

MC3479C

STEPPER MOTOR DRIVER

- SINGLE SUPPLY OPERATION + 7.2 V TO + 16 V
- 350 mA/ COIL DRIVE CAPABILITY
- BUILT IN FAST PROTECTION DIODES
- SELECTABLE CW/CCW AND FULL/HALF STEP OPERATION
- SELECTABLE HIGH/LOW OUTPUT IMPE-DANCE (HALF STEP MODE)
- TTL/CMOS COMPATIBLE INPUTS
- INPUT HYSTERESIS : 250 mV TYP.
- <u>PHASE</u> LOGIC CAN BE INITIALIZED TO <u>PHASE A</u>
- PHASE A OUTPUT DRIVE STATE INDICATION

DESCRIPTION

The MC3479C is designed to drive a two-phase stepper motor in the bipolar mode. The circuit consists of four input selections a logic decoding/sequencing section two driver stages for the motor coils and an output to indicate the Phase A drive state.

INPUT TRUTH TABLE

	INPUT LOW	INPUT HIGH
CW/CCW	CW	CCW
F/HS	Full Step	Half Step
OIC	High Z	Low Z
CLK	Positive Edg	ge Triggered

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
Vs	Supply Voltage	16	VDC
VD	Clamp Diode Cathode Voltage (pin 1)	Vs	VDC
V _{OD}	Driver Output Voltage (pins 2, 3, 14, 15)	Vs	VDC
I _{OD-}	Driver Output Current/Coil	± 500	mA
V _{IN}	Input Voltage (pins 7, 8, 9, 10)	- 0.5 to 7	VDC
IBS	Bias/Set Current (pin 6)	10	mA
VOA	Phase A Output Voltage (pin 11)	16	VDC
IOA	Phase A Sink Current (pin 11)	20	mA
Тj	Junction Temperature	150	°C
T _{stg}	Storage Temperature range	- 55 to 150	°C

RECOMMENDED OPERATION CONDITIONS

Symbol	Parameter	Min.	Max.	Unit
Vs	Supply Voltage (DC)	7.2	16	V
VD	Clamp Diode Cathode Voltage (DC)	-	Vs	V
IOD	Driver Output Current (per coil)	-	350	mA
V ₁	DC Input Voltage (pin 7, 8, 9, 10)	0	5.5	v
IBS	Bias/Set Current (outputs active)	- 300	75	μA
I _{OA}	Phase A Sink Current	0	8	mA
T _{amb}	Operating Ambient Temperature	0	70	°C

CONNECTION DIAGRAMS

THERMAL DATA

1 -				
Bab : amb	Thermal Resistance Junction-ambient	Max	70	l °C/W ∣
⊓th j-amb		Mux	/0	

PIN DESCRIPTION

Symbol	Name	Pins	Description
Vs	POWER SUPPLY	16	Power supply pin for both the logic circuit and the motor coil current. Voltage range is 7.2 V to 16 V.
GND	GROUND	4-5-12-13	Ground Pins for the Logic Circuit and the Motor Coil Current. The physical configuration of the pins dissipating heat from within the package.
VD	CLAMP DIODE	1	This pin is used to protect the outputs where large voltage spikes may occur as the motor coils are switched. Typically a diode is connected between this pin and pin 16. See figure 5.
L1, L2, L3, L4	DRIVER OUTPUTS	2-3 14-15	High Current Outputs for the Motor Coils. L1 and L2 are connected to one coil and L3 and L4 to the other coil.
B/S	BIAS/SET	6	This pins is typically 0.7 V below V _S . The current out of this pin (through a resistor to ground) determines the maximum output sink current. If the pin is opened (I_{BS} < 5.0 μ A) the outputs assume a high impedance condition while the internal logic presets to a Phase A condition.
СК	CLOCK	7	The positive edge of the clock input switches the outputs to the next position. This input has no effect if pin 6 is open.
F/HS	FULL/HALF STEP	9	When low (logic 0) each clock pulse will cause the motor to rotate one full step. When high, each clock pulse will cause the motor to rotate one-half step. (see figure 4 for sequence).
CW/CCW	CLOCKWISE COUNTERCLOCKWISE	10	This input allows reversing the rotation of the rotation of the motor. (see figure 4 for sequence).
OIC	OUT IMPEDANCE CONTROL	8	This input is relevant only in the half step mode (pin $9 > 2 V$). When low (logic 0) the two driver out of the non-energized coil will be in a high impedance condition. When high the same driver outputs will be at a low impedance reference to V_S . (see figure 4).
Ph A	PHASE A	11	This outputs indicate (when low) that the driver outputs are in the phase A condition (L1 = L3 = V_{OHD} ; L2 = L4 = V_{OLD}).

