MC4300/MC4000 series

MC4300F,L* MC4000F,L,P*

DUAL 4-CHANNEL DATA SELECTOR

This device consists of two four-channel data selectors with common control lines, constructed from highlevel AND-OR gates and low-level inverters. By selecting one of four logic combinations, information on one of the four data inputs will be routed to the output.

Data selectors are useful in applications where digital data is to be routed from one of several registers or locations to another register or location for processing.

TYPICA	L PROP	AGATION DELAY TIMES (ns) $T_A = 25^{\circ}C$
INPUT	z	CONDITIONS
A	18	X0 = X2 = X3 = logic "0", X1 =
В	15	logic "1". A and B are de-
X1	11	fined by the logic equations.

HIGH-LEVEL "AND-OR" GATE

L suffix = TO-116 ceramic dual in-line package (Case 632).

P suffix = TO-116 plastic dual in-line package (Case 605).

STICS
E.
G
RA
HA
AL A
ŝ
CH
ELE

					N			
					-7			
					0			
					×۲			
					- F			
					- 1			
					- 1			
					1			
					_	 -	6	
					~			
					-		1.13	
						. 1		
	N	3	0	-	N	m		
V	V	v.				. 1		

				A		-	The second se			VOITS						1
	@ Test Temperature		10L1 10L2 10H 1in 1D	HOI	, i	0	VIL	VIH	ин инх	۷F	VR	VRH	VR VRH Vmax VCC	Vcc	/ccr	VCCH
	-55°C	16	18.4	-1.6	1	1	1.1	2.0	1	0.4	2.4	4.0	-	5.0	4.5	5.5
MC4300	\ +25°C	16	18.4	-1.6 1.0 -10	1.0	-10	1.1	1.8	2.5	0.4	2.4	4.0	7.0	5.0	4.5	5.5
	+125°C	16	18.4	-1.6	I	1	0.8	1.8	1	0.4	2.4	4.0	1	5.0	4.5	5.5
	000	16	17.6	-1.6	1	1	1.1	2.0	1	0.4	2.5	4.0	1	5.0	4.75	5.25
MC4000	\ +25°C	16	17.6	17.6 -1.6 1.0 -10	1.0	-10	1.1	1.8	2.5	0.4	2.5	4.0	7.0	5.0	4.75	5.25
	+75°C	16	17.6	-1.6	1	1	0.9	1.8	1	0.4	2.5	4.0	Ŀ	5.0	4.75	5.25
a l'harten																

