
FAMILY '
MICROCOMPUTER / MICROPROCESSOR

USERS MANUAL

Motorola reserves the right to make changes to any products herein to improve function­
ing or design. Although the information in this document has been carefully reviewed and
is believed to be reliable, Motorola does not assume any liability arising out of the applica­
tion or use of any product or circuit described herein; neither does it convey any license
under its patent rights nor the rights of others.

First Edition
©MOTOROLA INC. 1980

"All Rights Reserved"

TABLE OF CONTENTS

Paragraph No. Title Page No.

Chapter 1

1 General Description. .. 1-1
1.0 Introduction to the M6805 Family ... 1-1
1.1 Place in the Microspectrum. .. 1-1
1.1.1 Optimized for Controller Applications 1-1
1.1.2 M6805 Microcomputer Family Options 1-2
1.2 Choice of Technologies .. 1-2
1.2.1 HMOS Feature .. 1-3
1.2.2 CMOS Features .. 1-3
1.3 Hardware ... 1-4
1.3.1 Hardware Common to all Versions .. 1-4
1.3.2 M6805 Family Options .. 1-5
1.3.3 Differences Between Family Versions .. 1-6
1.4 Enhanced Microcomputer Test Capability 1-7
1.5 Microprocessor System in CMOS. .. 1-7
1.5.1 MC146805E2 Microprocessor. .. 1-8
1.5.2 Peripherals .. 1-8
1.5.3 High-Speed Bus Logic ... 1-9
1.6 Software Development .. 1-9
1.6.1 Critical Factor for Product Success .. 1-9
1.6.2 Software Development .. 1-9
1.6.3 Unified Development System .. 1-10

Chapter 2

2 Programming Features .. 2-1

Chapter 3

3 Architecture. 3-1
3.0 Processor Architecture . 3-1
3.1 M6805 Family Programming Model. .. 3-1
3.2 Accumulator (A) " 3-2
3.3 Index Register (X). .. 3-2
3.4 Program Counter (PC) .. 3-2
3.5 Stack Pointer (SP) .. 3-2
3.6 Condition Code Register (CC) .. 3-3
3.6.1 Half Carry (H) ... 3-3
3.6.2 Interrupt Mask (I) .. 3-3
3.6.3 Negative Bit (N) .. 3-3
3.6.4 Zero Bit (Z) " .. 3-3
3.6.5 Carry Bit (C) ... 3-3

iii

TABLE OF CONTENTS (Continued)

Chapter 4

4 Addressing Modes .. 4-1
4.0 Introduction ... 4-1
4.1 Immediate Addressing Mode ... 4-1
4.2 Direct Addressing Mode ... 4-2
4.3 Extended Addressing Mode .. 4-4
4.4 Indexed Addressing Mode ... 4-5
4.4.1 Indexed - No Offset. .. 4-5
4.4.2 Indexed - 8-Bit Offset .. 4-7
4.4.3 Indexed - 16-Bit Offset ... 4-8
4.4.4 Indexed Compatability ... 4-10
4.5 Relative Addressing .. 4-10
4.6 Bit Set/Clear Addressing Mode .. 4-12
4.7 Bit Test and Branch Addressing Mode 4-13
4~8 Inherent Addressing Mode .. 4-16

Chapter 5

5 Instruction Types ... 5-1
5.0 Introduction ... 5-1
5.1 Register/Memory Instructions .. 5-1
5.2 Read/Modify/Write Instructions ... 5-2
5.3 Branch Instructions ... 5-2
5.4 Bit Manipulation Instructions•.............. 5-3
5.5 Control Instructions ... 5-3

Chapter 6

6 Programming Interrupts ... 6-1
6.0 Introduction ... 6-1
6.1 Timer Interrupt .. 6-1
6.2 External Interrupt .. 6-2
6.3 Software Interrupt ... 6-2
6.4 Reset. .. 6-2
6.5 Vectors. .. 6-2
6.6 Stacking Order ... 6-3

iv

TABLE OF CONTENTS (Concluded)

Appendices

A M6800 Compatability
B HMOS and CMOS Technologies
C RASMOS Macro Assembler Syntax and Directives
D Instruction Set Detailed Definition
E Instruction Set Alphabetical Listing
F Instruction Set Functional Listing
G ASCII Hexadecimal Code Conversion Chart
H Instruction Set Opcode Map
I Memory Map

v

LIST OF ILLUSTRATIONS

Figure No. Title Page No.

1-1 MC6805 Family Basic Microcomputer Block Diagram. .. 1-4
1-2 Example of Self-Check Schematic Diagram for MC6805P2 1-8
1-3 Support System Block Diagram .. 1-11

3-1 M6805 Family Register Architecture ... 3-1

4-1 Immediate Addressing Mode Example 4-2
4-2 Direct Addressing Mode Example ... 4-3
4-3 Extended Addressing Mode Example .. 4-5
4-4 Indexed Addressing Mode, No Offset Example. .. 4-6
4-5 Indexed Addressing Mode, 8-Bit Offset Example 4-8
4-6 Indexed Addressing Mode, 16-Bit Offset Example 4-9
4-7 Relative Addressing Mode Example .. 4-11
4-8 Bit Set/Clear Addressing Mode Example 4-13
4-9 Bit Test and Branch Addressing Mode Example 4-15
4-10 Inherent Addressing Mode Example .. 4-16

LIST OF TABLES

Table No. Title Page No.

1-1 High-Speed CMOS Bus Logic. .. 1-9
1-2 Software Development Phase ... 1-10

vi

CHAPTER 1
GENERAL DESCRIPTION

1.0 INTRODUCTION TO THE M6805 FAMILY

The microcomputers and microprocessors of the Motorola M6805 Family are designed to provide
an 8-bit processor using a familiar architecture, plus optimization for controller applications. The
architecture includes features not usually found on machines of this class such as on-chip
timer/counter with interrupt, complete external interrupt, multiple subroutine nesting, true bit
manipulation, an index register and numerous configurations.

1.1 PLACE IN THE MICROSPRECTRUM

The M6805 Family architecture and instruction set are very similar to that of Motorola's MC6800.
Any programmer who has worked with the MC6800 can attain equivalent proficiency with the
M6805 Family in a relatively short time. In some respects the M6805 Family is more powerful than
the MC6800 (depending upon the application) as a result of architecture optimization. Appendix A
. summarizes the architectural and instruction set differences between the M6805 and M6800
Families.

1.1.1 Optimized For Controller Applications

The M6805 Family architecture has been optimized for controller applications, rather than general
purpose data processing operations. Several features contribute to this optimization.

The instruction set, used with the M6805 Family, is specifically designed for byte-efficient program
storage. Byte efficiency permits a maximum amount of program function to be implemented within
a finite amount of on-chip ROM. Improved ROM efficiency allows the M6805 Family to be used in
applications where other processors might not perform the task in the available ROM space. More
features may be included in applications where ROM space is more than adequate. In some cases the
user might wish to include programs for more than one application. In such cases the appropriate
program could be selected by the power-up initialization program. The ability to nest subroutines,
the addition of true bit test and manipulation instructions, the multi-function instructions, and the
versatile addressing modes all contribute to the byte efficiency.

Superficial comparisons of the number of bytes per instruction for the M6805 Family, when com­
pared to other machines in this class, can be very misleading. A single M6805 Family instruction oc­
cupying 2 or 3 bytes accomplishes as much real programming work as several single byte instruc­
tions, or a subroutine, would accomplish in many other processors.

The bit test and bit manipulation instructions permit the program to:

branch on bit set

branch on bit clear

set bit

clear bit.

These instructions operate on any individual bit in the first 256 address spaces. As such, the bit
manipulations access I/O pins, RAM bits and ROM bits ..

One of the chief measures of the effectiveness of a computer architecture is its ability to access data.
The M6805 Family has several major memory addressing modes. They include immediate, direct
and extended, plus three distinct indexed modes. The programmer is thus given the opportunity to
optimize the code to the task. The indexed addressing modes permit conversion tables, jump tables,
and data tables to be located anywhere in the address space. The use of look-up tables is an impor­
tant tool in controller type applications.

Efficient addressing methods are coupled with instructions which manipulate memory without
disturbing the program registers. Thus, ·RAM may be used for the same functions that other pro­
cessors use general purpose registers (increment, decrement, clear, complement, test, etc.). M6805
Family members have a very versatile, efficient and easy to use I/O structure. All microcomputer
I/O function registers are memory mapped into·the first 16 address spaces. Advantage is thus taken
of the efficient addressing modes, the many memory reference instructions, and the use of RAM (or
I/O registers) as general purpose registers. As an example, there are 64 unique instructions which
permit the programmer to modify an I/O port. The programmer's problem is not so much how to
accomplish a given I/O task, but rather to choose the most effective method from the many
methods available. In addition, as with other M6800 Family I/O devices, most M6805 Family I/O
pins are individually programmed as inputs or outputs under software control.

1.1.2 M680S Microcomputer FamUy Options

A fundamental purpose of the M6805 Family is to offer a common architecture around which
various on-chip I/O and memory options are configured. Different microcomputer versions are
configured by selecting from among the available options.

The family includes both HMOS (MC6805_J and CMOS (MCI46805_J devices, providing a choice
as to the technology of the end product. Architectural choices include RAM and ROM size, the
number of I/O pins, output drive capability and other kinds of hardware I/O options.

1.2 CHOICE OF TECHNOLOGIES

The first option to be selected by the system designer is the choice between HMOS or CMOS as a
processor technology. Appendix B points out the basic difference in HMOS and CMOS technology.

1-2

1.2.1 HMOS Feature

The NMOS (N-Channel Metal Oxide on Silicon) technology has been the mainstay of the M6800
Family. The current state of the continual shrinking of NMOS is called HMOS (High-Density
NMOS).

The prime consideration in choosing an HMOS M6805 Family microcomputer is its lower price.
Motorola's highly-efficient fabrication process results in a greater yield than other processes. The
decreased production costs ultimately result in lower selling prices. The economics of large scale pro­
duction also contribute to a low selling price.

The high speed of Motorola's HMOS, when compared to PMOS or other NMOS processors, pro­
duces a very high performance/price ratio.

A low voltage inhibit (LVI) feature may be selected on HMOS versions. The LVI option forces a
RESET when the supply voltage drops below a threshold which guarantees correct operation. The
CMOS Family members offer wide operating voltage and clock speed ranges, which preclude
establishing an L VI threshold.

1.2.2 CMOS Features

An emerging microcomputer technology is CMOS (Complementary MOS, both P- and N-channel
devices). The unique properties of CMOS are increasingly attractive. Some applications are simply
not feasible with PMOS, NMOS, or HMOS microcomputers.

Maximum power consumption of CMOS parts ranges from 1/15 to 1/200 of that of an equivalent
HMOS part. Low power consumption is important in several classes of applications.

(a) Portable Equipment - Hand-held and other portable units operate from self­
contained batteries. Battery drain is frequently important in such applications; thus,
CMOS microcomputers are desirable.

(b) Battery Back-Up - CMOS is appropriate in ac powered applications when some or all
system functions must continue during a power outage. A small, rechargeable battery
keeps a CMOS MCV operable.

(c) Storage Batteries - Automotive and telephone equipment operate from larger bat­
teries. Automobile battery drain must be low when the engine is not running.
Telephones must operate independent of ac power.

(d) Heat Dissipation - Packaging constraints sometimes preclude dissipating electronics
generated heat. Or, the heat is costly to dissipate.

(e) Power Costs - The cost of electricity to power the equipment becomes a significant
factor in calculating the total life cycle cost of equipment which operates continuously.

The CMOS technology inherently operates over a wide range of supply voltages. CMOS is thus ap­
pointed where the supply voltage fluctuates, such as in battery powered equipment; or if line power
is available, a lower-cost, loosely regulated supply may be used.

1-3

An additional advantage of CMOS is that circuitry is fully static. CMOS microcomputers may be
operated at any clock rate less than the guaranteed maximum. This feature may be used to conserve
power, since power consumption increases with higher clock frequencies. Static operation may also
be advantageous during product developments.

1.3 HARDWARE

Every M6805 Family microcomputer contains hardware common to all versions, plus a combination
of options unique to a particular version. There are also several differences among family members
of which potential users should be aware.

1.3.1 Hardware Common To All Versions

Figure 1-1 details the hardware functional blocks common to all M6805 Family versions.

The central processor unit (CPU) contains the 8-bit arithmetic logic unit, accumulator, program
counter, index register, stack pointer, condition code register, instruction decoder, and timing and
control logic. These elements resemble the M6800 Family of microprocessors which reflect the
M6805 Family heritage.

The M6805 Family has on-chip RAM, permitting the microcomputer versions to operate without ex­
ternal memory. The addressing modes and register-like memory operations use this RAM to the
fullest extent possible.

Timer

1/0
Lines

1/0

0-7
Port

XTAl EXTAl RESET NUM

Timerl
8 Counter

Timer Control

Accumulator
8 A

Index

8
Register

X

Condition

Data Code

Dir Register CC

Reg
Stack

Pointer
SP

Program
Counter

3 High PCH

Program
Counter

8 low PCl

r -RO; l

J Self Check I
L ROM _f

CPU

CPU
Control

AlU

Data
Dir
Reg

I/O
Port

NOTE

1/0
Lines
0-7

Consult data sheet for actual amount of
usable ROM and availability of NUM
input.

Figure 1-1. MC6805 Family Basic Microcomputer Block Diagram

1-4

Parallel I/O capability, with each pin programmable as an input or as an output, is built into every
unit.

The external interrupt input, and the capability for multiple nesting of subroutine and interrupts,
are features usually found on much more powerful architectures. They permit an M6805 Family
MCU to be used in projects usually considered too complex for microcomputers.

A feature which greatly simplifies software development and extends the capability of a microcom­
puter is an on-chip timer/counter. This 8-bit counter and its prescaler can be programmed for in­
numerable functions. It can generate an interrupt at software selected intervals. It can also be used
as an event counter to generate an interrupt after some software selected number of external events.
The timer/counter can also be used for timekeeping, measuring and generating pulses, and counting
external events. In the case of the CMOS versions, the timer can be set to "wake-up" the processor
from the power-saving WAIT mode.

The external interrupt and timer/counter interrupt are vectored to different service routine ad­
dresses. This greatly simplifies interrupt programming. It also speeds execution of interrupt
routines, by eliminating software interrupt polling, for determining the source of the interrupt.

The first 16 address spaces are reserved for memory mapped I/O registers. The programmer of the
M6805 Family may take full advantage of the versatile addressing modes and the register-like RAM
operations of the M6805 Family.

1.3.2 M6805 Family Options

In addition to the common hardware described previously, users can make selections from among
devices having a combination of hardware options. Potential users should consult their local
Motorola sales representative or the most recent data brochures to determine which versions have
reached production.

The first option to be selected by the system designer is the choice of technology. In general, the
HMOS units would be selected unless the application specifically requires one of the unique
characteristics of CMOS.

User ROM sizes range from none, for the microprocessor, to 2k and larger. Future versions will
have additional ROM sizes. When self-check ROM is a part of the device, the ROM area used in the
self-check operation is not included in the published ROM sizes. The user gets the entire ROM space
for his program.

A small portion of the ROM is located in page zero (the direct page) to facilitate more efficient ac­
cess to lookup tables using all available addressing modes. This ROM can, of course, be used for
program storage as well as lookup tables.

The initial M6805 Family versions contain either 64 or 112 bytes of on-chip RAM which is located in
page zero. Future versions will accomodate additional or differing amounts of RAM.

Package size options permit as many as four, full 8-bit bidirectional I/O ports. Each pin is defined
under software control as an input or output by loading a data direction register.

1-5

Electrical options include TTL compatibility, CMOS compatibility, and high-current outputs
designed to drive darlington transistors and LEDs.

Complex I/O functions are also included in selected versions of the M6805 Family. For example, an
on-chip, high-speed, successive approximation type, 8-bit, analog-to-digital converter is included on
one early member of the family.

The expandable CMOS microprocessor version uses a multiplexed address-then-data bus. The ex­
pandable version is used with related peripheral and memory ICs to implement larger systems. Pro­
totyping ROM-based microcomputers is a second use of the expandable version.

Zero-crossing detection circuitry, which is connected internally to the external interrupt-input pin of
some versions, can be interfaced with a power line or other source of periodic input for time-keeping
functions. It can also be used by the program to synchronize outputs to the zero-crossing of the
power line voltage.

1.3.3 Differences Between Family Versions

There are some significant differences among the products being offered which might be of concern
to the system designer.

Pinouts - M6805 Family members having similar features might not have identical
pinouts, due to manufacturing factors taken into consideration during design. This
should not cause problems for users since the decision of which version to use is made ear­
ly in the design cycle. A switch from one version or one technology to the other is unlike­
ly.

