MC4010L, \mathbf{P} *

ADVANCE INFORMATION/NEW PRODUCT

Three Exclusive NOR gates are connected together to form each of the two 4-bit parity trees in the package. An even number of logic " 1 " states on the inputs will result in a logic " 1 " output state. An odd parity checker can be made by connecting an inverter to the output of the device.

This function is constructed using low and high-level Exclusive NOR gates connected as shown in the logic diagram to maximize output drive capability and minimize power dissipation.

LOW-LEVEL GATE

[^0]MC4010L, P (continued)

INPUT and OUTPUT LOADING FACTORS with respect to MTTL and MDTL families

	MC4000 INPUT	MC4000 OUTPUT
FAMILY	LOADING	LOADING
FACTOR	FACTOR	
MC4000	1.0	10
MC400	1.0	10
MC2000	0.67	6
MC3000	0.7	8
MC7400	1.0	10
MC830	$1.15^{* *}$	12

Note: Differences in MC4000 series loading factors result from differences in specifications for each family.
**Applies only when input is being driven by MDTL gate with 2.0 k ohm pullup resistor. Logic " 1 " state drive limitations of gates with 6.0 k ohm pullup resistors reduce drive capability to fan-out of 3.

DC ELECTRICAL CHARACTERISTICS
($T_{A}=0$ to $75^{\circ} \mathrm{C}$)

Characteristic	Symbol	Value	Conditions
Input			
Forward Current	IF1	-3.2 mAdc max	$\mathrm{V}_{\text {in }}=0.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}$
	'F2	-2.8 mAdc max	$\mathrm{V}_{\text {in }}=0.4 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}$
Leakage Current	${ }^{1} \mathrm{R}$	80μ Adc max	$\mathrm{V}_{\text {in }}=2.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}$
Breakdown Voltage	$B V_{\text {in }}$	5.5 Vdc max	$\mathrm{I}_{\text {in }}=1.0 \mathrm{mAdc}, \mathrm{V}_{\text {CC }}=5.25 \mathrm{Vdc}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
Clamp Voltage	$V_{\text {D }}$	-1.5 Vdc max	${ }^{1} \mathrm{D}=-10 \mathrm{mAdc}, \mathrm{V}_{C C}=4.75 \mathrm{Vdc}, \mathrm{T}_{A}=25^{\circ} \mathrm{C}$
Threshold Voltage	$V_{\text {th " }}$ " ${ }^{\text {r }}$	2.0 Vdc 1.8 Vdc	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C} \\ & T_{A}=+25^{\circ} \mathrm{C}, \text { or } T_{A}=+75^{\circ} \mathrm{C} \end{aligned}$
	$V_{\text {th }}$ "0"	1.1 Vdc 0.9 Vdc	$\begin{aligned} & T_{A}=0^{\circ} \mathrm{C}, \text { or } T_{A}=+25^{\circ} \mathrm{C} \\ & T_{A}=+75^{\circ} \mathrm{C} \end{aligned}$
Output Output Voltage	V_{OL}	0.4 Vdc max 0.4 Vdc max	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{Vdc}^{\dagger} \\ & \mathrm{I}_{\mathrm{OL}}=17.6 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CC}}=5.25 \mathrm{Vdc}{ }^{\dagger} \end{aligned}$
	V_{OH}	2.5 Vdc min	${ }^{1} \mathrm{OH}=-1.6 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CC}}=4.75 \mathrm{Vdct}$
Short-Circuit Current	ISC	-20 to -65 mAdc	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}$, output grounded \dagger

TThese tests are performed according to the logic equations with a true input equal to $\mathrm{V}_{\text {th }}$ " 1 " and a false input equal to $\mathrm{V}_{\text {th }}$ " 0 ".

[^0]: - L suffix $=$ TO-116 ceramic dual in-line package (Case 632).
 P suffix $=$ TO-116 plastic dual in-line package (Case 605).