DC ELECTRICAL CHARACTERISTICS(Specifications apply over the recommended supply voltage and temperature range, unless otherwise noted)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit]
-							-

INPUT LOGIC LEVEL

VTLH	Threshold Voltage (low to high)			2	V
VTHL	Threshold Voltage (high to low)		0.8		v
V _{HYS}	Hysteresis		0.4		v
I _{IL} I _{IH1} I _{IH2}	Current	$V_1 = 0.4 V$ $V_1 = 5.5 V$ $V_1 = 2.7 V$	- 100	100 20	μA

DRIVER OUTPUT LEVELS

V _{OHD}	Output High Voltage	$I_{OD} = -350 \text{ mA}$ $I_{OD} = -0.1 \text{ mA}$ $I_{BS} = -300 \mu \text{A}$	V _S – 2.0 V _S – 1.2		v v
VOLD	Output Low Voltage	I _{BS} = - 300 μA I _{OD} = - 350 mA		0.8	V
D _{VOD}	Difference Mode out Voltage Difference	I _{BS} = - 300 μA I _{OD} = 350 mA		0.15	V
C _{VOD}	Common Mode out Voltage Difference	I _{BS} = - 300 μA I _{OD} = - 0.1 mA		0.15	V
I _{OZ1}	Out Leakage-HiZ State	$0 < V_D < V_M, I_{BS} = 5 \ \mu A$	- 100	+ 100	μA
l _{OZ2}	Out Leakage-HiZ state	$\begin{array}{l} 0 < V_{OD} < V_{M}, I_{BS} = - \; 300 \; \mu A \\ Pin \; 9 = 2 \; V \\ Pin \; 8 = 0.8 \; V \end{array}$	- 100	+ 100	μA

CLAMP DIODES

ſ	VDF	Forward Voltage	I _D = 350 mA	2.5	3	V
	IDR	Leakage Current	V _R = 21 V		100	μA

PHASE A OUTPUT

VOLA	Out Low Voltage	I _{OA} = 8 mA		0.4	V
	Off State Leakage Current	V _{OA} = 16.5 V		100	μA

POWER SUPPLY

I _{SSB}	Power Supply Current in Stand by State	$V_{BS} = V_S$	i		12	mA
k	Power Supply Current ($I_{OD} = 0$); $I_{BS} = -300 \mu A$)	L1 = V _{OHD} L3 = V _{OHD}	L2 = V _{OLD} L4 = V _{OHD}		75	mA

BIAS SET CURRENT

IBS	Bias Set Current	to set PHASE A	- 5	μА
Notes :	3. DVOD = VOD1.2 - VOD3.4			

VOD1.2 = (VOHD1 - VOHD2) or (VOHD2 - VOLD1) AND VOD3.4 = (VOHD3 - VOHD4) OR (VOHD4 - VOHD3) 4. CVOD = | VOHD1 - VOHD2 or VOHD3 - VOHD4 |

AC SWITCHING CHARACTERISTICS ($T_{amb} = 25 \text{ }^{\circ}C$; $V_M = 12 \text{ }^{\circ}V$)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
I _{СК}	Clock Frequency		0		30	KHz
PWCKH	Clock Pulse Width	HIGH	10			μs
PWCKL	Clock Pulse Width	LOW	20			μs
tsu	Set-up Time CW/CCW and F/HS		5			μs
t _{но}	Hold Time CW/CCW and F/HS		10			μs
tpcd	Propagation Delay CLK-to Driver Out			8		μs
tpbsd	Propagation Delay Bias/Set to Driver Output			1		μs
t PHLA	Propagation Delay CLK-to Phase A LOW			12		μs
t _{PLHA}	Propagation Delay CLK-to Phase A HIGH			5		μs

Figure 1: AC Test Circuit.

MC3479C

Figure 2 : Typical Application Circuit.

Figure 3 : Bias/Set Timing (refer to fig.1).

Figure 4 : Clock Timing (refer to fig.1).

Figure 5 : Output Sequence.