STOP and WAIT Instructions - In order to further decrease the power consumption of
the CMOS versions, two instructions (STOP and WAIT) are added. The STOP and
WAIT instructions disable the clock signal to all or portions of the internal logic. This
eliminates dynamic power dissipation which accounts for most of the power used in a
CMOS microcomputer. The clock is reenabled when the timer counter reaches zero
and/ or an external interrupt is received.

Fewer Cycles - All family versions execute the same instructions (except for STOP and
WAIT). But some versions of the M6805 Family require fewer clock cycles to execute the
instructions. Most programs are not affected by the difference. Since a hardware timer is
included, software timing intervals are not often needed. Individual data sheets for each
family member list the number of clock cycles required to execute each instruction. The
fastest M6805 Family members execute code at a speed equal to that of the M6800 Family
for those instructions which are directly comparable.

Clock Divider - Most versions use a divide-by-four on the clock input to generate the in­
ternal bus timing. The microprocessor version requires more resolution to generate the
bus interface and control signals. Thus it uses a divide-by-5 clock input to generate the in­
ternal bus timing.

1-6

Software Configurable Timer - Not all of the microcomputer versions permit the pro­
grammer to configure the timer/counter, prescaler and clock source under software con­
trol. In some this is done in hardware, using the ROM mask layer to define timer/counter
operation.

The most reliable method of obtaining specific details, for a particular version of the M6805 Family,
is to consult the most recent data sheet describing the version of interest. These data sheets and other
literature are available from your local Motorola sales representative or franchised distributor.

1.4 ENHANCED MICROCOMPUTER TEST CAPABILITY

As the complexity of VLSI (Very Large Scale Integration) rises, increasingly complex and costly test
hardware is required. This is especially true of ROM-based microcomputers. Implementation of the
user's program in ROM essentially creates a custom part for every customer program.

An added cost for the user is that of incoming inspection testing.

M6805 Family microcomputers have a sophisticated on-chip self-check capability. This consists of a
ROM area, separate from the user's ROM, which contains a program designed to exercise the ma­
jority of on-chip hardware. The self-check ROM is accessed only when the microcomputer is placed
in the self-check mode.

The self-check program is designed to exercise the on-chip circuitry to ensure that it is operable. The
test program includes software which checks the RAM, ROM, 110 ports, external interrupt, and the
timer. Although it cannot check execution of every possible instruction, it is designed to exercise the
vast majority of on-chip logic.

The self-check program requires user assembly of only a socket and a few inexpensive components
(costing approximately ten dollars). The assembled tester is contrasted to the most advanced and
expensive integrated circuit testers used by Motorola for the factory final test. Figure 1-2 shows a
schematic diagram of the typical connections required to test the MC6805P2 Microcomputer
member of the M6805 Family. All four LED indicators will flash; however, the LED connected to
pin 11 flashes at about a 3 Hz rate. If the pin 11 LED indicator does not flash, the unit is defective.
Other members of the family require similar connections to match their specific I/O configuration.

1.5 MICROPROCESSOR SYSTEM IN CMOS

The MC146805E2 Microprocessor is designed as a general-purpose CMOS microprocessor for ap­
plications requiring a multi~chip CMOS system. It also serves as a development tool for ROM-based
microcomputer versions. It is supported by a line of CMOS memories, peripherals and high-speed
logic to simplify system design.

1-7

v C

VCC= Pin 3
Vss=Pin1

2
~

28 i 0.47.F 4

--
5

+9V 7

6

...L
-

330n ~jI 8 AAA vv. 'C!
r.j/ 330n

AAA _I' 9
vVv ,~

1~!!. r;j/ 10
v v" \:.;J

330n ~I/11
AAA vVv '-:7

INT

RESET

XTAL

EXTAL

Timer
*MC6805P2

NUM

CO

C1

C2

C3

* See data sheet for specific device number connections.

A7
27

26
A6

25
A5

24
A4

23
A3

22
A2

A1
21

20
AO

B7
19

B6
18

B5
17

16
B4

15
B3

14
B2

13
B1

12
BO

Figure 1-2. Example of Self-Check Schematic Diagram for MC680SP2

1.5.1 MCl4680SE2 Microprocessor

The 40-pin microprocessor contains the processor, 112 bytes of RAM, an expansion bus, and 161/0
lines. The eight low-order address bits and eight data bits are time-multiplexed on the bus pins.
Multiplexing of the bus is controlled by three bus control lines. Five additional non-multiplexed ad­
dress lines permit a total address space of 8k bytes. Bank-switching techniques could be used to ex­
tend this address space as required. System interface problems are reduced by including bus driver
outputs on all bus pins.

1.5.2 Peripherals

Any microprocessor-based system is heavily dependant upon easily interfaced peripherals for cost­
effective system design. The MCM65512 RAM, MCM65516 ROM, MC146823 Peripheral Interface
Adapter, MC146824 Peripheral Interface Adapter plus Timer, and MC146818 Real-Time Clock
plus RAM all include the following design simplifying characteristics:

1) Bus Drivers - All bus interface pins are designed to drive a capacitive load of 130 pF at
maximum clock frequency. The use of off-chip bus drivers is thus eliminated in many
systems.

1-8

2) Bus Compatablity - The peripherals and memories are designed to operate directly on
Motorola MC146805 and MC6801 multiplexed buses. Other type multiplexed buses
(8085/8048/8086, etc.) are also easily accomodated by the CMOS peripheral and memory
circuits.

1.5.3 High-Speed Bus Logic

On complex microprocessor-based systems, a family of high-speed logic is required to perform func­
tions such as driving bus loads, address decoding, bus control functions, etc. Table 1-1 outlines
some of the high-speed CMOS devices designed by Motorola to implement these functions.

Table 1-1. High-Speed CMOS Bus Logic

Octal, Bus Driver

Octal, Three-State Bus Transceiver

3-to-8 Latched Decoder

3-to-8 Decoder

Octal, Three-State Transparent Latch

Hex Inverter

Quad 2-lnput NAND Gate

8-lnput NAND Gate

Dual D Flip-Flop

1.6 SOFTWARE DEVELOPMENT

Microcomputers accomplish a task by using software to define the operations of the microcomputer
at the programming stage, rather than by using digital logic to construct a system which has its
operations defined in the design stage. Therefore, software development serves a function similar to
logic design. Appendix C provides information concerning the assembly language syntax and
assembler directive for the M6805 Family.

1.6.1 Critical Factor for Product Success

Since software development replaces most of the digital design function in microcomputer systems,
it is important that error-free software be generated. Because many of the microcomputers are used
in projects which exist in highly competitive markets, it is also essential that the error-free software
be ready for product introduction during the most advantageous "product window marketing
time."

To produce error-free software at the right time, a thorough development and debug system is a
necessity. Also, since software development usually consumes most of the project start-up costs, an
efficient development system makes the programmer's task less difficult, thus paying for itself by
the time saved.

1.6.2 Software Development

Table 1-2 lists the various phases of a software development process together with the Motorola
Support Products used in each phase.

1-9

Table 1-2. Software Development Phase

Software
Motorola Support Products Development Phase

Evaluation M6805 Evaluation Module with Debug
Code Generation EXORciser with MOOS Operating System and Macro Assembler
Debug EXORciser with MOOS and MEX6805 with Software Package
Prototype MC146805E2 Microprocessor with MCM2716 UV EPROM
Mask Programmed Device

EXORciser with MOOS and MEX6805 with Software Package Verification

The first phase in the software development process takes place prior to selection of the actual
microcomputer to be used. This stage includes evaluation of various microprocessors and
microcomputers to determine the one best suited for the particular system. When evaluating the
M680S Family, an M6805 Evaluation Module with Debug can be used. This module, available
through local Motorola Sales Offices, provides the opportunity to gain "hands-on" experience with
the M680S Family during this phase.

Once the M6805 Family part is selected for the system, the Code Generation phase begins. The effi­
cient instruction set of the M6805 Family, together with the convenience of the EXORciser-based
development system and the macro assembler, all contribute to programmer efficiency during the
code generation phase.

When the code is written and assembled, the EXORciser-based software development board is con­
nected to the rest of the microcomputer system. This allows simultaneous checkout of both the soft­
ware and the hardware under control of the development system supervisory software.

Once the software and hardware are functioning as expected, prototype systems can be constructed
for field trials, using EPROM devices. The field-trial phase of prototype development can uncover
hidden bugs since the equipment might be field operated in ways which are difficult to forsee during
the design phase. Field trials also provide user feedback which could result in beneficial changes to
the final version of the product. EPROM versions of the microcomputer itself or a microprocessor
version using·separate EPROMs are two methods of constructing prototype systems.

The final steps in the software development include submittal of the code to Motorola and verifica­
tion of correct microcomputer system operation by using mask programmed samples, supplied by
Motorola, prior to volume production.

1.6.3 Unified Development System

Since the software development and debug phase of product development is so important to the suc­
cess of a microcomputer-based product, Motorola provides the hardware and software necessary to
ensure that software development can be accomplished efficiently and thoroughly. The M6805 Sup­
port System is used, together with the Motorola EXORciser and MOOS operating system, to help
debug the M680S Family. Figure 1-3 provides a block diagram of the support system used in the
software checkout.

The M6805 Support System (part number MEX6805) consists of a circuit board(s), cables with con­
nectors, and an MOOS diskette. The support system circuit board(s) contains either an HMOS or a
CMOS M6805 Family processor which executes code in real time from either on-board RAM or on­
board EPROM. The circuit board(s) also contains breakpoint hardware and a wiring area for

1-10

system modification. A DIP connector is also provided for direct connection to the microcomputer
socket of the end product. Thus, the support system permits both the hardware and the software to
be debugged as an assembly rather than individually. This also helps to locate interface errors which
could otherwise be difficult to isolate.

The software package supplied, with the support system, provides the programmer wtih direct con­
trol of the M6805 Family processor. Programs can be loaded from the disk drive, breakpoints can
be set and program operation can be traced directly from the EXORciser terminal. These and other
features reduce the debug phase of both the hardware and the software to a minimum and provide a
high level of confidence that the code has been debugged.

Motorola's macro assembler and linking loader give the M6805 Family software development
system capabilities usually available only for the most sophisticated microprocessors.

Appendix C contains a description of the macro assembler directives. It includes a versatile macro
capability, conditional assembly and numerous other features which simplify the programmer's task
Other versions of the same basic macro assembler are able to assemble programs written for other
Motorola processors such as the M6800, M6801 and M6809.

The EXORciser is, of course, a general purpose microcomputer system which supports several high
level languages and can be used for tasks other than software development. It need not sit idle be­
tween software development projects.

I
I

I
I
I
I

I
I

Diskette I
I
I

t I
I
I

---.L
I
I

EXORciser - I

I
I

I

t I
I
I

Terminal I
I

I
EXORciser I

System
I

I
(M6805 ROM

I
EPROM Simulation)

I
RAM I

I
I
I

f f I
I
I
I

~
Control
~

M6805
~ "" Logic Processor ~ .. I
..- .II ""

I/O I r---+ I

I ~
I

Shared I '" .I

RAM
I
I .. I/O ~

M6805 Support I
System Circuit I

Board
I

I

Wire
I

~ Wrap rt-Area
I

I

Figure 1-3. M6805 Support System Block Diagram

1-11/1-12

Plug ~
To User's
Hardware

CHAPTER 2
PROGRAMMING FEATURES

Software implementation for the M6805 Family closely follows the MC6800 heritage. Since the pro­
gramming features are similar, many of the MC6800 programming features are inherent to the
M6805 Family. Some key M6805 Family features are listed below:

ROM Byte Efficient

Easy to Program

Versatile Interrupt Handling

True Bit Manipulation

Bit Test and Branch Instructions

Powerful Addressing Modes

Consistent Instruction Set

Indexed Addressing for Table Lookup

Powerful Instruction Set

- All MC6800 Arithmetic Instructions

- All MC6800 Logical Instructions

- All MC6800 Shift Instructions

- Full Set of Conditional Branches

2-1/2-2

CHAPTER 3
ARCHITECTURE

3.0 PROCESSOR ARCHITECTURE

3.1 M6805 FAMILY PROGRAMMING MODEL

The M6805 Family processor contains five registers. The accumulator (A) and index register (X) are
8-bit registers, while the condition code (CC) register contains five bits. The program counter (PC)
and stack pointer (S) vary in length, depending upon the version of the family. The PC of initial ver­
sions is 11, 12, or 13 bits long, depending upon memory size. As far as accessing memory is concern­
ed, S is the same length as PC. However, the high order bits are fixed. The initial versions have
either five or six register bits in S, depending upon the size of on-chip RAM. The M6805 Family
Register Architecture is shown below.

CC

Condition Code Register
,,"-~.&..r-""""'''''''''-

'----- Carry! Borrow

'------ Zero

'------- Negative

L..------Interrupt Mask

'---------- Half Carry

Figure 3·1. M6805 Family Register Architecture

3-1

3.2 ACCUMULATOR (A)

The A-register is a general purpose accumulator that is used by the program for arithmetic calcula­
tions and data manipulations.

3.3 INDEX REGISTER (X)

The X-register is used during the indexed modes of addressing, as well as an auxiliary accumulator.
In indexed instructions, the X-register provides an 8-bit value that is added to an optional
instruction-provided value, to create an effective address. For more information see the section on
Addressing Modes. The X-register is also used on the M6805 Family for limited calculations and
data manipulation. The full set of read/modify/write instructions operate on the X-register, as well
as the accumulator. Code sequences which do not employ the index register for indexed addressing
may use X as a temporary storage cell, or accumulator.

3.4 PROGRAM COUNTER (PC)

The program counter is used by the processor to point to the next instruction to be executed by the
processor. Though the PC on early M6805s is 11, 12, or 13 bits, the family architecture supports a
PC of up to 16 bits.

3.5 STACK POINTER (SP)

The stack pointer contains the address of the top of a push-down/pull-up stack located in RAM.
The stack pointer is used to automatically (under hardware control) store return addresses (2 bytes)
on subroutine calls and to automatically store all registers (5 bytes) during interrupts. The saved
registers may be interleaved on the stack. It is thus possible to allow for nesting of subroutines and
interrupts, to allow subroutines to be interrupted, as well as to allow interrupts to call subroutines.
This 'nesting' of subroutines and interrupts can occur to some maximum amount described below.

Since the M6805 is a family of parts, the actual size of the stack pointer may vary with RAM size (see
appropriate data sheets). But from the programmer's perspective, the stack pointers all appear
similar on the different versions. Both the hardware RESET pin and the Reset Stack Pointer (RSP)
instruction reset the stack pointer to its maximum value ($7F on all initial versions). The stack
pointer on the M6805 Family always points to the next free location on the stack. Each 'push'
decrements while each 'pull' increments it ('push' and 'pull' are not available as user instructions in
the M6805 Family).

Nested subroutine calls and interrupts may not safely underflow the stack pointer. For example,
when the stack pointer is 6-bits wide, the usable stack length is 26-1 bytes or after 63 bytes are push­
ed. The 6-bit S accommodates up to 31 nested subroutine calls, 12 interrupts, or a mixture of both.
The programmer must exercise care when approaching the underflow threshold. When the S
underflows, some family members allow it to wrap around, while other family members produce
different results. The stack limit in the example above is thus stated to be 63, not 64, bytes. The
stack limit is well beyond the needs required by most programs. A maximum subroutine nesting of
five levels coupled with one interrupt level occupies only 15 bytes of stack space. The allowed stack
length is typically traded off against the needed data RAM space.

3-2

3.6 CONDITION CODE REGISTER (CC)

The condition code register contains various flag bits that reflect the current state of the processor.
Most CC bits reflect the results of the last executed data reference instruction. The effect of each in­
struction on the CC bits is listed with the instructions in Section 8. These CC bits are described brief­
ly below.

3.6.1 Half Carry (H)

The H-bit is set when a carry occurs between bits three and four during an ADD or ADC instruc­
tion. The half-carry flag may be used in BCD addition subroutines.

3.6.2 Interrupt Mask (I)

When the I-bit is set, the external interrupt and timer interrupt are masked (disabled). Clearing the
I-bit allows interrupts to be enabled. If an Interrupt occurs while the I-bit is set, the interrupt is lat­
ched and causes the interrupt vector to be fetched when the I-bit is next cleared.

3.6.3 Negative Bit (N)

The N-bit is set when bit seven of the result of the last data manipulation, arithmetic, or logical
operation was set. This indicates that the result of the operation was negative.

3.6.4 Zero Bit (Z)

The Z-bit is set if the result of the last data manipulation, arithmetic, or logical operation was zero.

3.6.5 Carry Bit (C)

The C-bit is set if a carry or borrow out of the 8-bit ALU occurred during the last arithmetic opera­
tion. Also, the C-bit is set during shift, rotate, and bit test instructions.

3-3/3-4

4.0 INTRODUCTION

CHAPTER 4
ADDRESSING MODES

The power of any computer (either large or small) lies in its ability to access memory. The addressing
modes of the processor provide that capability. The M6805 Family has a set of addressing modes
that me~ts these criteria extremely well, especially for a processor in its price range.

