

MC4002F,L, \mathbf{P}^{*}

[^0]
ADVANCE INFORMATION/NEW PRODUCT

This device consists of two data distributors constructed from high-level AND gates and low-level inverters. One distributes information present at the input line to one of four output lines; the other distributes information present at the input to one of two output lines. The routing path is selected by the logic signals at the control lines A, B or C.

Data distributors are useful in applications where digital data is to be routed from a single register or location to one of several registers or locations for processing.

TYPICAL PROPAGATION DELAY TIMES (ns) $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

INPUT	$Z 0$	$Z 1$	$Z 2$	$Z 3$
A	14.5	10.5	14.5	10.5
B	14.5	14.5	10.5	10.5
X	10.5	10.5	10.5	10.5

INPUT	WO	$W 1$
C	14.5	10.5
Y	10.5	10.5

HIGH-LEVEL "AND" GATE

MC4002F, L, P (continued)

INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families

	MC4000 INPUT	MC4000 OUTPUT
FAMILY	FOADING	LOADING
FACTOR	FACTOR	
MC4000	1.0	10
MC400	1.0	10
MC2000	0.67	6
MC3000	0.7	8
MC7400	1.0	10
MC830	1.15°	12

Note: Differences in MC4000 series loading factors result from differences in specifications for each family.

* Applies only when input is being driven by MDTL gate with 2.0 k ohm pullup resistor. Logic " 1 " state drive limitations of gates with 6.0 k ohm pullup resistors reduce drive capability to fan-out of 3 .

DC ELECTRICAL CHARACTERISTICS
$\left(T_{A}=0\right.$ to $75^{\circ} \mathrm{C}$)

Characteristic	Symbol	Value	Conditions
Input Forward Current - A, B C, Y X	${ }^{\prime} \mathrm{F} 1$	-4.8 mAdc max -3.2 mAdc max -6.4 mAdc max	$V_{\text {in }}=0.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}$
$\begin{aligned} & \mathrm{A}, \mathrm{~B} \\ & \mathrm{C}, \mathrm{Y} \\ & \mathrm{X} \end{aligned}$	${ }^{\prime} \mathrm{F} 2$	-4.2 mAdc max - 2.8 mAdc max - 5.6 mAdc max	$V_{\text {in }}=0.4 \mathrm{Vdc}, \mathrm{V}_{\text {cc }}=4.75 \mathrm{Vdc}$
Leakage Current - A, B C, Y X	${ }^{\prime} \mathrm{R}$	120μ Adc max 80μ Adc max 160μ Adc max	$\mathrm{V}_{\text {in }}=2.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}$
Breakdown Voltage	$B V_{\text {in }}$	5.5 Vdc max	$\mathrm{I}_{\text {in }}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}, \mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C}$
Clamp Voltage	$V_{\text {D }}$	-1.5 Vdc max	$\mathrm{I}_{\mathrm{D}}=-10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
Threshold Voltage	$V_{\text {th }}$ "1"	$\begin{aligned} & 2.0 \mathrm{Vdc} \\ & 1.8 \mathrm{Vdc} \end{aligned}$	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & T_{A}=+25^{\circ} \mathrm{C}, \text { or } T_{A}=+75^{\circ} \mathrm{C} \end{aligned}$
	$\mathrm{V}_{\text {th }}$ "0"	1.1 Vdc 0.9 Vdc	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}, \text { or } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=+75^{\circ} \mathrm{C} \end{aligned}$
Output Output Voltage	V_{OL}	0.4 Vdc max 0.4 Vdc max	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{Vdc} t \\ & \mathrm{I}_{\mathrm{OL}}=17.6 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{Vdc} \dagger \end{aligned}$
	V_{OH}	2.5 Vdc min	$\mathrm{I}^{\mathrm{OH}}=-1.6 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc} \dagger$
Short-Circuit Current	Isc	-20 to -65 mAdc	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}$, output grounded \dagger

[^1]
[^0]: F suffix $=$ TO-86 ceramic flat package (Case 607).
 L suffix $=$ TO-116 ceramic dual in-line package (Case 632).
 P suffix $=$ TO-116 plastic dual in-line package (Case 605).

[^1]: ${ }^{\dagger}$ These tests are performed according to the logic equations with a true input equal to $\mathrm{V}_{\text {th }}$ " 1 " and a false
 input equal to $V_{\text {th }}$ " 0 ".

