OlOl815 722 🎟

7–60

PROPAGATION DELAY TEST CIRCUITS AND WAVEFORMS

Figure 1. Bus Input to Data Output (Receiver)

6367253 0101816 669 🎟

Figure 4. Send/Receive Input to Data Output (Receiver)

■ 6367253 OlOl817 5T5 |

7–62

Figure 8. Simple System Configuration

| 6367253 0101818 431 📖

MOTOROLA ANALOG IC DEVICE DATA

7-63

7