@ MOTOROLA

MC6809E

8-BIT MICROPROCESSING UNIT

The MCB809E is a revolutionary high performance 8-bit microprocessor
which supports modern programming techniques such as position mdepend-
ence, reentrancy, and modular programming.

This third-generation addition to the M6800 Family has major architectural
improvements which include additional registers, instructions, and addressing
modes.

The basic instructions of any computer are greatly enhanced by the
presence of powerful addressing modes. The MC6809E has the most com-
plete set of addressing modes available on any 8-bit microprocessor today.

The MCB809E has hardware and software features which make it an ideal
processor for higher level language execution or standard controller applica-
tions. External clock inputs are provided to allow. synchronization with
peripherals, systems, or other MPUs.

MC6800 COMPATIBLE
® Hardware — Interfaces with All M6800 Peripherals
® Software — Upward Source Code Compatible Instruction Set and

Addressing Modes
ARCHITECTURAL FEATURES
® Two 16-Bit Index Registers
® Two 16-Bit Indexable Stack Pointers
® Two 8-Bit Accumulators can be Concatenated to Form One 16-Bit
Accumulator

® Direct Page Register Allows Direct Addressing Throughout Memory
HARDWARE FEATURES
® External Clock Inputs, E and Q, Allow Synchronization
TSC Input Controls Internal Bus Buffers
LIC Indicates Opcode Fetch
AVMA Allows Efficient Use of Common Resources in a Multiprocessor
System
® BUSY is a Status Line for Multiprocessing
® Fast Interrupt Request Input Stacks Only Condition Code Register and
Program Counter
Interrupt Acknowledge Output Allows Vectoring By Devices
Sync Acknowledge Output Allows for Synchronization to External Event
Single Bus-Cycle RESET
Single 5-Volt Supply Operation
NMI Inhibited After RESET Until After First Load of Stack Pointer
Early Address Valid Allows Use With Slower Memories
Early Write Data for Dynamic Memories
SOFTWARE FEATURES
® 10 Addressing Modes
® M6800 Upward Compatible Addressing Modes
® Direct Addressing Anywhere in Memory Map
® Long Relative Branches
® Program Counter Relative
® True Indirect Addressing
* Expanded Indexed Addressing

0-, 5-, 8-, or 16-Bit Constant Offsets

8- or 16-Bit Accumulator Offsets

Auto-Increment/Decrement by 1 or 2
Improved Stack Manipulation
1464 Instruction with Unique Addressing Modes
8 x 8 Unsigned Multiply
16-Bit Arithmetic
Transfer/Exchange All Registers
Push/Pull Any Registers or Any Set of Registers
Load Effective Address

HMO

(HIGH-DENSITY N-CHANNEL, SILICON-GATE)

8-BIT
MICROPROCESSING
UNIT

L SUFFIX
CERAMIC PACKAGE
CASE 715
P SUFFIX
PLASTIC PACKAGE
CASE 711
" S SUFFIX
CERDIP PACKAGE
CASE 734
PIN ASSIGNMENT
Vssll'. @ g 40 JHALT
NMmif 2 39fjTsc
TRQMQ3 3B[LIC
FIRQQ 4 37 [IRESET
BsQs 36 [JAVMA
BAQl6 ki oo}
veell7 HfE
Aol s 33[1BUSY
All]9 32[AR/'W
A2f]10 31{]D0
Asfjn 3001
Ad}12 29102
Asfh3 28[103
Asl]1a 27[104
A7[s 26 [JD5
A8(f]16 25[1D6
Asll17 24[]D7
A10f}18 . 23[1A15
A1fhe 22[]A14
A12[20 21§A13

MC6809E

MAXIMUM RATINGS This device contains circuitry to protect the

Rating Symbol Value Unit inputs against damage due to high static
Supply Voltage vee -0.3t0 +7.0 \ voltages or electric fields; however, it is ad-
Vol V- —03t +70 V] vised that normal precautions be taken to
Input Voltage n . avoid application of any voltage higher than
Operating Temperature Range TLtoTH maximum rated voltages to this high im-
MCB809E, MCBBAOIE, MCE8BOIE TA 0to +70 °Cc pedance circuit.
MCBB09EC, MCBBAQ9EC, MCBBBOIEC —40 to +85 Reliability of operation is enhanced if unus-
Storage Temperature Range Tstg —55 to + 150 °C ed inputs are tied to an appropriate logic

voltage level (e.g., either Vgg or Vcg).

THERMAL CHARACTERISTICS

Ch Symbol Value Unit
Thermal Resistance
Ceramic 50
Cerdip 0A 60 °C/W
Plastic 100

POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in °C can be obtained from:
Ty=TA+ (PpDe6jA) (1)
Where:
Ta=Ambient Temperature, °C
0 A =Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT+PPORT
PINT=ICcCx Ve, Watts — Chip Internal Power
PPORT=Port Power Dissipation, Watts — User Determined

For most applications PPORT < P|NT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship between Pp and T (if PPORT is neglected) is:

Pp=K+(Ty+273°C) (2)
Solving equations 1 and 2 for K gives:
K=Ppe(TA +273°C) + 6 A*PD2 @

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Pp (at equilibrium)
for a known TA. Using this value of K the values of Pp and T j can be obtained by solving equations (1) and (2) iteratively for any
value of Ta.