In the following descriptions the term effective address (EA) is used. The EA is the address in
memory from which the argument for an instruction is fetched or stored. In two operand instruc­
tions, such as add to accumulator (ADD), one of the effective operands (the accumulator) is in­
herent and not considered an addressing mode per see

Descriptions and examples of the various modes of addressing the M6805 Family are provided in the
paragraphs which follow. Several program assembly examples are shown for each mode, and one of
the examples is described in detail (ORO, EQU, and FCB are assembler instructions and not an in­
struction set mnemonic). Parenthesis are used in these descriptions/examples, of the various ad­
dressing modes, to indicate "the contents of" the location or register referred to; e.g., (PC) in­
dicates the contents of the location pointed to by the PC. The colon symbol (:) indicates a con­
catenation of bytes. In the following examples, the program counter (PC) is initially assumed to be
pointing to the location of the first opcode byte. The first PC + 1 is the first incremental result and
shows that the PC is pointing to the location immediately following the first opcode byte.

4.1 IMMEDIATE ADDRESSING MODE

The EA of an immediate mode instruction is the location following the opcode. This mode is used to
hold a value which is known at the time the program is written, and which is not changed during
program execution. These are two byte instructions, one for the opcode and one for the immediate
data byte.

PC + 1 - PC
EA = PC
PC + 1 - PC

Assembly Examples:
0400 A6 03
0402 AE C3
0404 A3 FF
OSBE
OSBE A6 F8

A
A
A

A

LDA #$03
LDX #$C3
CPX #$FF
ORG SSBE
LDA #$F8 (See example description below.)

Figure 4-1 shows an example of the Immediate Addressing Mode. In this example, the program con­
tains an instruction to load the accumulator with the hexadecimal number F8, which is the byte im­
mediately following the opcode byte.

4-1

-- -

LDA #$F8 05BE A6

05BF F8

05CO

-

05BE A6

05BF F8

05CO

Before Completion

A

Previous Value

PC

05BE

After Completion

A

F8

New PC

05CO

Steps to Determine
Effective Address

PC=$05BE
PC= PC+ 1 = $05BF
EA=PC
New PC= PC+ 1

= $05CO

Instruction Complete

A= (EA) = $F8
New PC= $05CO

Figure 4-1. Immediate Addressing Mode Example

4.2 DIRECT ADDRESSING MODE

The EA of a direct mode (DIR) instruction is the contents of the next byte of the opcode. Direct ad­
dressing can be used to reference any of the first 256 ($OO-$FF) locations of memory with a two byte
instruction. In the M6805 Family, direct addressing can be used to reference all I/O and RAM loca­
tions as well as some ROM. This is a two byte instruction.

PC + 1 - PC
EA = (PC) + $0000
PC + 1 - PC

4-2

Assembly Examples:

0400 B6 50 A LDA $50
0030 A DOG EOU $3()

0402 BE 30 A LDX DOG
0404 3C 27 A INC $27
0406 12 30 A BSET 1,DOG
052D ORG $52D

004B A CAT EQU $4B
0520 86 4B A LDA CAT (See example description below.)

Figure 4-2 shows an example of the Direct Addressing Mode. In this example, the program contains
an instruction to load the accumulator with CAl'. (CAT in this example is equal to the contents of
memory location 004B, which is the result of adding the byte following the opcode byte to $()()()().)

Before Completion

-
A

CAT FCB $20 OO4B 20 l Previous

J Value

PC

LDA CAT 052D B6 ~ I 052D I
052E 4B

052F

'I If - ~ - -
EA 1 OO4B J

After Completion

- -
A

CAT FCB $20 OO4B 20 ",J 20 I I

LDA CAT 052D B6

052E 4B New PC

052F ~ I 052F I

- -..r---

Figure 4-2. Direct Addressing Mode Example

4-3

Steps to Determine
Effective Address

PC= $052D
PC= PC+ 1 = $052E
EA= (PC) = $4B + $0000

=$OO4B
New PC= PC+ 1

= $052F

Instruction Complete
A= (EA) = $20
New PC = $052F

4.3 EXTENDED ADDRESSING MODE

The EA of an extended mode instruction is the contents of the two bytes following the opcode. Ex­
tended addressing references any location in the MC680S memory space, 1/0, RAM and ROM.
Also, since the two bytes following the opcode contain 16 bits, the addressing range of the M680S
Family may be extended in the future without affecting the instruction set or addressing modes. Ex­
tended addressing mode instructions are three bytes long, the one byte opcode plus a two byte ad­
dress.

PC + 1 - PC
EA = (PC) : (PC + 1)
PC + 2 - PC

Assembly Examples:

07FE A PIG
040E C3 07FE A

06E5 A DOG
0409
0409 C6 06E5 A

EQU
CPX
EQU
ORG
LDA

$7FE
PIG
$06E5
S409
DOG (See example description below.)

Figure 4-3 shows an example of the Extended Addressing Mode. In this example, the program con­
tains an instruction to load the accumulator with DOG. (DOG in this example is equal to the con­
tents of memory location 06ES, which is the result of adding the concatenated two bytes following
the opcode byte to $0000.)

4-4

LDA DOG

DOG FCB $40

LDA DOG

DOG FCB $40

Before Completion

-
A

Previous Value

PC

0409 C6 I(0409

O4OA 06 $06E5

O4OB E5

O4OC' ,
I
I

06E51 40

After Completion

0409 C6

O4OA 06

O4OB E5 New PC

O4OC ~ O4OC

I

• I ,
• A

06E51 ~ ____ 40 ______ ~----~·~1~ _____ 4O ____ ~

Steps to Determine
Effective Address

PC=$0409
PC = PC + 1 = $040A
EA= (PC):(PC + 1)

= $06E5
New PC=PC+2=$040C

Instruction Complete

A= (EA)= $40
New PC= $04OC

Figure 4-3. Extended Addressing Mode Example

4.4 INDEXED ADDRESSING MODE

In the indexed addressing modes the X-register (index register) is used in the calculation of the EA.
Three types of indexed addressing exist in the M6805 Family.

4.4.1 Indexed - No Offset

In this mode the contents of the index register is the EA. This mode is used to create EAs pointing to
data in the lowest 256 bytes of the address space, including 110, RAM and part of ROM. It may be
used to move a pointer through a table, point to a frequently referenced location (e.g. - an 110
location), or hold the address of a piece of data that is calculated by a program. Indexed, no offset,
instructions use only one byte, the opcode.

EA = X + $0000
PC + 1 - PC

4-5

Assembly Examples:

0414 F6 LDA ,X
0415 FE LDX ,X
0416 7D TST ,X
05F2 ORG S5F2
05F2 AE B8 A LDX #$B8
05F4 F6 LDA ,X (See example description below.)

Figure 4-4 shows an example of the Indexed Addressing Mode with no offset. In this example, the
program contains an instruction to load the accumulator with the ASCII letter L. (The ASCII letter
L in this example is the contents of memory location OOBS, which is the result of adding the contents
of the index register to $0000.)

FCC III ocm8 4C

LDA ,X 05F4 F6

FCC III OOB8 4C

LDA ,X 05F4 F6

05F5

-

Before Completion

A

Previous Value

x
B8

PC

05F4

EA

OOB8

After Completion

A

" I 4C .. L

X

I B8

New PC

~ I 05F5

I

I

I

Steps to Determine
Effective Address

PC= $05F4
EA=X+ $0000

= $0088
New PC= PC+ 1

= $05F5

Instruction Complete

A= (EA)= $4C
New PC = $05F5

Figure 4-4. Indexed Addressing Mode, No-Offset Example

4-6

4.4.2 Indexed - 8-Bit Offset

The EA is calculated by adding the contents of the byte following the opcode to the contents of the
index register. This mode is useful in selecting the kth element in an n element table. To use this
mode the table must begin in the lowest 256 memory locations, but may extend through the first 511
memory locations of the M6805 Family. All indexed 8-bit offset addressing can be used for ROM,
RAM or I/O. This is a two byte instruction, the opcode byte and the offset byte. ROM efficiency
encourages the inclusion of as many tables as possible in page zero and page 1.

PC + 1 - PC
EA = (PC) + X + $0000
PC + 1 - PC

Assembly Examples:

0040 A LIST
0417 E6 40 A
0419 6C 40 A

0089 A TABLE
0759
0759 AE 03 A
075B E6 89 A

EOU $40
LDA LIST,X
INC LIST,X
EOU ~OO89

ORG $759
LDX #$03
LDA TABLE, X (See example description below.)

Figure 4-5 shows an example of the Indexed Addressing Mode with 8-bit offset. In this example, the
program contains an instruction to load the accumulator with a tabular value containing the hex­
adecimal number $CF. ($CF in this case is contained in memory location $OO8C, which is the result
of adding the byte following the opcode to the contents of the index register plus $0000.)

4-7

TABLE FCB $BF 0089

FCB $86 008A

FCB $OB 008B

FCB $8C 008C

LOA TABLE, X 075B

075C

0750

TABLE FCB $BF 0089

FCB $86 008 A

FCB $OB 008B

FCB $SC OOSC

LOA TABLE, X 075B

075C

0750

BF

86

DB

CF

E6

89

BF

86

DB

CF

E6

89

Before Completion

A

Previous Value

X

PC

~ 075B

After Completion

A

CF

X

03

New Pc

~ 0750

Steps to Determine
Effective Address

PC=$075B
PC= PC+ 1 = $075C
EA=(PC)+X

= $89+$03
=$Q08C

New PC= PC+ 1 = $0750

Instruction Complete

A=(EA)=$CF
New PC = $0750

Figure 4-5. Indexed Addressing Mode, 8-Bit Offset Example

4.4.3 Indexed - 16-Bit Offset

The EA for the 2-byte offset mode is calculated by adding the concatenated contents of the next two
bytes following the opcode to the contents of the index register. This mode is used in a similar man­
ner to indexed with one byte offset; except that since the offset is 16 bits, the tables being referenced
can be anywhere in the memory space. For more details see the Compatibility paragraph below. This
is a three byte instruction, one for the opcode and two for the offset value.

PC + 1 - PC
EA = (PC) : (PC + 1) + X
PC+2-PC

4-8

Assembly Examples:

0700 A COW EQU $700
041B D6 0700 A LDA COW,X
041E DA 0700 A ORA COW,X

077E A TABL EQU $77E
0690 ORG $690
0690 BE 02 A LDX $02
0692 D6 077E A LDA TABL,X (See example description below.)

Figure 4-6 shows an example of the Indexed Addressing Mode with 16-bit offset. In this example,
the program contains an instruction to load the accumulator with a tabular value containing the hex­
adecimal number $DB. ($DB in this case is contained in memory location 0780, which is the result of
adding the concatenated two bytes following the opcode byte to the contents of the index register.)

LDA

TABL FCB

FCB

FCB

FCB

LDA

TABL FCB

FCB

FCB

FCB

,.,.

TABL, X 0692 D6

0693 07

0694 7E

$BF 077E BF

$86 077F 86

$DB 0780 DB

$CF 0781 CF

TABL, X 0692 D6

0693 07

0694 7E

0695

$BF 077E BF

$86 077F 86

$DB 0780 DB

$CF 0781 CF -

Before Completion

-""'-
PC

0692

077E

x
02

A

Previous Value

-

After Completion

x
02

New PC

0695

A

"J DB
"'-1

--
1

Steps to Determine
Effective Address

PC= $0692
PC= PC + 1 = $0693
EA= (PC):(PC+ 1)+ (X)

= $077E+ $02
= $0780

New PC=PC+2
=$0695

Instruction Complete

A=(EA)=$DB
New PC = $0695

Figure 4-6. Indexed Addressing Mode, 16-Bit Offset Example

4-9

4.4.4 Indexing Compatibility

Since the index register on the M6805 Family is only eight bits long, and the offset values are 0,8, or
16 bits, the MC6800 user may thus find that the X-register on the M6805 Family is best utilized
'backwards' from the MC6800. That is, the offset will contain an address or pointer to the table and
the index register contains the displacement into the table.

4.5 RELATIVE ADDRESSING

Relative (REL) addressing adds the contents of the byte following the opcode to the value of the
program counter (PC). The resultant EA is used if, and only if, a relative branch is taken. Note that
by the time the byte following the opcode is added· to the PC, the PC is already pointing to the next
instruction. The relative byte is sign extended so that memory references may be within the range of
-126 and + 129 locations of the instruction. Relative addressing instructions occupy two bytes, the
opcode and the relative byte.

PC + 1 - PC
(PC) - TEMP
PC + 1 - PC
EA = PC + TEMP iff branch is taken

Assembly Examples:

0487 A GOOSE EQU
0487 27 04 048D REO
0489 20 Fe 0487 BRA
048B 20 FE 048R BRA

048D. A SWAN EOU
04A7 ORG

04CO A PROG2 EOU
04A7 27 17 04CO BEQ

*
SWAN
GOOSE

*
*
S4A7
S4CO
PROG2 (See example description below.)

Figure 4-7 shows an example of the Relative Addressing Mode. In this example, the program con­
tains an instruction to branch to PROG2, if the condition code register Z-bit was set by a previous
program step.

4-10

PROG2

BEQ PROG2 04A7

BEQ PROG2

04A8

04A9

04A7

04A8

04A9

-
27

17

~-

27

17

, ,
I
I

EQU $4CO 04coL

BEQ PROG2 04A7 27

04A8 17

04A9

-

Before Completion

CC

Z

:L I __ P_C_~ ~

EA

After Completion
(Branch Taken)

CC

Z=1

PC

04A9

$17
OR

...
"-

New PC EA
After Completion

(No Branch Taken)
CC

Z=O

PC

New PC

Figure 4-7. Relative Addressing Mode Example

4-11

Steps to Determine
Effective Address

PC= $04A7
pc= PC+ 1 = $04A8
TEMP=(PC)=$17
PC= PC+ 1 = $04A9

Stop here if there
is no Branch; i.e., Z= 0

EA= PC+ TEMP
= $04A9+ $17
= $04CO

New PC = EA iff Branch is taken

Instruction Complete

EA= $04CO
New PC = EA = $04CO

Instruction Complete

New PC = EA = $04A9

4.6 BIT SET/CLEAR ADDRESSING MODE

Direct byte addressing and bit addressing are combined in instructions which set and clear individual
memory and I/O bits. In the bit set and clear instructions the byte is specified as a direct address in
the location following the opcode. The first 256 addressable locations are thus accessed. The bit to
be modified within that byte is specified with three bits of the opcode. The bit set and clear instruc­
tions occupy two bytes, one for the opcode (including the bit number) and the second to address the
byte which contains the bit of interest.

CAUTION
On some HMOS devices, the data direction registers are write-only registers and will read
as $FF. Therefore, the Bit Set/Clear instructions (or Read/Modify/Write instructions)
shall not be used to manipulate the data direction register.

PC + 1 - PC
EA = (PC) + $0000
PC + 1 - PC

Assembly Examples:

0002 A
0411 16 02 A
0413 17 02 A
058F

0001 A
058F 1D 01 A

OUTPUT EQU $002
BSET 3,OUTPU rr
BCLR 3,OUTPUT
ORG $58F

PORTB EQU SOOl
BCLR 6, PORTB (See example description below.)

Figure 4-8 shows an example of the Bit Set/Clear Addressing mode. In this example, the program
contains an instruction to clear bit 6 in PORTB. (PORTB in this case is equal to the contents of
memory location $0001, which is the result of adding the byte following the opcode to $()()()().)

4-12

PORTB EOU $001 0001

BClR 6,PORTB 058F

0590

0591

PORTB EOU $001 0001

BClR 6,PORTB 058F

0590

0591

,-

-

-r"

-

FF

ID III(

01

-

~

BF
.# -

1D

01

III(

--

Before Completion

PC

I 058F

!
I ()()()1

EA

After Completion

I Clear Bit 6 I

I I
EA

0001

PC

I 0591

I

J

J

I

I

Steps to Determine
Effective Address

PC= $058F
PC= PC+ 1 = $0590
EA= (PC) + $0000

= $01 +0000
= $()()()1

New PC= PC+ 1
= $0591

Instruction Complete

EA= $0001
New PC= $0591
BIT6 PORTB=O

Figure 4-8. Bit Set/Clear Addressing Mode Example

4.7 BIT TEST AND BRANCH ADDRESSING MODE

This mode is a combination of direct, relative and bit addressing. The data byte to be tested is
located via a direct address in the location following the opcode. The bit to be tested within the byte
is identified within the opcode. The relative address is in the byte following the direct address. The
bit test and branch instructions thus occupy three bytes.

NOTE
On some HMOS devices, the data direction registers are write-only registers and will pro­
vide an error read of $FF.