TEST CURRENT/VOLTAGE VALUES

Prime Prime Microsoft ret time Microsoft ret time													MC4000	000	_	20032	0 9		0.0	2	1.1	0.0	6.2	0.4	5.5	2.5 4.0	0./	0.0	7.0 5.0 4.75 5.25	0.70	T
Product Macrono <																2	-		0	-	-	2.1	-	0.4		4.0	-	0.0	4./5	67°G	Т
			Din		WC	4300 T	est Lim	its				4000 Te	st Limi	ts		1					TEST CURRENT/VO	LTAGE	APPLI	ED TO PINS LIST	TED BE	LOW:					
Symbol Twi Mix Mix<			Under		200	+25	oc	+125	00	8	0	+254	c	+750	-	1		+	ł	-		I				-	ſ				Т
Mand Current IF1 G <lig< li=""> <lig< li=""> G <lig< li=""></lig<></lig<></lig<>			Test				_		Max	Min	Max		-	Min		-				_		HIN	VIHX	٧F		VRH	Vmax	vcc		VCCH	
	Input Forward Current	161	9	- 1	-1.6		-1.6		-1.6		-1.6		-1.6			Adc						I	,	9	- 1		1		1	4	3,5,10
1 1 0 1 0 1 0 1	1	IF2	9	1	-1.4	1	-1.4	-	-1.4		-1.4	-	-1.4	-	-	Adc	,	-	-	-		1	1	9	1	1	1	+	4	1	3,5,10
No. 6 1	Leakage Current	R	9	1	40	1	40	1	40	1	40	1	40	-		Adc	1	-	-	-		1	1		3,5,6	1		1	1	4	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Breakdown Voltage	BVin	9	1	1	5.5	1	1	1	I	1	5.5	1	1	-	Vdc	1	-	-	-		1	1	1	1	3,5	1	1	I	4	10
Vol II $=$ 0.4 $=$ 0.4 $=$ 0.4 $=$ 0.4 $=$ 0.4 $=$ 0.4 $=$ 0.4 $=$ 0.4 $=$ 0.4 $=$ 0.4 0.6 $=$ 1 $=$ $=$ $=$ 0.4 0.6 1 1 2 $=$ 2 0.4 0.6 1 1 2 1 2 0.4 0.6 1 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 <	Clamp Voltage	VD	9	1	1	1	-1.5	1	1	I	1	-	-1.5	1	-	Vdc	-	-	-	-		1	1	1	1	1	1	1	4	1	10
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Output Output Voltage	VOL	==	11	0.4	1.1	0.4	1:1	0.4	- 1.1	0.4		0.4			Vdc						11	11	1.1	11	11	1.1	1.1	41	14	55
		нол	11	2.4	1	2.4	1	2.4	1	2.4	1	2.4	+	-	-	Vdc	\vdash	+	+	+-	-	2,6	1		1.	1		1	4	1	10
	Short-Circuit Current	Isc	=	-30	-100	-30	-100		-100	_	-100				-	Adc	1	-	-	-		1	1	2,5,6,8,9,13,14	-	1,3,7		4	1	1	10,11
	Power Requirements (Total Device) Maximum Power Supply Current	Imax	4	1	· . 1	1	65	11	Ē	<u>.</u> .	1	I	65	i		Adc						1	I	I	1	.1	4	1	I.	i.	1,2,3,5,6,7 8,9,10,13,1
	Power Supply Drain	IPD	4	í.	1.1	1	45	J.,	1	ł.	L	1	45	1		nAdc			-			1	ſ	1	1	(1	I	1	4	1,2,3,5,6,7 8,9,10,13,1
Iga1 11 1 <td>Switching Parameters</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>Pulse I</td> <td>-</td> <td>ulse O</td> <td>5</td> <td></td>	Switching Parameters					-								-	-	-	Pulse I	-	ulse O	5											
	Turn-On Delay	t-bd-1	Ξ	d. ²	i	1	16	1	1	1	1	1	16	1	1	su	9		=	·		1	1	1	1	1	1	4	1	I	9,10,13,1,8
		tpd-2	=	1	ſ	1	22	3	1	Γ.	I	1	22	1	1	su	ß		Ξ	,		1	9	1	1	1	1	4	ł	1	1,2,3,7,8, 9,10,13,14
tpot+1 11 r r 16 r r 17 r 17 r 16 r 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td></td> <td>tpd-3</td> <td>=</td> <td>1</td> <td>1</td> <td>ſ.,</td> <td>27</td> <td>Į.</td> <td>i</td> <td>1</td> <td>i</td> <td>1</td> <td>27</td> <td>1</td> <td>1</td> <td>su</td> <td>e</td> <td>-</td> <td>=</td> <td>-</td> <td></td> <td>1</td> <td>2</td> <td>1</td> <td>I</td> <td>1</td> <td>I.</td> <td>4</td> <td>1</td> <td>1</td> <td>1,2,5,6,8, 9,10,13,14</td>		tpd-3	=	1	1	ſ.,	27	Į.	i	1	i	1	27	1	1	su	e	-	=	-		1	2	1	I	1	I.	4	1	1	1,2,5,6,8, 9,10,13,14
11 1 </td <td>Turn-Off Delay</td> <td>t+bd+1</td> <td>=</td> <td>1</td> <td>Ĵ.</td> <td>1</td> <td>16</td> <td>1</td> <td>T</td> <td>1</td> <td>1</td> <td>1</td> <td>16</td> <td>1</td> <td>I</td> <td>su</td> <td>9</td> <td>-</td> <td>÷</td> <td>-</td> <td></td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>1</td> <td>4</td> <td>ł</td> <td>1</td> <td>1,2,3,5,7,8 9,10,13,14</td>	Turn-Off Delay	t+bd+1	=	1	Ĵ.	1	16	1	T	1	1	1	16	1	I	su	9	-	÷	-		1	1	1	1	1	1	4	ł	1	1,2,3,5,7,8 9,10,13,14
		tpd+2	=	1	1	1	22	1	1	Γ.,	4	1	22	-	,	su	۵		=	-		1	9	1	1	1	4	4	3	1	1,2,3,7,8, 9,10,13,12
		tpd+3	=	1	ł	1	21	1	F.	1	1	1	27	1	1	su	m		=		1	1	2	1	1	1	1	4	1	1	1,2,5,6,8, 9,10,13,14

MC4300F,L, MC4000F,L,P (continued)

INPUT AND OUTPUT LOADING FACTORS with respect to MTTL and MDTL families

SWITCHING TIME TEST CIRCUIT 2.4 V Coax 3 Coax А 5 11 в z 6 950 ± 1.0% 950 ± 1.0% xo 7 X1 8 TPin X2 PULSE 9 хз TPout GENERATOR 2 YO C 0 Ş 50 1 Y1 PRF = 1.0 MHz typ 14 12 1/4 MC3000 PW = 200 ns Y2 -0 圭 w 13 $t + = t - = 5.5 \pm 0.5 \text{ ns}$ YЗ Ст Amplitude ≈ 2.5 V C_T = 25 pF = total parasitic capacitance, which includes probe, wiring, and load capacitances. *The coax delays from input to scope and output to scope must be matched. The scope must be terminated in 50-ohm impedance. The 950-ohm resistor and the scope termination impedance constitute a 20:1 attenuator probe. Coax shall be CT-070-50 or equivalent.

VOLTAGE WAVEFORMS

TYPICAL PROPAGATION DELAY TIMES

FIGURE 3 - TWO-GATE DELAY versus TEMPERATURE

t_{pd}, PROPAGATION DELAY TIME (ns) 28 (4 Gates) tpd-24 (4 Gates) tpd+ 20 tpd+ (3 Gates) (2 Gates) 16 (3 Gates) tpd+ tpd-(2 Gates) 12 tpd 8.0 $V_{CC} = 5.0 \, Vdc$ $T_A = 25^{\circ}C$ 4.0 Fan-out = 1 ٥Ļ 30 60 90 120 150 CL, LOAD CAPACITANCE (pF)

FIGURE 4 - DELAY versus LOAD CAPACITANCE

FIGURE 5 - DELAY versus SUPPLY VOLTAGE

Data selection from one of sixteen inputs can be accomplished by using multiple MC4300/4000 data selector units, as shown in Figure 6.

An N-bit data selector network may be realized by paralleling N/2 data selectors as shown in Figure 7. Each bit is selected from its own group of four different inputs; therefore from each dual data selector we can obtain two bits. Thus, for N bits we need N/2 dual 4-line selectors.

FIGURE 7 - N-BIT 4-LINE DATA SELECTOR