MC4010L, P*

ADVANCE INFORMATION/NEW PRODUCT

Three Exclusive NOR gates are connected together to form each of the two 4-bit parity trees in the package. An even number of logic "1" states on the inputs will result in a logic "1" output state. An odd parity checker can be made by connecting an inverter to the output of the device.

This function is constructed using low and high-level Exclusive NOR gates connected as shown in the logic diagram to maximize output drive capability and minimize power dissipation.

LOW-LEVEL GATE

*L suffix = TO-116 ceramic dual in-line package (Case 632). P suffix = TO-116 plastic dual in-line package (Case 605).

HIGH-LEVEL GATE

1

INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families

FAMILY	MC4000 INPUT LOADING FACTOR	MC4000 OUTPUT LOADING FACTOR	Note
MC4000	1.0	10	**A
MC400	1.0	10	2
MC2000	0.67	6	
MC3000	0.7	8	ga
MC7400	1.0	10	1 10
MC830	1.15**	12	1

Note: Differences in MC4000 series loading factors result from differences in specifications for each family,

**Applies only when input is being driven by MDTL gate with 2.0 k ohm pullup resistor. Logic "1" state drive limitations of gates with 6.0 k ohm pullup resistors reduce drive capability to fan-out of 3.

DC ELECTRICAL CHARACTERISTICS

 $(T_A = 0 \text{ to } 75^{\circ}C)$

Characteristic	Symbol	Value	Conditions
Input			
Forward Current	IF1	-3.2 mAdc max	V _{in} = 0.4 Vdc, V _{CC} = 5.25 Vdc
	IF2	-2.8 mAdc max	V _{in} = 0.4 Vdc, V _{CC} = 4.75 Vdc
Leakage Current	1 _R	80 µAdc max	V _{in} = 2.5 Vdc, V _{CC} = 5.25 Vdc
Breakdown Voltage	8Vin	5.5 Vdc max	l _{in} = 1.0 mAdc, V _{CC} = 5.25 Vdc, T _A = 25 ^o C
Clamp Voltage	VD	-1.5 Vdc max	$I_D = -10 \text{ mAdc}, V_{CC} = 4.75 \text{ Vdc}, T_A = 25^{\circ}C$
Threshold Voltage	V _{th} "1"	2.0 Vdc	$T_A = 0^{O}C$
		1.8 Vdc	T _A = +25 ^o C, or T _A = +75 ^o C
	Vth "0"	1.1 Vdc	$T_A = 0^{\circ}C$, or $T_A = +25^{\circ}C$
		0.9 Vdc	T _A = +75 ^o C
Output			
Output Voltage	VOL	0.4 Vdc max	$I_{OL} = 16 \text{ mAdc}, V_{CC} = 4.75 \text{ Vdc}^{\dagger}$
		0.4 Vdc max	I _{OL} = 17.6 mAdc, V _{CC} = 5.25 Vdc†
	VOH	2.5 Vdc min	I _{OH} = ~1.6 mAdc, V _{CC} = 4.75 Vdc†
Short-Circuit Current	ISC	-20 to -65 mAdc	V _{CC} = 5.0 Vdc, output grounded [†]

[†]These tests are performed according to the logic equations with a true input equal to V_{th} "1" and a false input equal to V_{th} "0".