PC + 1 - PC
EA = (PC) + $0000
PC + 1 - PC
(PC) - TEMP
PC + 1 - PC
EA2 = PC + TEMP iff branch is taken

4-13

Assembly Examples:

0001 A PORTH EOO SOOI
04RD 00 44 03 04g3 BRSE'I' O,S44,ERROH
0490 OB 01 FD 0490 BRCLR 5,PORTB, *

0493 A ERROR EQU *
0574 ORG S574

0002 A PORTC BOll S002
0574 04 02 In () 594 BRSE'I' 2 , PORTC , CO!a.!
0594 ORG S0594

0594 A COW EQO * (See example description below.)

Figure 4-9 shows an example of the Bit Test and Branch Addressing Mode. In this example, the pro­
gram counter contains an instruction to test bit 2 in location PORTC, and if the bit is a 1, then
branch to COW. (PORTC in this case is equal to memory location $002, which is the result of ad­
ding the byte following the opcode to $0000. If bit 2 in location PORTC is a 1, then the condition
C-bit is set. With the C-bit set, the contents of the second byte following the opcode is added to the
contents of the program counter, which then becomes the new program counter and branch address,
$0594.)

4-14

Before Completion

PORTC EOU $002 0002 FX

BRSET 2, PORTC, COW 0574 04
...... -------1

0575 02
.-------1

0576 10

PORTC EOU $002

0577

0002

0574

0575

0576

0577

0002

BRSET 2, PORTC, COW 0574

0575

0576

0577

COW BRA *

.--------1

.---

FO

04

02

10

After Completion
(No Branch. Bit 2 Not Set)

-

I
I cc

~
New PC

.-- ... 1 __ 0_5_77_---'

~--

--
F2

04

02

10

EA1

After Completion
(Branch Bit 2 Set)

--"'-"
,,-I

I

CC

C=1 I

J ~-- '-__ 05_9_4_---'

Steps to Determine
Effective Address

PC=$0574
PC+ 1 = $0575= PC
EA 1 = (PC) = $0002
PC= PC+ 1 = $0576
Temp=(PC)=$1D
New PC= PC+ 1 = $0577

Iff Branch is taken, a
new EA is derived as follows:

EA2= PC+ TEMP=
$0577 + $1 0 = $0594

New PC= EA2= $0594

Instruction Complete

C=O
New PC= $0577

Instruction Complete

C=1
New PC= EA2= $0594

Figure 4-9. Bit Test and Branch Addressing Mode Example

4-15

4.8 INHERENT ADDRESSING MODE

This mode has no EA. Inherent address instructions are the only type which do not include informa­
tion in the operand field. All the information necessary to carry out the instruction is contained in
the opcode.

Assembly Examples:

0493 98
0494 9D
OSBA
OSBA 97

CLC
NOP
ORG
TAX

$SRA
(See example description below.)

Figure 4-10 shows an example of the Inherent Addressing Mode. In this example, the program con­
tains an instruction to transfer the contents of the accumulator into the index register.

-r--

TAX 05BA

05BB

TAX 05BA

05BB

-

Before Completion

A -- E5

97 ~ PC

L 1 __ 0_5_BA_~
X

Previous Value

After Completion

A
--

E5

97 New PC

05BB

X
"--"

E5

Steps to
Perform TAX

PC= $05BA
New PC= PC+ 1 = $05BB

Instruction Complete

(XI=(AI
New PC= $05BB

Figure 4-10. Inherent Addressing Mode Example

4-16

CHAPTERS
INSTRUCTION TYPES

5.0 INTRODUCTION

It is convenient to view the M6805 Family as having several instruction types, which are described
below. Appendix D contains a detailed definition of the Instruction Set used with the M6805
Family.

5.1 REGISTER/MEMORY INSTRUCTIONS

Most of these instructions contain two operands. One operand is inherently defined as either the ac­
cumulator or the index register. The other operand is fetched from memory via one of the address­
ing modes. The addressing modes which are applicable to the register/memory instructions are given
below:

Immediate

Direct

Extended

Indexed - no offset

Indexed - 1 byte offset

Indexed - 2 byte offset

Immediate addressing is not usable with the store and jump instructions (ST A, JMP, JSR and
STX). A listing of the Register/Memory instructions is given below.

ADC Add Memory and Carry to Accumulator

ADD Add Memory to Accumulator

AND AND Memory with Accumulator

BIT Bit Test Memory with Accumulator (Logical Compare)

CMP Compare Accumulator with Memory (Arithmetic Compare)

CPX Compare Index Register with Memory (Arithmetic Compare)

EOR Exclusive Or Memory with Accumulator

JMP Jump

JSR Jump to Subroutine

LDA Load Accumulator from Memory

LDX Load Index Register from Memory

ORA OR Memory with Accumulator

SBC Subtract Memory and Borrow from Accumulator

5-1

ST A Store Accumulator in Memory

STX Store Index Register in Memory

SUB Subtract Memory from Accumulator

5.2 READ/MODIFY/WRITE INSTRUCTIONS

These instructions read a memory location or register, modify or test the contents, and then write
the modified value back into the memory or the register. The available addressing modes for these
instructions are given below.

Direct

Inherent

Indexed - No Offset

Indexed - 1 byte offset

The Read/Modify/Write instructions are listed below.

ASL Arithmetic Shift Left (Same as LSL)

ASR Arithmetic Shift Right

CLR Clear

COM Complement

DEC Decrement

INC Increment

LSL Logical Shift Left (Same as ASL)

LSR Logical Shift Right

NEG Negate (Two's Complement)

ROL Rotate Left thru Carry

ROR Rotate Right thru Carry

TST Test for Negative or Zero

5.3 BRANCH INSTRUCTIONS

In this set of instructions the program branches to a different routine when a particular condition is
met. When the specified condition is not met, execution continues with the next instruction. Most of
the branch instructions test the state of one or more of the condition code bits.Relative is the only
legal addressing mode applicable to the branch instructions. A list of the branch instructions is pro­
vided below.

BCC

BCS

BEQ

BHCC

BHCS

Branch iff Carry Clear (Same as BHS)

Branch iff Carry is Set (Same as BLO)

Branch iff Equal to Zero

Branch iff Half Carry is Clear

Branch iff Half Carry is Set

5-2

BHI Branch iff Higher than Zero

BHS Branch iff Higher or Same as Zero (Same as BCC)

BIH Branch iff Interrupt Line is High

BIL Branch iff Interrupt Line is Low

BLO Branch iff Lower than Zero (Same as BCS)

BLS Branch iff Lower or Same as Zero

BMC Branch iff Interrupt Mask is Clear

BMI Branch iff Minus

BMS Branch iff Interrupt Mask is Set

BNE Branch iff Not Equal to Zero

BPL Branch iff Plus

BRA Branch Always

BRN Branch Never

BSR Branch to Subroutine

Note that the BIH and BIL instructions permit an external pin to be tested easily.

5.4 BIT MANIPULATION INSTRUCTIONS

There are two basic types of bit manipulation instructions. One group either sets or clears any single
bit in a memory byte. This instruction group uses the Bit Set/Clear addressing mode which is similar
to direct addressing. The bit number (0-7) is part of the opcode. The other group tests the state of
any single bit in a memory location and branches if the bit is set or clear. These instructions have
'test and branch' addressing. The bit manipulation instructions are shown below.

Clear Bit n in Memory BCLRn

BRCLR n

BRSET n

BSET n

Branch iff Bit n in Memory is Clear

Branch iff Bit n in Memory is Set

Set Bit n in Memory (n = 0 ... 7)

5.5 CONTROL INSTRUCTIONS

Instructions in this group have inherent addressing. These instructions manipulate condition code
bits, control stack and interrupt operations, transfer data between the accumulator and index
register, and do nothing (NOP). The control instructions are listed below.

CLC Clear Carry Bit

CLI Clear Interrupt Mask Bit

NOP No-Operation

RSP Reset Stack Pointer

RTI Return from Interrupt

5-3

RTS Return from Subroutine

SEC Set Carry Bit

SEI Set Interrupt Mask Bit

SWI Software Interrupt

T AX Transfer Accumulator to Index Register

TXA Transfer Index Register to Accumulator

5-4

6.0 INTRODUCTION

CHAPTER 6
PROGRAMMING INTERRUPTS

(

One of the major features of the M6805 Family is that it has both hardware and software interrupts.
Typically, the hardware interrupts are represented by both external and internal interrupts. The
software interrupt (SWI) instruction provides a program initiated interrupt capability.

When an interrupt occurs (either hardware or software), the normal processing is suspended and an
interrupt routine is executed. Interrupts, as they occur in the M6805 Family, eliminate the need for
inefficient main program "branch on status" loops for both timed and external events.

Since the hardware interrupts are maskable, their effects on the CPU is controllable. All interrupts
are latched so that interrupt events are not lost while they are masked. Such interrupt requests are
held pending until the mask(s) is cleared. The I-bit status, in the condition code register (CC), con­
trols the masking of all hardware interrupts. Other masks, such as bit 6 in the timer control register,
provide additional levels of interrupt masking. Upon completion of the instruction being executed,
the hardware controlled sequence will cause the following to be stored (using the stack pointer):

(1) The lower program counter (PCL) value (eight bits)

(2) the upper program counter (PCR) value (up to eight bits)

(3) the index register

(4) the accumulator

(5) the condition code register

Following this register 'push' sequence, the I-bit in the CC register is set which masks further inter­
rupts. In addition, the vector address, stored at a location unique to the interrupt being serviced, is
loaded into the PCR and PCL, respectively. This becomes the starting address of the interrupt soft­
ware service routine. At the end of the interrupt software service routine, a return from interrupt
(RTI) instruction is executed. The RTI execution is a 'pull' sequence that restores the state of the
CPU. The five bytes saved prior to the interrupt routine are loaded back into the program register.
When RTI is complete, the restored PC permits the interrupted program to continue.

6.1 TIMER INTERRUPT

When the timer mask bit in the timer control word is zero, a timer interrupt is generated each time
the counter reaches zero, provided the interrupt mask bit in the condition code register is also zero.
When the interrupt is recognized, the current machine state is pushed onto the stack and the PC is
loaded with the timer interrupt vector address (two bytes). The I-bit in the condition code register is
also set, which masks further interrupts. At the end of the execution of the timer interrupt routine,
an RTI instruction is executed to restore the machine state and return execution to the interrupted
program, with all registers unchanged.

6-1

NOTE
One of the tasks, which should be accomplished by the timer interrupt software routine, is
to clear the timer interrupt request flag. This flag is stored at $09 (Timer Control
Register), bit 7.

6.2 EXTERNAL INTERRUPT

If the I-bit in the condition code register is cleared (interrupts enabled) the external interrupt pin(s)
initiate the interrupt sequence. The various M6805 Family MPUs recognize different external inter­
rupt signals. Some of the options are high-to-Iow transition, a zero-crossing, and a low 'level.
Recognition of the INT external interrupt is much the same as the timer interrupt, except that the
vector address is stored in a different memory location.

NOTE
Typically, externally generated interrupt requests are cleared by hardware while the
specific interrupt is being serviced. However, certain specific versions of the M6805 Fami­
ly may contain additional external interrupts. Instructions for clearing these additional
external requests are found in the specific Data Sheet instructions (either automatically by
hardware or by software control such as the timer interrupt request flag).

6.3 SOFTWARE INTERRUPT

The software interrupt is an executable instruction that behaves much like a hardware interrupt.
When the SWI is executed the machine state is saved on the stack and the software interrupt vector
is fetched from memory. An SWI will be executed regardless of the state of the I-bit in the condition
code register. Software interrupts are used as breakpoints for debugging in many systems.

6.4 RESET

Reset is not an interrupt but behaves much like one. When the reset occurs, the vector, stored in
memory, is loaded into the program counter (PC). During reset, the I-bit in the condition code
register and the timer interrupt mask bit in (in the TCR) are both set. Also, the stack pointer is reset
to the beginning of the stack. In addition, the timer and its prescaler are set to all 1 's and the Data
Direction Registers are cleared on all 1/0 ports (outputs assume high impedance state). The contents
of the reset vector location contains the address of the first instruction to be executed after reset.

6.S VECTORS

A vector is the address from which the next instruction will be fetched. To summarize, the basic vec­
tors for the M6805 Family are:

$XXF8

$XXFA

$XXFC

$XXFE

Timer

INT

SWI

Reset

6-2

NOTE
XX refers to the top of the available memory address space and varies by family part -
consult specific device data sheet. For example: in the 'PZ device (1 I-bit PC) XX = 07; in
the 'RZ device (12-bit PC) XX=OF; and in the 'EZ device (13-bit PC) XX2= IF.

The total number of basic vectors may increase depending upon the specific family I/O options
(refer to specific device data sheet).

6.6 STACKING ORDER

The machine state is pushed onto or pulled from the stack in the following order:

Lower
Address b7 b6 b5 b4 b3 b2 bl bO

IlllllHIIINlzlc

P
Accumulator

P Increasing
U U

Decreasing
Memory L Index Register S Memory

Addresses L H Addresses
Program Counter High

Program Counter Low

Higher
Address

Since the stack pointer decrements during pushes the PCL is stacked first, then the PCH, etc. Pull­
ing from the stack is in the reverse order. The stack pointer in the M6805 Family always points to the
next free location on the stack (similar to the MC6800 and MC6801).

6-3/6-4

A.O INTRODUCTION

APPENDIX A
M6800 COMPATIBILITY

Strictly speaking, the M680S Family is neither source nor object code compatible with the MC6800;
but it is very similar to all M6800 family processors. An experienced MC6800 programmer should
have little difficulty adapting to the M680S Family instruction set. The following paragraphs
enumerate the differences between the MC6800 and the MC680S.

A.l REMOVED B·REGISTER

In order to free up valuable opcode space, the B-register is removed in the MC680S. Therefore, none
of the register/memory or read/modify/write instructions have a B-register form. Several other in­
structions are also not available in the MC680S, including:

SBA, CBA, TAB, TBA, ABA, PSHB, and PULB

A.2 REMOVED V·FLAG

The V-flag bit and the logic to set it is removed in the MC680S. This was done because usage of the
small controller does not generally require signed arithmetic operations. However, unsigned
arithmetic operations are still available. Without the V-flag bit, the following MC6800 instructions
are not available in the MC6805.

SEV, CLV, BVC, BVS, BOE, BLT, BOT, and BLE.

Notice that the unsigned inequalities are still available using BHS (BCC) and BLO (BCS).

A.3 REDUCED STACK CONTROL

Instructions relating to the manipulation of the SP are greatly reduced. On reset, or upon execution
of the RSP instruction, the SP is initialized to $7F. Other instructions that were deleted include:

LOS, STS, INS, DES, PSHA, PULA, TXS, TSX and W AI.

A-I

A.4 REMOVED DAA

Although the DAA is useful in some low-end applications, it was deleted. The H-bit, however, was
retained and two additional branches were added to branch if the H-bit is set or cleared (BHCS,
BHCC). These branches can be used to write software subroutines accomplishing DAA (remember,
ROM is much cheaper than the DAA).

A.S CHANGED REGISTER LENGTHS

The X-register was reduced to eight bits, the SP to eight bits or less and the PC to 16 bits or less. The
change in the X-register size from 16 to eight bits required changes in the addressing modes; these
are described in the Addressing Modes Chapter. Also, since the X and A registers are equal in size,
two new instructions are added to transfer X to A and A to X (TXA, TAX).

A.6 BIT MANIPULATION

Bit manipulation instructions are a4ded to the MC680S because they are extremely useful for low­
end applications. Two classes of bit manipulation instructions were added, Bit Set/Clear, and Test
and Branch on Bit Set/Clear. I

(a) Bit Set/Clear

These instructions allow any bit in page zero « $100) including bits in the I/O ports (but not always
the data direction registers) to be set or cleared with one 2-byte instruction.

(b) Test and Branch on Bit Set/Clear

These instructions test any bit in page zero, including I/O, RAM and ROM, and branch, if the bit is
set or cleared. In addition, the C-bit of the Condition Code Register contains the state of the bit
tested.

A.7 NEW BRANCHES

Several new branches are added to facilitate low-end type programs. BHCS and BHCC are useful in
BCD additions. A branch, if interrupt mask bit is set or cleared (BMS/BMC), is also added. This
eliminates the need for TAP and TP A since each bit in the condition code register can be tested by a
branch. Two more branches are added that branch on the logic condition of the interrupt line (high
or low): BIH/BIL. These allow the interrupt line to be used as an additional input in systems not us­
ing interrupts.

A.8 NEW ADDRESSING MODES

The addressing modes of the MC6800 were optimized for the MC680S. For more details see the Ad­
dressing Modes section of the manual.

A-2

A.9 READ/MODIFY/WRITE THE X-REGISTER

By utilizing the column in the opcode map vacated by the B-register for read/modify/write, and
since the X-register is now eight bits, all of these operations are available to the X-register. For ex­
ample:

ROLX, INCX, CLRX, NEGX, etc.

This eliminated the traditional INX, DEX. However, mnemonics INX and DEX are still recognized
by the assembler for compatibility.

A.tO CONVENIENCE MNEMONICS

These are not new M6805 Family instructions, but only represent improvements to the MC6805
assembler that allow existing instructions to be recognized by more than mnemonic.

