MC4300/MC4000 series

DUAL DATA DISTRIBUTOR MC4002F, L, P*

LOW-LEVEL INVERTER

*F suffix = TO-86 ceramic flat package (Case 607).
L suffix = TO-116 ceramic dual in-line package (Case 632).
P suffix = TO-116 plastic dual in-line package (Case 605).

ADVANCE INFORMATION/NEW PRODUCT

This device consists of two data distributors constructed from high-level AND gates and low-level inverters. One distributes information present at the input line to one of four output lines; the other distributes information present at the input to one of two output lines. The routing path is selected by the logic signals at the control lines A, B or C.

Data distributors are useful in applications where digital data is to be routed from a single register or location to one of several registers or locations for processing.

HIGH-LEVEL "AND" GATE

MC4002F, L, P (continued)

INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families

FAMILY	MC4000 INPUT LOADING FACTOR	MC4000 OUTPUT LOADING FACTOR
MC4000	1.0	10
MC400	1.0	10
MC2000	0.67	6
MC3000	0.7	8
MC7400	1.0	10
MC830	1.15**	12

Note: Differences in MC4000 series loading factors result from differences in specifications for each family.

**Applies only when input is being driven by MDTL gate with 2.0 k ohm pullup resistor. Logic "1" state drive limitations of gates with 6.0 k ohm pullup resistors reduce drive capability to fan-out of 3.

DC ELECTRICAL CHARACTERISTICS

(T_A = 0 to 75⁰C)

Characteristic	Symbol	Value	Conditions
Input			
Forward Current – A, B		-4.8 mAdc max	
C, Y	IF1	-3.2 mAdc max	V _{in} = 0.4 Vdc, V _{CC} = 5.25 Vdc
x		-6.4 mAdc max	
А, В		-4.2 mAdc max	
C, Y	F2	-2.8 mAdc max	V _{in} = 0.4 Vdc, V _{CC} = 4.75 Vdc
x		-5.6 mAdc max	
Leakage Current – A, B		120 µAdc max	
C, Y	I _R	80 µAdc max	V _{in} = 2.5 Vdc, V _{CC} = 5.25 Vdc
x		160 µAdc max	
Breakdown Voltage	BVin	5.5 Vdc max	$I_{in} = 1.0 \text{ mAdc}, V_{CC} = 5.25 \text{ Vdc}, T_A = 25^{\circ}\text{C}$
Clamp Voltage	VD	-1.5 Vdc max	$I_D = -10 \text{ mAdc}, V_{CC} = 4.75 \text{ Vdc}, T_A = 25^{\circ}\text{C}$
Threshold Voltage	Vth "1"	2.0 Vdc	T _A = 0 ^o C
		1.8 Vdc	$T_A = +25^{\circ}C$, or $T_A = +75^{\circ}C$
Ī	Vth "0"	1.1 Vdc	$T_{A} = 0^{\circ}C$, or $T_{A} = +25^{\circ}C$
		0.9 Vdc	T _A = +75 ⁰ C
Output			
Output Voltage	VOL	0.4 Vdc max	I _{OL} = 16 mAdc, V _{CC} = 4,75 Vdc t
		0.4 Vdc max	I _{OL} = 17.6 mAdc, V _{CC} = 5.25 Vdc †
	VOH	2.5 Vdc min	I _{OH} = -1.6 mAdc, V _{CC} = 4.75 Vdc t
Short-Circuit Current	'sc	-20 to -65 mAdc	V _{CC} = 5.0 Vdc, output grounded †

[†]These tests are performed according to the logic equations with a true input equal to V_{th} ''1'' and a false input equal to V_{th} ''0''.