(a) LSL (Logical Shift Left)

Since logical and arithmetic left shifts are identical, LSL is equivalent to ASL.

(b) BHS (Branch Higher or Same)

After a compare or subtract, the carry is cleared if the register argument was higher or equal to the
memory argument, hence the BHS is equivalent to BCC.

(c) BLO (Branch if Lower)

After a compare or subtract, the carry is set if the register argument was lower than the memory
argument, hence the BLO is equivalent to BCS.

A-3/A-4

APPENDIX B
HMOS AND CMOS TECHNOLOGIES

B.1 HMOS LOGIC

The HMOS inverter circuit, shown in Figure B-1, illustrates the operating principles of HMOS logic.
Two transistors are series connected between ground (VSS) and VOO; one is an active N-channel
transistor and the other is a turned-on pull-up transistor. When a logic low is applied to the circuit
input, the N-channel transistor is reverse biased and represents a high impedance, compared to the
pull-up transistor (which provides the same function as a resistor). A load connected to the circuit
output can be driven to a logic high by the supply current through the pull-up transistor.

When a logic high is applied to the circuit input, the N-channel transistor is turned on and becomes a
very low resistance to VSS causing the output to go low and a current, equal to Von - VSS/R, to
flow through the pull-up transistor.

Other logic circuits constructed in HMOS technology use series and parallel combinations of the
N-channel transistors. However, they all rely on the same operating principle, that is, the active
N-channel transistor is used to sink current from the output and a passive load transistor, which
behaves similarly to a resistor, is used to source current to the output.

Ii is the current flowing through the pull-up load transistor, when the N-channel transistor is turned
on, that accounts for most of the power consumed in an HMOS integrated circuit.

Voo

Pull-Up
Transistor

N-Channel
Transistor
(inverter)

Output

Figure B-1. HMOS Inverter Circuit

B-1

B.2 CMOS LOGIC

The CMOS inverter circuit, shown in Figure B-2, illustrates the operating principles of CMOS logic.
In CMOS, the pull-up transistor is replaced with an active, P-channel, transistor. In this type of cir­
cuit, one transistor complements the other; i.e., when one is turned on the other is turned off. The
characteristics of the P-channel transistor are such that a high signal input turns it off; conversely, a
low signal input turns it on.

The active P-channel transistor sources current when the output is high (input low), and presents a
high impedance when the output is low (input high). Thus, there is essentially no current flow within
the inverter whenever the output is low. The overall result is extremely low power consumption
because there is no power loss through the active pull-up transistor.

The switch point of the CMOS inverter is at approximately 50070 of the supply voltage (VDD) rather
than being determined by the threshold of the N-channel transistor. Because of this, the operating
voltage range of a CMOS device is much wider than that of an HMOS device. This permits a greater
choice of supply voltages or allows the use of a less regulated power supply.

Input 0--"

VDD

J Active P-Channel

~ Pull-Up Device

~outPut
Active N-Channel

~ Pull Down Device

Vss

Figure B-2. CMOS Inverter Circuit

B-2

APPENDIX C
RASM05 MACRO ASSEMBLER

SYNTAX AND DIRECTIVES

C.O ASSEMBLY LANGUAGE SYNTAX AND ASSEMBLER DIRECTIVES

This appendix provides information concerning the Assembly Language Syntax and Assembler
Directive for the M6805 Family. This information is more thoroughly discussed in Macro
Assemblers Reference Manual M68MASR(D2) for M6800, 6801, 6805 and 6809; Motorola
Literature Distribution Center, Phoenix, Az.

M6805 Family assembly language source statements follow the same format as M6800 source
statements. See Macro Assembler Reference Manual M68MASR(D2) for detailed M6805 Family
syntax. Highlights of the M6805 Family syntax and assembler directives are discussed in the follow­
ing paragraphs.

C.l OPERATION FIELD SYNTAX

All instruction mnemonics for the M6805 Family are three, four, or five characters long. Examples
are:

LDA

JSR

INC

BHCC

BRSET

If the accumulator or index register is used as the operand of read/modify/write instructions, then
the register is appended to the operation field. For example:

NEGA

RORX

INCX

DECA

TSTA

C-1

C.2 OPERAND FIELD SYNTAX

C.2.1 Inherent

Inherent instructions are the only type which do not include information in the operand field. All in­
formation necessary is incorporated in the operation field. Some examples are listed below. Note
that an "A" or an "X" is added to the opcode for the register reference inherent instructions.

RTS

CLC

INCA

RORA

INCX

RORX

C.2.2 IIIAmediate

The immediate value appears in the operand field preceded by a '#'. Example:

LOA #30

LOX #$49

CPX #$FF

LOA #AOOR

C.2.3 Direct Addressing

The direct address appears in the operand field. If, on any pass through the source program, the
assembler finds an unresolved (undefined) forward reference, the longer extended addressing mode
is chosen instead of the direct addressing mode even if the address is subsequently found to be on
page zero. To ensure direct addressing for direct variables, always define the variable before using
it. In read/modify/write instructions all addresses are assumed to be direct since extended address­
ing is illegal with this mode. Examples:

LOA CAT

STA $30

CPX DOG

ROL $01

Where CAT and DOG have addresses < $100.

C-2

C.2.4 Extended Addressing

The extended address appears in the operand field. This mode is only legal when executing
register / memory instructions. Examples:

LDA BIG

LDA $325

STA COW

Where BIG and COW have addresses > $100.

C.2.S Indexed - No Offset

The characters comma and X appear in the operand field. For example:

LDA ,X

COM ,X

STA ,X

INC ,X

TST ,X

C.2.6 Indexed - One Byte Offset

The offset appears followed by a comma and "X" . The offset must have a value < $100. Examples:

LDA 3, X

LDA TABLE,X

INC 50, X

Where TABLE <$100.

C.2.7 Indexed - Two Byte Offset

The offset appears followed by a comma and "X". The offset would normally have a value> $100.
Examples:

LDA

LDA

COM

300, X

ZOT, X

500, X

Where ZOT >$100.

C-3

C.2.8 Bit Set/Clear

The bit set and clear instructions contain the bit number followed by a comma and the address. Ex­
amples:

BSET

BCLR

BCLR

3, CAT

4, $30

5, DOG

Where CAT and DOG are <$100.

C.2.9 Bit Test and Branch

The bit test and branch instructions contain the bit number, a comma, the address to be tested, a
comma, and the location to branch to if the test was successful. Examples:

PIG BRSET 3, CAT, DOG

DOG BRCLR 4, CAT, PIG

Where CAT < $100, DOG and PIG are Relative Addresses similar to those explained in the next
paragraph.

C.2.tO Relative Addressing

The operand field contains the label of the address to be loaded into the program counter if the
branch is taken. The branch address must be in the range - 126 to + 129. Examples:

BEQ CAT

BNE DOG

BRA PIG

C.3 ASSEMBLER DIRECTIVE SUMMARY

The assembler directives are instructions to the assembler rather than instructions which are directly
translated into object code. Detailed descriptions are provided in the M68MASR(D2) reference
manual.

C.3.t Assembly Control Directives

END

FAIL

NAM

ORG

Program. end

Programmer generated errors

Assign program name

Origin program counter

C-4

C.3.2 Symbol Definition Directives

ENDM

EQU

MACR

SET

Macro definition end

Assign permanent value

Macro definition start

Assign temporary value

C.3.3 Data Definition/Storage Allocation Directives

BSZ

FCB

FCC

FDB

RMB

Block storage of zero; single bytes

Form constant byte

Form constant character string

Form constant double byte

Reserve memory; single bytes

C.3.4 Program Relocation Directives

ASCT Absolute section

BSCT Base section

COMM Named common section

CSCT Blank common section

DSCT Data section

IDNT Identification record

PSCT Program section

OPT REL Relocatable output selected

XDEF External symbol definition

XREF External symbol reference

C.3.S Conditional Assembly Directives

ENDC

IFC

IFEQ

IFGE

IFGT

IFLE

IFLT

IFNC

IFNE

End of current level of conditional assembly

Assemble if strings compare

Assemble if expression is equal to zero

Assemble if expression is greater than or equal to zero

Assemble if expression is greater than zero

Assemble if expression is less than or equal to zero

Assemble if expression is less than zero

Assemble if strings do not compare

Assemble if expression is not equal to zero

C-5

C.3.6 Listing Control Directives

OPT ABS Select absolute MDOS-Ioadable object output

OPT CL Print conditional assembly directives

OPT NOCL Don't print conditional assembly directives

OPT CMO Allow CMOS instructions STOP and WAIT (M6805 only)

OPT NOCMO Don't allow CMOS instructions STOP and WAIT (M6805 only)

OPT CRE Print cross reference table

OPT G Print generated lines of FCB, FCC, and FDB directives

OPT NOG Don't print generated lines of FDB, FCC, and FDB directives

OPT L Print source listing from this point

OPT NOL Inhibit printing of source listing from this point

OPT LLE=n Change line length

OPT LOAD Select absolute EXORciser-loadable object output

OPT M Create object output in memory

OPT MC Print macro calls

OPT NOMC Don't print macro calls

OPT MD Print macro definitions

OPT NOMD Don't print macro definitions

OPT MEX Print macro expansions

OPT NOMEX Don't print macro expansions

OPT 0 Create object output file

OPT NOO Do not create object output file

OPT P = n Change page length

OPT NOP Inhibit paging and printing of headings

OPT REL

OPTS

OPTSE

OPTU

OPTNOU

PAGE

SPC

TTL

Select relocatable object output

Print symbol table

Print user-supplied sequence numbers

Print unassembled code from conditional directives

Don't print unassembled code from conditional directives

Print subsequent statements on top of next page

Skip lines

Initialize heading for source listing

C-6

APPENDIX D
INSTRUCTION SET

DETAILED DEFINITION

D.O EXECUTABLE INSTRUCTIONS

D.I INTRODUCTION

In the pages that follow this section, the various Accumulator and Memory operations, together
with the respective Mnemonic, provides a heading for each of the executable instructions. The
STOP and WAIT instructions apply only to the CMOS M146805 Family. The pages are arranged in
alphabetical order of the Mnemonic. A brief description of the operation is provided along with
other applicable pertinent information, including: condition code status; Boolean Formula; Source
Forms; usable Addressing Modes; number of execution cycles (both M6805 and M146805 Families),
number of bytes required; and the opcode for each usable Addressing Mode. Paragraph D.2 con­
tains a listing of the various nomeclature (abbreviations, and signs) used in the operations.

D.2 NOMENCLATURE

The following nomenclature is used in the executable instructions which follow this paragraph.

(a) Operators:
() indirection. i.e., (SP) means the value pointed to by SP

is loaded with (read: 'gets')
•
V

ED

boolean AND
boolean (inclusive) OR
boolean EXCLUSIVE OR
boolean NOT
negation (two's complement)

(b) Registers in the MPU:
ACCA Accumulator
CC Condition Code Register
X Index Register
PC Program Counter
PCH Program Counter High Byte
PCL Program Counter Low Byte
SP Stack Pointer

D-l

(c) Memory and Addressing:
M Contents of any memory location (one byte)
ReI Relative address (Le., the two's complement number stored in the second byte of

machine code in a branch instruction.)

(d) Bits in the Condition Code Register:
C Carry/Borrow, Bit 0
Z Zero Indicator, Bit 1
N Negative Indicator, Bit 2
I Interrupt Mask, Bit 3
H Half Carry Indicator, Bit 4

(e) Status of Individual Bits BEFORE Execution of an Instruction
An Bit n of ACCA (n = 7, 6, 5, 4, 3, 2, 1,0)
Xn Bit n of X (n = 7,6,5,4,3,2, 1,0)
Mn Bit n of M (n = 7, 6, 5, 4, 3, 2, 1,0). In read/modify/write instructions, Mn is

used to represent bit n of M, A or X.

(0 Status of Individual Bits AFTER Execution of an Instruction:
Rn Bit n of the result (n = 7, 6,5,4,3,2, 1, 0)

(g) Source Forms:
P Operands with IMMediate, DIRect, EXTended and INDexed (0, 1,2 byte offset)

addressing modes
Q Operands with DIRect, INDexed (0 and 1 byte offset) addressing modes
dd Relative operands
DR Operands with DIRect addressing mode only.

(h) iff
abbreviation for if-and-only-if.

D-2

ADC Add with Carry ADC
Operation: ACCA - ACCA + M + C
Description: Adds the contents of the C bit to the sum of the contents of ACCA and M, and

places the result in ACCA.

Condition
Codes: H:

I:
N:
Z:
C:

Set if there was a carry from bit 3; cleared otherwise.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there was a carry from the most significant bit of the result; cleared
otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

H = A3·M3vM3·R3vR3·A3
N = R7
Z = R7.R6·R5·R4·R3·R2.R1·RO
C = A7·M7vM7·R7vR7·A7

ADCP

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2
Direct 4 3
Extended 5 4
Indexed 0 Offset 4 3
Indexed 1-Byte 5 4
Indexed 2-Byte 6 5

D-3

Bytes Opcode

2 A9
2 B9
3 C9
1 F9
2 E9
3 D9

ADD Add ADD
Operation: ACCA - ACCA + M

Description: Adds the contents of ACCA and the contents of M and places the result in
ACCA.

Condition
Codes: H:

I:
N:
Z:
C:

Set if there was a carry from bit 3; cleared otherwise.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there was a carry from the most significant bit of the result; cleared
otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

H = A3·M3vM3·R3vR3·A3
N = R7
Z = R7·R6·R5·R4·R3·R2·R1·RO
C = A7·M7vM7·R7vR7·A7

ADDP

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2
Direct 4 3
Extended 5 4
Indexed 0 Offset 4 3
Indexed 1-Byte 5 4
Indexed 2-Byte 6 5

D-4

Bytes Opcode

2 AB
2 BB
3 CB
1 FB
2 EB
3 DB

AND Logical AND AND
Operation: ACCA - ACCA . M

Description: Performs logical AND between the contents of ACCA and the contents of M and
places the result in ACCA. Each bit of ACCA after the operation will be the
logical AND result of the corresponding bits of M and of ACCA before the
operation.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6·R5·R4·R3·R2·Rl·RO

ANDP

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2
4
5
4
5
6

D-5

2

3
4
3
4
5

Bytes Opcode

2
2
3
1
2
3

A4

B4
C4
F4
E4
D4

ASL Arithmetic Shift Left ASL
Operation:

Description: Shifts all bits of ACCA, X or M one place to the left. Bit 0 is loaded with a zero.

Condition
Codes:

The C bit is loaded from the most significant bit of ACCA, X or M.

H:
I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the most significant bit of ACCA, X or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6·R5·R4·R3·R2·R1·RO
C = M7

Comments: Same opcode as LSL

Source
Form(s): ASL Q, ASLA, AS LX

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator 4 3
Index Register 4 3
Immediate
Direct 6 5
Extended
Indexed 0 Offset 6 5
Indexed 1-Byte 7 6
Indexed 2-Byte

D-6

. Bytes Opcode

1 48
1 58

2 38

1 78
2 68

ASR Arithmetic Shift Right ASR
Operation:

Description: Shifts all bits of ACCA, X or M one place to the right. Bit 7 is held constant. Bit
o is loaded into the C bit.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the least significant bit of ACCA, X or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6·R5·R4·R3·R2·R1·RO
C = MO

ASR Q, ASRA, ASRX

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator 4 3
Index Register 4 3
Immediate
Direct 6 5
Extended
Indexed 0 Offset 6 5
Indexed 1-Byte 7 6
Indexed 2-Byte

D-7

Bytes Opcode

1 47
1 57

2 37

1 77
2 67

Bee Branch if Carry Clear Bee
Operation: PC - PC + 0002 + ReI iff C = 0

Description: Tests the state of the C bit and causes a branch iff C is clear. See BRA instruc­
tion for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BHS

Source
Form(s): BCC dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-8

Bytes Opcode

2 24

BCLRn Bit Clear Bit n BCLRn
Operation: Mn - 0

Description: Clear bit n (n = 0, 7) in location M. All other bits in M are unaffected.

Condition
Codes:

Source
Form(s):

Not affected.

BCLR n, DR

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

7 5

D-9

Bytes Opcode

2

DCS Branch if Carry Set DCS
Operation: PC - PC + 0002 + ReI iff C = 1

Description: Tests the state of the C bit and causes a branch iff C is set. See BRA instruction for
further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BLO

Source
Form(s): BCS dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-IO

Bytes Opcode

2 25

BEQ Branch if Equal BEQ
Operation: PC - PC + 0002 + ReI iff Z = 1

Description: Tests the state of the Z bit and causes a branch iff Z is set. Following a compare or
subtract instruction BEQ will cause a branch if the arguments were equal. See BRA
instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BEQ dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate

Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-11

Bytes Opcode

2 27

BHCC Branch if Half Carry Clear BHCC
Operation: PC - PC + 0002 + ReI iff H = 0

Description: Tests the state of the H bit and causes a branch iff H is clear. See BRA instruction
for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BHCC dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

0-12

Bytes Opcode

2 28

DHCS Branch if Half Carry Set DHCS
Operation: PC - PC + 0002 + ReI iff H = 1

Description: Tests the state of the H bit and causes a branch iff H is set. See BRA instruction for
further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BHCS dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-13

Bytes Opcode

2 29

DBI Branch if Higher DBI
Operation: PC - PC + 0002 + ReI iff (C v Z) = 0

Le., if ACCA > M (unsigned binary numbers)

Description: Causes a branch iff both C and Z are zero. If the BHI instruction is executed im­
mediately after execution of either of the CMP or SUB instructions, the branch will
occur if and only if the unsigned binary number represented by the minuend (Le.,
ACCA) was greater than the unsigned binary number represented by the subtrahend
(Le., M). See BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BHI dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

0-14

Bytes Opcode

2 22

BHS Branch iff Higher or Same BHS
Operation: PC - PC + 0002 + ReI iff C = 0

Description: Following an unsigned compare or subtract, BHS will cause a branch iff the register
was higher than or the same as the location in memory. See BRA instruction for fur­
ther details of the execution of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BCC

Source
Form(s): BHS dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-15

Bytes Opcode

2 24

BIB Branch iff Interrupt Line is High BIB
Operation: PC - PC + 0002 + ReI iff INT = 1

Description: Tests the state of the external interrupt pin and branches iff it is high. See BRA in ..
struction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: In systems not using interrupts, this instruction and BIL can be used to create an
extra 1/0 input bit. This instruction does NOT test the state of the interrupt mask bit
nor doeslt indicate whether an interrupt is pending. All it does is indicate whether
the INT line is high.

Source
Form(s): BIH dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-16

Bytes Opcode

2 2F

BIL Branch if Interrupt Line is Low BIL
Operation: PC - PC + 0002 + ReI iff INT = 0

. Description: Tests the state of the external interrupt pin and branches iff it is low. See BRA in­
struction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: In systems not using interrupts, this instruction and BIH can be used to create an
extra 1/0 input bit. This instruction does NOT test the state of the interrupt mask bit
nor does it indicate whether an interrupt is pending. All it does is indicate whether
the INT line is Low.

Source
Form(s): BIL dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

0-17

Bytes Opcode

2 2E

BIT Bit Test Memory with Accumulator BIT
Operation: ACCA • M

Description: Performs the logical AND comparison of the contents of ACCA and the contents of
M and modifies the condition codes accordingly. The contents of ACCA and Mare
unchanged.

Condition
Codes: H:

I:
N:

Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result of the AND is set; cleared
otherwise.
Set if all bits of the result of the AND are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6·R5·R4·R3·R2·Rl·RO

Source
Form(s): BIT P

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A5
Direct 4 3 2 B5
Extended 5 4 3 C5
Indexed 0 Offset 4 3 1 F5
Indexed I-Byte 5 4 2 E5
Indexed 2-Byte 6 5 3 D5

D-18

BLO Branch if Lower BLO
Operation: PC - PC + 0002 + ReI iff C = 1

Description: Following a 90mpare, BLO will branch iff the register was lower than the memory
location. See BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: Same opcode as BCS

Source
Form(s): BLO dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-19

Bytes Opcode

2 25

BLS Branch iff Lower or Same BLS
Operation: PC - PC + 0002 + ReI iff (C v Z) = 1

Le., if ACCA - M (unsigned binary numbers)

Description: Causes a branch if (C is set) OR (Z is set). If the BLS instruction is executed im­
mediately after execution of either of the instructions CMP or SUB, the branch will
occur if and only if the unsigned binary number represented by the minuend (Le.,
ACCA) was less than or equal to the unsigned binary number represented by the sub­
trahend (Le., M). See BRA instruction for further details of the execution of the
branch.

Condition
Codes: Not affected.

Source
Form(s): BLS dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

0-20

Bytes Opcode

2 23

BMC Branch if Interrupt Mask is Clear BMC
Operation: PC - PC + 0002 + ReI iff I = 0

Description: Tests the state of the I bit and causes a branch iff I is clear. See BRA instruction for
further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: This instruction does NOT branch on the condition of the external interrupt line.
The test is performed only on the interrupt mask bit.

Source
Form(s): BMC dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

0-21

Bytes Opcode

2 2C

BMI Branch if Minus BMI
Operation: PC - PC + 0002 + ReI iff N = 1

Description: Tests the state of the N bit and causes a branch iff N is set. See BRA instruction for
further details of the execution of the branch.

Condition
Codes:

Source
Form(s)

Not affected.

BMI dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate

Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-22

Bytes Opcode

2 2B

BMS Branch if Interrupt Mask Bit is Set BMS
Operation: PC - PC + 0002 + ReI iff I = 1

Description: Tests the state of the I bit and causes a branch iff I is set. See BRA instruction for
further details of the execution of the branch.

Condition
Codes: Not affected.

Comments: This instruction does NOT branch on the condition of the external interrupt line.
The test is performed only on the interrupt mask bit.

Source
Form(s): BMS dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0' Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-23

Bytes Opcode

2 2D

BNE Branch if Not Equal BNE
Operation: PC - PC + 0002 + ReI iff Z = 0

Description: Tests the state of the Z bit and causes a branch iff Z is clear. Following a compare or
subtract instruction BNE will cause a branch if the arguments were different. See
BRA instruction for further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BNE dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-24

Bytes Opcode

2 26

BPL Branch if Plus BPL
Operation: PC - PC + 0002 + ReI iff N = 0

Description: Tests the state of the N bit and causes a branch iff N is clear. See BRA instruction for
further details of the execution of the branch.

Condition
Codes: Not affected.

Source
Form(s): BPL dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate

Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-25

Bytes Opcode

2 2A

BRA Branch Always BRA
Operation: PC - PC + 0002 + ReI

Description: Unconditional branch to the address given by the foregoing formula, in which ReI is
the relative address stored as a two's complement number in the second byte of
machine code corresponding to the branch instruction.

Condition
Codes:

Source
Form(s):

NOTE: The source program specifies the destination of any branch instruction by its
absolute address, either as a numerical value or as a symbol or expression which can
be evaluated by the assembler. The assembler obtains the relative address ReI from
the absolute address and the current value of the program counter.

Not affected.

BRAdd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-26

Bytes Opcode

2 20

BRCLRn Branch if Bit n is Clear BRCLRn
Operation: PC - PC + 0003 + ReI iff bit n of M is zero

Description: Tests bit n (n = 0, 7) of location M and branches iff the bit is clear.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Not affected.
Not affected.
Set if Mn = 1; cleared otherwise.

Boolean Formulae for Condition Codes:
C = Mn

Comments: The C bit is set to the state of the bit tested. Used with an appropriate rotate instruc­
tion, this instruction is an easy way to do serial to parallel conversions.

Source
Form(s): BRCLR n, DR, dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

10 5

D-27

Bytes Opcode

3

BRN Branch Never BRN
Description: Never branches. Branch never is a 2 byte 4 cycle NOP.

Condition
Codes: Not affected.

Comments: BRN is included here to demonstrate the nature of branches on the M6805 Family.

Source

Each branch is m~tched with an inverse that varies only in the least significant bit of
the opcode. BRN is the inverse of BRA. This instruction may have some use during
program debugging.

Form(s): BRN dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3

D-28

Bytes Opcode

2 21

BRSET Branch if Bit n is Set BRSET
Operation: PC - PC + 0003 + ReI iff Bit n of M is not zero

Description: Tests bit n (n = 0, 7) of location M and branches iff the bit is set.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Not affected.
Not affected.
Set if Mn = 1; cleared otherwise.

Boolean Formulae for Condition Codes:
C = Mn

Comments: The C bit is set to the state of the bit tested. Used with an appropriate rotate instruc­
tion, this instruction is an easy way to provide serial to parallel conversions.

Source
Form(s): BRSET n, DR, dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

10 5

D-29

Bytes Opcode

3

BSETn Set Bit in Memory BSETn
Operation: Mn - 1

Description: Set bit n (n = 0, 7) in location M. All other bits in M are unaffected.

Condition
Codes: Not affected.

Source
Form(s): BSET n, DR

Addressing Modes

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

7 5

D-30

Bytes Opcode

2

BSR Branch to Subroutine

Operation: PC - PC + 0002
(SP) - PCL; SP - SP - 0001
(SP) - PCR; SP - SP - 0001
PC - PC + ReI

BSR

Description: The program counter is incremented by 2. The least (low) significant byte of the pro­
gram counter contents is pushed onto the stack. The stack pointer is then
decremented (by one). The most (high) signficant byte of the program counter con­
tents is then pushed onto the stack. Unused bits in the Program Counter high byte
are stored .as l' s on the stack. The stack pointer is again decremented (by one). A
branch then occurs to the location specified by the relative offset. See the BRA in­
struction for details of the branch execution.

Condition
Codes: Not affected.

Source
Form(s): BSR dd

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

8 6

0-31

Bytes Opcode

2 AD

CLC Clear Carry Bit

Operation: C bit - 0

Description: Clears the carry bit in the processor condition code register.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Not affected.
Not affected.
Cleared.

Boolean Formulae for Condition Codes:
C=O

Source
- Form(s): CLC

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

D-32

Bytes Opcode

1 98

CLC

CLI Clear Interrupt Mask Bit CLI
Operation: I bit - 0

Description: Clears the interrupt mask bit in the processor condition code register. This enables
the microprocessor to service interrupts. Interrupts that were pending while the I bit
was set will now begin to have effect.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Cleared
Not affected.
Not affected.
Not affected.

Boolean Formulae for Condition Codes:
1=0

Source
Form(s): CLI

Addressing Mode

Inherent
Relative
Accumulator
Index Registers
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

0-33

Bytes Opcode

1 9A

CLR
Operation: X - 00 or,

ACCA - 00 or,
M-OO

Clear

Description: The contents of ACCA, X or M are replaced with zeroes.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Cleared.
Set.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = 0
Z = 1

CLR Q, CLRA, CLRX

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4 3
4 3

6 5

6 5
7 6

D-34

Bytes Opcode

1 4F
1 5F

2 3F

1 7F
2 6F

CLR

CMP Compare Accumulator with Memory CMP
Operation: ACCA - M

Description: Compares the contents of ACCA and the contents of M and sets the condition codes,
which may then be used for controlling the conditional branches. Both operands are
unaffected.

Condition
Codes: H:

I:
N:

Z:

Not affected.
Not affected.
Set if the most significant bit of the result of the subtraction is set;
cleared otherwise.
Set if all bits of the result of the subtraction are cleared; cleared other-
wise.

C: Set if the absolute value of the contents of memory is larger than the abso­
lute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6·R5·R4·R3·R2·Rl.RU
C = A7·M7vM7·R7vR7.A7

CMPP

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2
Direct 4 3
Extended 5 4
Indexed 0 Offset 4 3
Indexed I-Byte 5 4
Indexed 2-Byte 6 5

D-35

Bytes Opcode

2 Al
2 Bl
3 Cl
1 Fl
2 El
3 Dl

COM Complement

Operation: X - - X = $FF - X or,
ACCA - -- ACCA = $FF - ACCA or,
M - -M = $FF - M

COM

Description: Replaces the contents of ACCA, X or M with the one's complement. Each bit of the
operand is replaced with the complement of that bit.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6·R5·R4·R3·R2.R1·RO
C=l

COM Q, COMA, COMX

Addressing Mode

Inherent

Cycles
HMOS CMOS

Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4
4

6

6
7

D-36

3
3

5

5
6

Bytes Opcode

1
1

2

1
2

43
53

33

73
63

CPX Compare Index Register with Memory CPX
Operation: X - M

Description: Compares the contents of X to the contents of M and sets the condition codes, which
may then be used for controlling the conditional branches. Both operands are unaf­
fected.

Condition
Codes: H:

I:
N:

Z:

Not affected.
Not affected.
Set if the most significant bit of the result of the subtraction is set;
cleared otherwise.
Set if all bits of the result of the subtraction are cleared; cleared other-
wise.

C: Set if the absolute value of the contents of memory is larger than the abso­
lute value of the index register; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6·R5·R4·R3·R2·R1·RO
C = X7·M7vM7·R7vR7·X7

CPXP

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2
Direct 4 3
Extended 5 4
Indexed 0 Offset 4 3
Indexed I-Byte 5 4
Indexed 2-Byte 6 5

D-37

Bytes Opcode

2 A3
2 B3
3 C3
1 F3
2 E3
3 D3

DEC
Operation: X - X-01 or,

ACCA - ACCA-01 or,
M - M-01

Decrement DEC

Description: Subtract one from the contents of ACCA, X or M. The Nand Z bits are set or reset
according to the result of this operation. The C bit is not affected by this operation.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.RS.R4·R3.R2.R1·RO

DEC Q, DECA, DECX, DEX

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4
4

6

6
7

D-38

3
3

S

S
6

Bytes Opcode

1
1

2

1
2

4A
SA

3A

7A
6A

EOR Exclusive Or Memory with Accumulator EOR
Operation: ACCA - ACCA E9 M

Description: Performs the logical EXCLUSIVE OR between the contents of ACCA and the con­
tents of M, and places the result in ACCA. Each bit of ACCA after the operation
will be the logical EXCUSIVE OR of the corresponding bit of M and ACCA before
the operation.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7.R6·R5.R4.R3·R2.R1·RO

Source
Form(s): EORP

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A8
Direct 4 3 2 B8
Extended 5 4 3 C8
Indexed 0 Offset 4 3 1 F8
Indexed 1-Byte 5 4 2 E8
Indexed 2-Byte 6 5 3 D8

D-39

INC
Operation: X - X + 01 or,

ACCA - ACCA + 01 or,
M - M + 01

Increment INC

Description: Add one to the contents of ACCA, X or M. The Nand Z bits are set or reset accor­
ding to the result of this operation. The C bit is not affected by this operation.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7.R6.R5.R4.R3.R2.R1.RO

INC Q, INCA, INCX, INX

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

4
4

6

6
7

D-40

3
3

5

5
6

Bytes Opcode

1
1

2

1
2

4C
5C

3C

7C
6C

JMP Jump JMP
Operation: PC - effective address

Description: A jump occurs to the instruction stored at the effective address. The effective ad­
dress is obtained according to the rules for EXTended, DIRect or INDexed address­
ing.

Condition
Codes:

Source
Form(s):

Not affected.

JMPP

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

3
4
3
4
5

D-41

2
3
2
3
4

Bytes Opcode

2
3
1
2
3

BC
CC
FC
EC
DC

JSR Jump to Subroutine

Operation: PC - PC + N
(SP) - PCL; SP - SP - 0001
(SP) - PCH ; SP - SP - 0001
PC - effective address

JSR

Description: The program counter is incremented by N (N = 1, 2 or 3 depending on the address­
ing mode), and is then pushed onto the stack (least significant byte first). Unused
bits in the Program Counter high byte are stored as 1 's on the stack. The stack
pointer points to the next empty location on the stack. A jump occurs to the instruc­
tion stored at the effective address. The effective address is obtained according to the
rules for EXTended, DIRect, or INDexed addressing.

Condition
Codes: Not affected.

Source
Form(s): JSR P

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

7
8
7
8
9

D-42

5
6
5
6
7

Bytes Opcode

2
3
1
2
3

BD
CD
FD
ED
DD

LDA Load Accumulator from Memory LDA
Operation: ACCA - M

Description: Loads the contents of memory into the accumulator. The condition codes are set
according to the data.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the accumulator is set; cleared otherwise.
Set if all bits of the accumulator are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R5·R4·R3·R2·Rl·RO

Source
Form(s): LDAP

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 A6
Direct 4 3 2 B6
Extended 5 4 3 C6
Indexed 0 Offset 4 3 1 F6
Indexed I-Byte 5 4 2 E6
Indexed 2-Byte 6 5 3 D6

D-43

LDX Load Index Register from Memory LDX
Operation: X - M

Description: Loads the contents of memory into the index register. The condition codes are
set according to the data.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the index register is set; cleared otherwise.
Set if all bits of the index register are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6.R5·R4.R3·R2·R1·RO

Source
Form(s): LDXP

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 AE
Direct 4 3 2 BE
Extended 5 4 3 CE
Indexed 0 Offset 4 3 1 FE
Indexed 1-Byte 5 4 2 EE
Indexed 2-Byte 6 5 3 DE

D-44

LSL Logical Shift Left LSL
Operation:

Description: Shifts all bits of the ACCA, X or M one place to the left. Bit 0 is loaded with a zero.

Condition
Codes:

The C bit is loaded from the most signficant bit of ACCA, X or M.

H:
I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the most significant bit of ACCA, X or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6·R5.R4·R3.R2.R1.RO
C = M7

Comments: Same as ASL

Source
Form(s): LSL Q, LSLA, LSLX

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator 4 3
Index Register 4 3
Immediate
Direct 6 5
Extended
Indexed 0 Offset 6 5
Indexed 1-Byte 7 6
Indexed 2-Byte

0-45

Bytes Opcode

1 48
1 58

2 38

1 78
2 68

LSR Logical Shift Right LSR
Operation:

Description: Shifts all bits of ACCA, X or M one place to the right. Bit 7 is loaded with a zero. Bit
o is loaded into the C bit.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Cleared.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the least significant bit of ACCA, X or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = 0
Z = R7·R6·R5·R4·R3·R2·Rl·RO
C = MO

LSR Q, LSRA, LSRX

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator 4 3
Index Register 4 3
Immediate
Direct 6 5
Extended
Indexed 0 Offset 6 5
Indexed 1-Byte 7 6
Indexed 2-Byte

D-46

Bytes Opcode--

1 44
1 54

2 34

1 74
2 64

NEG Negate NEG
Operation: - X - X = 00 - X or,

- ACCA - ACCA = 00 - ACCA or,
-M - M = 00 - M

Description: Replaces the contents of ACCA, X or M with its two's complement. Note that $80 is
left unchanged.

Condition
Codes: 'l ... :!,.

C.I..

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if there would be a borrow in the implied subtraction from zero; the C
bit will be set in all cases except when the contents of ACCA, X or M be­
fore the NEG is 00.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6·R5·R4·R3·R2·Rl·RO
C = R7vR6vR5vR4vR3vR2vRlvRO

NEG Q, NEGA, NEGX

Addressing Mode

Inherent

Cycles
HMOS CMOS

Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

4
4

6

6
7

D-47

3
3

5

5
6

Bytes Opcode

1
1

2

1
2

40
50

30

70
60

NOP No Operation NOP
Description: This is a single-byte instruction which causes only the program counter to be incre­

mented. No other registers are changed.

Condition
Codes: Not affected.

Source
Form(s): NOP

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

D-48

Bytes Opcode

1 9D

ORA Inclusive OR ORA
Operation: ACCA - ACCA V M

Description: Performs logical OR between the contents of ACCA and the contents of M and
place the result in ACCA. Each bit of ACCA after the operation will be the logical
(inclusive) OR result of the corresponding bits of M and ACCA before the opera­
tion.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = R7
Z = R7·R6.R5·R4·R3·R2·R1·RO

Source
Form(s): ORAP

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2 2 AA
Direct 4 3 2 BA
Extended 5 4 3 CA
Indexed 0 Offset 4 3 1 FA
Indexed 1-Byte 5 4 2 EA
Indexed 2-Byte 6 5 3 DA

D-49

ROL Rotate Left thru Carry ROL
Operation: ~~b7~1~1~1 ~~~I_bO~
Description: Shifts all bits of the ACCA, X or M one place to the left. Bit 0 is loaded from the C

bit. The C bit is loaded from the most significant bit of ACCA, X or M.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the most significant bit of ACCA, X or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6.R5.R4·R3·R2.Rl.RO
C = M7

ROL Q, ROLA, ROLX

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator 4 3
Index Register 4 3
Immediate
Direct 6 5
Extended
Indexed 0 Offset 6 5
Indexed I-Byte 7 6
Indexed 2-Byte

0-50

Bytes Opcode

1 49
1 59

2 39

1 79
2 69

ROR Rotate Right Thru Carry ROR
Operation:

Description: Shifts all bits of ACCA, X or M one place to the right. Bit 7 is loaded from the C
bit. Bit 0 is loaded into the C bit.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if, before the operation, the least significant bit of ACCA, X or M was
set; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6·R5·R4·R3·R2·R1·RO
C = MO

ROR Q, RORA, RORX

Addressing Mode

Inherent

Cycles
HMOS CMOS

Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

4
4

6

6
7

0-51

3
3

5

5
6

Bytes Opcode

1
1

2

1
2

46
56

36

76
66

RSP Reset Stack Pointer

Operation: SP - $7F

Description: Resets the stack pointer to the top of the stack.

Condition
Codes: Not affected.

Source
Form(s): RSP

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

0-52

Bytes Opcode

1 9C

RSP

RTI Return from Interrupt

Operation: SP - SP + 0001 ; CC - (SP)
SP - SP + 0001 ; ACCA - (SP)
SP - SP + 0001 ; X - (SP)
SP - SP + 0001 ; PCR - (SP)
SP - SP + 0001 ; PCL - (SP)

RTI

Description: The Condition Codes, Accumulator, Index Register and the Program Counter are
restored according to the state previously saved on the stack. Note that the interrupt
mask bit (I bit) will be reset if and only if the corresponding bit stored on the stack is
zero.

Condition
Codes:

Source
Form(s):

Set or cleared according to the first byte pulled from the stack.

RTI

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

9 9

D-53

Bytes Opcode

1 80

RTS Return from Subroutine

Operation: SP - SP + 0001 ; PCR - (SP)
SP - SP + 000 1 ; PCL - (SP)

RTS

Description: The stack pointer is incremented (by one). The contents of the byte of memory,
pointed to by the stack pointer, are loaded into the high byte of the program
counter. The stack pointer is again incremented (by one). The byte pointed to by the
stack pointer is loaded into the low byte of the program counter.

Condition
Codes: Not affected.

Source
Form(s): RTS

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

6 6

D-54

Bytes Opcode

1 81

SBC Subtract with Carry SBC
Operation: ACCA - ACCA - M - C

Description: Subtracts the contents of M and C from the contents of ACCA, and places the re­
sult in ACCA.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the result are cleared; cleared otherwise.
Set if the absolute value of the contents of memory plus the previous carry is
larger than the absolute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6·R5·R4·R3·R2·Rl·RO
C = A7·M7vM7·R7vR7·A7

SBC P

Cycles Addressing Mode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate 2 2
Direct 4 3
Extended 5 4
Indexed 0 Offset 4 3
Indexed I-Byte 5 4
Indexed 2-Byte 6 5

D-55

Bytes Opcode

2 A2
2 B2
3 C2
1 F2
2 E2
3 D2

SEC Set Carry Bit

Operation: C bit - 1

Description: Sets the carry bit in the processor condition code register.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Not affected.
Not affected.
Set.

Boolean Formulae for Condition Codes:
C = 1

Source
Form(s): SEC

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

0-56

Bytes Opcode

1 99

SEC

SEI Set Interrupt Mask Bit SEI
Operation: I bit - 1

Description: Sets the interrupt mask bit in the processor condition code register. The
microprocessor is inhibited from servicing interrupts, and will continue with execu­
tion of the instructions of the program until the interrupt mask bit is cleared.

Condition
Codes: H:

I:
N:
Z:
c:

Not affected.
Set
Not Affected.
Not affected.
Not affected.

Boolean Formulae for Condition Codes:
I = 1

Source
Form(s): SEI

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed I-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

0-57

Bytes Opcode

1 9B

STA Store Accumulator in Memory STA
Operation: M - ACCA

Description: Stores the contents of ACCA in memory. The contents of ACCA remain the same.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the accumulator is set; cleared otherwise.
Set if all bits of the accumulator are clear; cleared otherwise.
Not Affected.

Boolean Formulae for Condition Codes:
N = A7
Z = A7·A6·A5·A4·A3·A2.A1·AO

Source
Form(s): STAP

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate
Direct 5 4 2 B7
Extended 6 5 3 C7
Indexed 0 Offset 5 4 1 F7
Indexed 1-Byte 6 5 2 E7
Indexed 2-Byte 7 6 3 D7

D-58

STOP Enable IRQ, Stop Oscillator STOP
Description: Reduces power consumption by eliminating all dynamic power dissipation. Results

in: (1) timer prescaler to clear; (2) disabling of timer interrupts (3) timer interrupt
flag bit to clear; (4) external interrupt request enabling; and (5) inhibiting of
oscillator.

Condition
Codes:

Source
Form(s):

When RESET or IRQ input goes low: (1) oscillator is enabled, (2) a delay of 1920 in­
struction cycles allows oscillator to stabilize, (3) the interrupt request vector is fetch­
ed, and (4) service routine is executed.

External interrupts are enabled following the RTI command.

H:
I:
N:
Z:
C:

Not Affected.
Cleared.
Not Affected.
Not Affected.
Not Affected.

STOP

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2

D-59

Bytes Opcode

1 8E

STX Store Index Register in Memory STX
Operation: M - X

Description: Stores the contents of X in memory. The contents of X remain the same.

Condition
Codes: H:

I:
N:
Z:
C:

Not Affected.
Not affected.
Set if the most significant bit of the index register is set; cleared otherwise.
Set if all bits of the index register are clear; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = X7
Z = X7·X6·X5·X4·X3·X2·Xl·XO

Source
Form(s): STXP

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator
Index Register
Immediate
Direct 5 4 2 BF
Extended 6 5 3 CF
Indexed 0 Offset 5 4 1 FF
Indexed I-Byte 6 5 2 EF
Indexed 2-Byte 7 6 3 DF

D-60

SUB Subtract SUB
Operation: ACCA - ACCA - M

Description: Subtracts the contents of M from the contents of ACCA and places the result in
ACCA.

Condition
Codes: H:

I:
N:
Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the result is set; cleared otherwise.
Set if all bits of the results are cleared; cleared otherwise.
Set if the absolute value of the contents of memory are larger than the abso­
lute value of the accumulator; cleared otherwise.

Boolean Formulae for Condition Codes:

Source
Form(s):

N = R7
Z = R7·R6·R5·R4·R3·R2·R1·RO
C = A7eM7vM7eR7vR7eA7

SUBP

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2
4
5
4
5
6

D-61

2
3
4
3
4
5

Bytes Opcode

2
2
3
1
2
3

AO
BO
CO
FO
EO
DO

SWI Software Interrupt SWI
Operation: PC - PC + 000 1

(SP) - PCL ; SP - SP - 0001
(SP) - PCR ; SP - SP - 0001
(SP) - X ; SP - SP - 0001
(SP) - ACCA ; SP - SP - 0001
(SP) - cc ; SP - SP - ()()() 1
I bit - 1
PCR - n - 0003
PCL - n - 0002

Description: The program counter is incremented (by one). The Program Counter, Index Register
and Accumulator are pushed onto the stack. The Condition Code register bits are
then pushed onto the stack with bits H, I, N, Z and C going into bit positions 4
through 0 with the top three bits (7, 6 and 5) containing ones. The stack pointer is
decremented by one after each byte is stored on the stack.

Condition
Codes:

The interrupt mask bit is then set. The program counter is then loaded with the ad­
dress stored in the software interrupt vector located at memory locations n - 0002
and n - 0003, where n is the address corresponding to a high state on all lines of the
address bus.

R:
I:
N:
Z:
C:

Not affected.
Set.
Not affected.
Not affected.
Not affected.

Boolean Formulae for Condition Codes:
1=1

Caution:

Source
Form(s):

This instruction is used by Motorola in some of its software products and may be
unavailable for general use.

SWI

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

11 10

0-62

Bytes Opcode

1 83

TAX Transfer Accumulator to Index Register TAX
Operation: X - ACCA

Description: Loads the index register with the contents of the accumulator. The contents of the
accumulator are unchanged.

Condition
Codes: Not affected.

Source
Form(s): TAX

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

D-63

Bytes Opcode

1 97

TST
Operation: X - 00 or,

ACCA - 00 or,
M - 0

Test for Negative or Zero TST

Description: Sets the condition codes Nand Z according to the contents of ACCA, X or M.

Condition
Codes: H:

I:
N:

Z:
C:

Not affected.
Not affected.
Set if the most significant bit of the contents of ACCA, X or M is set;
cleared otherwise.
Set if all bits of ACCA, X or M are clear; cleared otherwise.
Not affected.

Boolean Formulae for Condition Codes:
N = M7
Z = M7.M6·M5·M4·M3·M2.M1·MO

Source
Form(s): TST Q, TSTA, TSTX

Addressing Mode Cycles Bytes Opcode
HMOS CMOS

Inherent
Relative
Accumulator 4 3 1 4D
Index Register 4 3 1 5D
Immediate
Direct 6 4 2 3D
Extended
Indexed 0 Offset 6 4 1 7D
Indexed 1-Byte 7 5 2 6D
Indexed 2-Byte

D-64

TXA Transfer Index Register to Accumulator TXA
Operation: ACCA - X

Description: Loads the accumulator with the contents of the index register. The contents of the
index register are unchanged.

Condition
Codes: Not affected.

Source
Form(s): TXA

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2 2

D-65

Bytes Opcode

1 9F

WAIT Enable Interrupt, Stop Processor WAIT
Description: Reduces power consumption by eliminating dynamic power dissipation in all circuits

except the timer and timer prescaler. Causes enabling of external interrupts and stops
clocking or processor circuits.

Condition
Codes:

Source
Form(s):

Timer interrupts may be enabled or disabled by programmer prior to execution of
WAIT.

When RESET or IRQ input goes low, or timer counter reaches zero with counter in­
terrupt enabled: (1) processor clocks are enabled, and (2) interrupt request, reset,
and timer interrupt vectors are fetched.

Interrupts are enabled following the RTI command.

H:
I:
N:
Z:
C:

Not affected.
Cleared.
Not affected.
Not affected.
Not affected.

WAIT

Addressing Mode

Inherent
Relative
Accumulator
Index Register
Immediate
Direct
Extended
Indexed 0 Offset
Indexed 1-Byte
Indexed 2-Byte

Cycles
HMOS CMOS

2

D-66

Bytes Opcode

1 SF

APPENDIX E
INSTRUCTION SET

ALPHABETICAL LISTING

This appendix provides an alphabetical listing of the Mnemonic Instruction Set, together with Ad­
dressing Modes used and the effects on the condition code register .

. .

Addressing Modes Condition Codes

Bit Bit
Indexed Indexed Indexed Set/ Test &

Mnemonic Inherent Immediate Direct Extended Relative (No Offset) (8 Bits) (16 Bits) Clear Branch H I N Z C

ADC X X X X X X A • A A A

ADD X X X X X X A • A A A

AND X X X X X X • • A A •
ASL X X X X • • A A A

ASR X X X X • • A A A

BCC X • • • • •
BCLR X • • • • •
BCS X • • • • •
BEG X • • • • •
BHCC X • • • • •
BHCS X • • • • •
BHI X • • • • •
BHS X • • • • •
BIH X • • • • •
BIL X • • • • •
BIT X X X X X X • • A A •
BLO X • • • • •
BLS X • • • • •
BMC X • • • • •
BMI X • • • • •
BMS X • • • • •
BNE X • • • • •
BPL X • • • • •
BRA X • • • • •
BRN X • • • • •
BRCLR X • • • • A

BRSET X • • • • A

BSET X • • • • •
BSR X • • • • •
CLC X • • • • 0

CLI X • 0 • • •
CLR X X X X • • 0 1 •
CMP X X X X X X • • A A A

COM X X X X • • A A 1

CPX X X X X X X • • A A A

E-1

Addressing Modes Condition Codes

Bit Bit
Indexed Indexed Indexed Set/ Test &

Mnemonic Inherent Immediate Direct Extended Relative (No Offset) (8 Bits) (16 Bits) Clear Branch H I N Z C

DEC X X X X • • A A •
EOR X X X X X X • • A A •
INC X X X X • • A A •
JMP X X X X X • • • • •
JSR X X X X X • • • • •
LOA X X X X X X • • A A •
LOX X X X X X X • • A A •
LSL X X X X • • A A A

LSR X X X X • • 0 A A

NEG X X X X • • A A A

NOP X • • • • •
ORA X X X X X X • • A A •
ROL X X X X • • A A A

RSP X • • • • •
RTI X ? ? ? ? ?'"

RTS X • • • • •
SBC X X X X X X • • A A A

SEC X • • • • 1

SEI X • 1 • • •
STA X X X X X • • A A •
STX X X X X X • • A A •
STOP X • 1 • • •
SUB X X X X X X • • A A A

SWI X • 1 • • •
TAX X • • • • •
TST X X X X • • A A •
TXA X • • • • •
WAIT X • 1 • • •

Condition Code Symbols
H Half Carry (From Bit 3)
I Interrupt Mask
N Negative (Sign Bit)
Z Zero
C Carry/Borrow
A Test and Set if True, Cleared Otherwise
• Not Affected

Load CC Register From Stack

E-2

APPENDIX F
INSTRUCTION SET

FUNCTIONAL LISTING

This Instruction Set contains a list of functions which are categorized as to the type of instruction.
It provides five different categories of instructions and provides the following information for
each function: (1) Corresponding Mnemonic, (2) Addressing Mode, (3) Op Code, (4) Number of
Bytes, and (5) number of cycles.

Branch Instructions

Relative Addressing Mode

Function Mnemonic Op # HMOS/CMOS
Code Bytes # Of Cycles

Branch Always BRA 20 2 4/3

Branch Never BRN 21 2 4/3

Branch IFF Higher BHI 22 2 4/3

Branch IFF lower or Same BlS 23 2 4/3
Branch IFF Carry Clear BCC 24 . 2 4/3

(Branch IFF Higher or Same) (BHS) 24 2 4/3

Branch IFF Carry Set BCS 25 2 4/3

(Branch IFF lower) (BlO) 25 2 4/3

Branch IFF Not Equal BNE 26 2 4/3

Branch IFF Equal BEQ 27 2 4/3

Branch IFF Half Carry Clear BHCC 28 2 4/3
Branch IFF Half Carry Set BHCS 29 2 4/3
Branch IFF Plus BPl 2A 2 4/3

Branch IFF Minus BMI 2B 2 4/3

Branch IFF Interrupt Mask Bit is Clear BMC 2C 2 4/3

Branch IFF Interrupt Mask Bit is Set BMS 2D 2 4/3
Branch IFF Interrupt Line is low Bil 2E 2 4/3

Branch IFF Interrupt Line is High BIH 2F 2 4/3

Branch to Subroutine BSR AD 2 8/6

F-1

./

Bit Manipulation Instructions

Addressing Modes

Bit Set/ Clear Bit Test and Branch

Function Mnemonic
Op # HMOS/CMOS Op # HMOS/CMOS

Code Bytes # of Cycles Code Bytes # of Cycles

Branch IFF Bit n is set BRSET n (n = 0 7) - - - 2-n 3 10/5

Branch IFF Bit n is clear BRCLR n (n = 0 7) - - - 01 + 2 - n 3 10/5

Set Bit n BSET n (n = 0 7) 10 + 2 - n 2 7/5 - - -

Clear bit n BCLR n (n = 0 7) 11+2-n 2 7/5 - - -

Control Instructions

Inherent

Function Mnemonic
Op # HMOS/CMOS

Code Bytes # of Cycles

Transfer A to X TAX 97 1 2/2

Transfer X to A TXA 9F 1 2/2

Set Carry Bit SEC 99 1 2/2

Clear Carry Bit CLC 98 1 2/2

Set Interrupt Mask Bit SEI 9B 1 2/2

Clear Interrupt Mask Bit CLI 9A 1 2/2

Software Interrupt SWI 83 1 11/10

Return from Subroutine RTS 81 1 6/6

Return from Interrupt RTI 80 1 9/9

Reset Stack Pointer RSP 9C 1 2/2

No-Operation NOP 9D 1 2/2

Enable IRQ, Stop Oscillator STOP 8E 1 -/2

Enable Interrupt, Stop Processor WAIT 8F 1 -/2

F-2

"!j
I

W

Read/Modify /Write Instructions

Addressing Modes

Inherent (A) Inherent (X) Direct Indexed Indexed
(No Offset) (8-Bit Offset)

Function Mnem.
Op # Cycles Op # Cycles Op # Cycles Op # Cycles Op # Cycles

Code Bytes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note)

Increment INC 4C 1 4/3 5C 1 4/3 3C 2 6/5 7C 1 6/5 6C 2 7/6

Decrement DEC 4A 1 4/3 5A 1 4/3 3A 2 6/5 7A 1 6/5 6A 2 7/6

Clear CLR 4F 1 4/3 5F 1 4/3 3F 2 6/5 7F 1 6/5 6F 2 7/6

Complement COM 43 1 4/3 53 1 4/3 33 2 6/5 73 1 6/5 63 2 7/6

Negate (2's complement) NEG 40 1 4/3 50 1 4/3 30 2 6/5 70 1 6/5 60 2 7/6

Rotate Left Thru Carry ROL 49 1 4/3 59 1 4/3 39 2 6/5 79 1 6/5 69 2 7/6
Rotate Right Thru Carry ROR 46 1 4/3 56 1 4/3 36 2 6/5 76 1 6/5 66 2 7/6
Logical Shift Left LSL 48 1 4/3 58 1 4/3 38 2 6/5 78 1 6/5 68 2 7/6

Logical Shift Right LSR 44 1 4/3 54 1 4/3 34 2 6/5 74 1 6/5 64 2 7/6
Arithmetic Shift Right ASR 47 1 4/3 57 1 4/3 37 2 6/5 77 1 6/5 67 2 7/6

T est for Negative or Zero TST 4D 1 4/3 5D 1 4/3 3D 2 6/4 7D 1 6/4 6D 2 7/5

NOTE: The cycles column actually shows the number of HMOS/CMOS cycles (e.g., 4/3 indicates 4 HMOS cycles or 3 CMOS cycles).

Register IMemory Instructions

Addressing Modes

Immediate Direct Extended Indexed Indexed Indexed
(No Offset) (8-Bit Offset) (1S-Bit Offset)

Function Mnem.
Op # Cycles Op # Cycles Op # Cycles Op # Cycles Op # Cycles Op # Cycles

Code Bytes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note) Code Bytes (see note)

Load A from Memory LDA A6 2 2/2 B6 2 4/3 C6 3 5/4 F6 1 4/3 E6 2 5/4 D6 3 6/5

Load X from Memory LDX AE 2 2/2 BE 2 4/3 CE 3 5/4 FE 1 4/3 EE 2 5/4 DE 3 6/5

Store A in ME:mory STA - - - B7 2 5/4 C7 3 6/5 F7 1 5/4 E7 2 6/5 D7 3 7/6

Store X in Memory STX - - - BF 2 5/4 CF 3 6/5 FF 1 5/4 EF 2 6/5 DF 3 7/6

Add Memory to A ADD AB 2 2/2 BB 2 4/3 CB 3 5/4 FB 1 4/3 EB 2 5/4 DB 3 6/5

Add Memory and
ADC A9 2 2/2 B9 2 4/3 C9 3 5/4 F9 1 4/3 E9 2 5/4 D9 3 6/5

Carry to A
~
I

~
Subtract Memory SUB AO 2 2/2 BO 2 4/3 CO 3 5/4 FO 1 4/3 EO 2 5/4 DO 3 6/5

Subtract Memory from
SBC A2 2 2/2 B2 2 4/3 C2 3 5/4 F2 1 4/3 E2 2 5/4 D2 3 6/5

A with Borrow

AND Memory to A AND A4 2 2/2 B4 2 4/3 C4 3 5/4 F4 1 4/3 E4 2 5/4 D4 3 6/5

OR Memory with A ORA AA 2 2/2 BA 2 4/3 CA 3 5/4 FA 1 4/3 EA 2 5/4 DA 3 6/5

Exclusive OR Memory
EOR A8 2 2/2 B8 2 4/3 C8 3 5/4 F8 1 4/3 E8 2 5/4 D8 3 6/5

with A

Arithmetic Compare A
CMP A1 2 2/2 B1 2 4/3 C1 3

with Memory
5/4 F1 1 4/3 F1 2 5/4 D1 3 6/5

Arithmetic Compare X
CPX A3 2 2/2 B3 2 4/3 C3 3 5/4 F3 1 4/3 E3 2 5/4 D3 3 6/5

I with Memory

Bit Test Memory with
BIT A5 2 2/2 B5 2 4/3 C5 3

A (Logical Compare)
5/4 F5 1 4/3 E5 2 5/4 D5 3 6/5

Jump Unconditional JMP - - - BC 2 3/2 CC 3 4/3 FC 1 3/2 EC 2 4/3 DC 3 5/4 I

Jump to Subroutine JSR - - - BD 2 7/5 CD 3 8/6 FD 1 7/5 ED 2 8/6 DD 3 9/7

NOTE: The cycles column actually shows the number of HMOS/CMOS cycles (e.g., 4/3 indicates 4 HMOS cycles or 3 CMOS cycles).

"

APPENDIX G
ASCII HEXADECIMAL CODE

CONVERSION CHART

This appendix shows the equivalent alphanumeric characters for the equivalent ASCII hex­
adecimal code.

Hex ASCII Hex ASCII Hex ASCII Hex ASCII
00 nul 20 sp 40 @ 60 I

01 soh 21 ! 41 A 61 a
02 stx 22 1/ 42 B 62 b
03 etx 23 # 43 C 63 c
04 eot 24 $ 44 0 64 d
05 enq 25 % 45 E 65 e
06 ack 26 & 46 F 66 f
07 bel 27 I 47 G 67 9
08 bs 28 (48 H 68 h
09 ht 29) 49 I 69 i
OA nl 2A * 4A J 6A j

OB vt 2B + 4B K 6B k
OC ff 2C I 4C L 6C I

00 cr 20 - 40 M 60 m
OE so 2E · 4E N 6E n
OF si 2F / 4F 0 6F 0

10 die 30 0 50 P 70 P
11 dc1 31 1 51 Q 71 q
12 dc2 32 2 52 R 72 r
13 dc3 33 3 53 S 73 s
14 dc4 34 4 54 T 74 t
15 nak 35 5 55 U 75 u
16 syn 36 6 56 V 76 v
17 etb 37 7 57 W 77 w

18 can 38 8 58 X 78 x
19 em 39 9 59 Y 79 y
1A sub 3A · 5A Z 7A z ·
1B esc 3B · 5B [7B { I

1C fs 3C < 5C \ 7C I
I

10 9s 3D = 50] 70 }

1E rs 3E > 5E A 7E -
1F us 3F ? 5F - 7F del

0-1/0-2

APPENDIX H
INSTRUCTION SET

OPCODEMAP

The Opcode Map contains a summary of opcodes used with the M6805 and M146805 Family. The
map is outlined by two sets (O-F) of hexadecimal numbers; one horizontal and one vertical. The
horizontal set represents the MSD and the vertical set represents the LSD. For example, a 25 op­
code represents a BCS (located at the 2 and 5 coordinates) used in the Relative Mode. There are
five different opcodes for COM, each in a different addressing mode (Direct; Accumulator; In­
dexed; Indexed, one byte offset; and Indexed, two byte offset). A legend is provided, as part of
the map, to show the information contained in each coordinate square. The legend represents the
coordinates for Opcode FO (SUB). Included in the legend is the opcode binary equivalent, the
number of execution cycles required for both the M6805 (HMOS) and M146805 (CMOS) Family,
the required number of bytes, the address mode, and the mnemonic.

H-l

::x::
I

N

Bit Manipulation Branch
BTB BSC REL

~ 0 1 2
OOJO 0001 0010

10 5 7 5 4 3

0 BRSETO BSETO BRA
IXXXl 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

1 BRCLRO BCLRO BRN
0001 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

2 BRSETl BSETl BHI
0010 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

3 BRCLRl BCLRl BLS
0011 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

4 BRSET2 BSET2 BCC
0100 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

5 BRCLR2 BCLR2 BCS
0101 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

6 BRSET3 BSET3 BNE
0110 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

7 BRCLR3 BCLR3 BEQ
0111 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

8 BRSET4 BSET4 BHCC
1000 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

9 BRCLR4 BCLR4 BHCS
1001 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

A BRSET5 BSET5 BPL
1010 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

B BRCLR5 BCLR5 BMI
1011 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

C BRSET6 BSET6 BMC
1100 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

0 BRCLR6 BCLR6 BMS
1101 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

E BRSET7 BSET7 BIL
1110 3 BTB 2 Bse 2 REL

10 5 7 5 4 3

F BRCLR7 BCLR7 BIH
1111 3 BTB 2 Bse 2 REL

Abbreviations for Address Modes

INH
A
X
IMM
DIR
EXT
REL
BSC
BTB
IX
IXl
IX2

Inherent
Accumulator
Index Register
Immediate
Direct
Extended
Relative
Bit Setl Clear
Bit Test and Branch
Indexed (No Offset)
Indexed, 1 Byte (S-Bit) Offset
Indexed,2 Byte (16-Bit) Offset

DIR A
3 4

0011 0100

6 5 4

NEG NEG
2 DIR 1

6 5 4

COM COM
2 DIR 1

6 5 4

LSR LSR
2 DIR 1

6 5 4

ROR ROR
2 DIR 1

6 5 4

ASR ASR
2 DIR 1

6 5 4

LSL LSL
2 DIR 1

6 5 4

ROL ROL
2 DIR 1

6 5 4

DEC DEC
2 DIR 1

6 5 4

INC INC
2 DIR 1

6 4 4

TST TST
2 DIR 1

6 5 4

CLR CLR
2 DIR 1

MC680S/MC14680S Instruction Set Opcode Map
Read/Modify/Write Control Register I Memory

X IXl IX INH INH IMM DIR EXT 1X2 IXl IX
5 6 7 8 9 A B C D E F ~low 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

3 4 3 7 6 6 5 9 9 2 2 4 3 5 4 6 5 5 4 4 3

NEG NEG NEG RTI SUB SUB SUB SUB SUB SUB 0
A 1 X 2 IXl 1 IX 1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0000

6 6 2 2 4 3 5 4 6 5 5 4 4 3

RTS CMP CMP CMP CMP CMP CMP 1
1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl I IX 0001

2 2 4 3 5 4 6 5 5 4 4 3

SBC SBC SBC SBC SBC SBC 2
2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0010

3 4 3 7 6 6 5 11 10 2 2 4 3 5 4 6 5 5 4 4 3

COM COM COM SWI CPX CPX CPX CPX CPX CPX 3
A 1 X 2 IXl 1 IX 1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0011

3 4 3 7 6 6 5 2 2 4 3 5 4 6 5 5 4 4 3

LSR LSR LSR AND AND AND AND AND AND 4
A 1 X 2 IXl 1 IX 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0100

2 2 4 3 5 4 6 5 5 4 4 3

BIT BIT BIT BIT BIT BIT 5
2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0101

3 4 3 7 6 6 5 2 2 4 3 5 4 6 5 5 4 4 3

ROR ROR ROR LOA LOA LOA LOA LOA LOA 6
A 1 , X 2 IXl 1 IX 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0110

3 4 3 7 6 6 5 2 2 5 4 6 5 7 6 6 5 5 4

ASR ASR ASR TAX STA STA STA STA STA 7
A 1 X 2 IXl 1 IX 1 INH 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 0111

3 4 3 7 6 6 5 2 2 2 2 4 3 5 4 6 5 5 4 4 3

LSL LSL LSL CLC EOR EOR EOR EOR EOR EOR 8
A 1 X 2 IXl 1 IX 1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1000

3 4 3 7 6 6 5 2 2 2 2 4 3 5 4 6 5 5 4 4 3

ROL ROL ROL SEC ADC ADC ADC ADC ADC ADC 9
A 1 X 2 IXl 1 IX 1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1001

3 4 3 7 6 6 5 2 2 2 2 4 3 5 4 6 5 5 4 4 3

DEC DEC DEC CLI ORA ORA ORA ORA ORA ORA A
A 1 X 2 IXl 1 IX 1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1010

2 2 2 2 4 3 5 4 6 5 5 4 4 3

SEI ADD ADD ADD ADD ADD ADD B
1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1011

3 4 3 7 6 6 5 2 2 3 2 4 3 5 4 4 3 3 2

INC INC INC RSP JMP JMP JMP JMP JMP C
A 1 X 2 IXl 1 IX 1 INH 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1100
3 4 3 7 5 6 4 2 2 B 6 7 5 B 6 9 7 B 6 7 5

TST TST TST NOP BSR JSR JSR JSR JSR JSR 0
A 1 X 2 IXl 1 IX 1 INH 2 REL 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1101

2 2 2 4 3 5 4 6 5 5 4 4 3

STOP LOX LOX LOX LOX LOX LOX E
1 INH 2 IMM 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1110

3 4 3 7 6 6 5 2 2 2 5 4 6 5 7 6 6 5 5 4

CLR CLR CLR WAIT TXA STX STX STX STX STX F
A 1 X 2 IXl 1 IX 1 INH 1 INH 2 DIR 3 EXT 3 IX2 2 IXl 1 IX 1111

LEGEND

• :::> Opcode in Hexadecimal

Cycles. MC~~~~~~i t· ,xl ~ Opcode in Binary

Cycles, MC146805 (CMOS) ______ ..J '----------- Address Mode

APPENDIX I
MEMORY MAP

The Memory Map provides a quick reference as to the available bytes of addressable address
spaces. Note that the first 128 bytes are relatively fixed. However, the number of remaining bytes
and their function depends upon the actual device. See individual data sheet for specific memory
map details.

{

o

Direct 127
Page 0

Addressing

2047
or

4095
or

8191

2K, 4K or 8K
Bytes of

Addressable
Address Space

128 Bytes

User ROM

Unused

User
ROM

Self Check
ROM

Vectors

o

15

127

128 Bytes
Of I/O and
RAM Space

16
Bytes

Unused
or

Optional
RAM

RAM
64

Bytes

t Stack

1-1/1-2

o

15

16 Bytes
of I/O Space

Port A Data

Port B Data

Port C Data

Port D Data

Port A Direction

Port B Direction

Port C Direction

Port D Direction

Timer Data

Timer Control

Unused
Or

Optional
I/O

Features

® MOTOROLA Semiconductor Products Inc.
3501 ED BLUESTEIN BLVD., AUSTIN, TEXAS 78721 • A SUBSIDIARY OF MOTOROLA INC.

A13207 PRINTED IN THE USA 4/80 1M"""" lITHO BE