DC ELECTRICAL CHARACTERISTICS (Vcc=5.0V +£5%, Vgs=0 Vdc, To=T| to TH unless otherwise noted)

Characteristic Symbol Min Typ Max Unit
. . Logic, Q, VIH Vgs + 2.0 vee
Input High Voltage RESET VIHR Vs + 40 | — Vee v
E VIHC Vce-075 | — Vecc+0.3
Input Low Voltage Logic, RESET ViL Vgs-0.3 - Vgs+0.8 \
E ViLe Vgs—-0.3 — Vgs+0.4 \
Q ViLa Vgs—-0.3 — Vgs+0.6 \
Input Leakage Current Logic, Q, RESET I - - 25 A

(Vin = 0105.26 V, Ve = max) E in - - 100 #
dc Output High Voltage

(ILoad = —205 uA, Vcc = min) D0-D7 v Vgs + 24| — - v

(ILoad = — 145 uA, VCC = min) AO-A15, R/W OH " fvgg + 24| — -

(ILoad = —100 gA, Vcc = min) BA, BS, LIC, AVMA, BUSY Vss + 24 | — -
dc Output Low Voltage _ _

UlLoad = 2.0 mA, Ve = min) VoL Vss +05] vV
Internal Power Dissipation (Measured at Tpo=0°C in Steady State Operation) PINT - - 1.0 W
Capacitance Cin

(Vin = 0, TA = 256°C, f = 1.0 MH2) DO0-D7, Logic Inputs, Q, RESET - 10 15 oF

E - 30 50
AO-A15, R/W, BA, BS, —
LiC, AVMA, Busy | Cout 10 18 Pk
Frequency of Operation MCE809E 0.1 - 1.0
(Eand Q Inputs) MC68A09E f 0.1 - 1.5 MHz
MC68BO9E 0.1 - 20
Hi-Z (Off State) Input Current D0-D7 ITs - 2.0 10 WA
(Vi = 0.4t024V, Vcc = max) A0-A15, R/W | - - 100

*Capacitances are periodically tested rather than 100% tested.

MC6809E

BUS TIMING CHARACTERISTICS (See Notes 1, 2, 3, and 4)

Ident. - MC6809E | MCEBA0SE | MC68BO9E .
Number Characteristics Symbol [Min T Max | Min | Max | Min | Max | YNt
1 Cycle Time teyc 1.0] 10 |0.667(10 | 05| 10 | ps
2 Pulse Width, E Low PWEgL | 450 [9500 [295 [9500 | 210 | 9500| ns
3 Pulse Width, E High PWEgH | 450 | 9500| 280 | 9500 220 | 9500 | ns
4 Clock Rise and Fall Time tr, tf - 25 - 25 - 20 ns
5 Pulse Width, Q High PWQH | 450 [9500 | 280 {9500 { 220 | 9500 | ns
7 Delay Time, E to Q Rise tEQ1 200 - 130 | - 100 - ns
A Delay Time, Q High to E Rise tEQ2 200 - 130 | — 100 — ns
78 Delay Time, E High to Q Fall teQ3 | 200 | — 130 | — 00| — ns
7C Delay Time, Q High to € Fall tEQ4 200 - 130 - 100 - ns
9 Address Hold Time tAH 20 - 20 - 20 - ns
" Address Delay Time from E Low (BA, BS, R/W) tAD - |1 20| - 140 | — 10| ns
17 Read Data Setup Time tDSR 80 - 60 - 40 - ns
18 Read Data Hold Time tDHR 0] = 10 — 10 - ns
20 Data Delay Time from Q DDQ — 200 — 140 | — 10| ns
21 Write Data Hold Time tDHW 30 — 30 — 30 — ns
29 Usable Access Time tACC 695 - 440 - 330 — ns
30 Control Delay Time tcD - 300 - 250 | — 200 | ns
Interrupts, HALT, RESET, and TSC Setup Time tpcs [200 — | 40| - [110f - ns
(Figures 6, 7, 8, 9, 12, and 13)
TSC Drive to Valid Logic Level (Figure 13) TSV — 210 — 150 - 120) ns
TSC Release MOS Buffers to High impedance (Figure 13) tTSR - 200 — 140 - 10| ns
TSC Hi-Z Delay Time (Figure 13) 1TSD - 120 - 85 - 80 ns
Processor Control Rise and Fall Time (Figure 7) ‘t:%’f' - 100 — 100 | — 100} ns
FIGURE 1 — READ/WRITE DATA TO MEMORY OR PERIPHERALS TIMING DIAGRAM
I e
\J
k"——@ VIHC
B ViHRvic ViLe H ViH V'%iymc
a %

“FO]

R/W, Address,
BA, BS

Read Data X
Non-Muxed _________ ¥

. \
Write Data)

BUSY, LIC,
AVMA

NOTES:

1. Voltage levels shown are V| <0.4 V, Vy=2.4 V, unless otherwise specified.

T
—)—>

<@~

D)

2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified.
3. Hold time { (@) for BA and BS is not specified.
4. Usable access time is computed by: 1—4—11 max—17.

MC6809E

FIGURE 2 — EXPANDED BLOCK DIAGRAM

IDGD7

A0-A15
* * <«—Vce
<—— Vgg
y
16
A 8
<> PC <> Instruction
Register
< U <>
<> S <>)
il ———— RESET
NMI
< v > 4 V{
Interrupt € FIRQ
Control |€&——1RQ
-« X <> A > LIC
—>AVMA
{ A <> — R/W
[€———— D - TSC
B <> Y {
op ce < Bus le—— HALT
Control |3 BA
Al L—»a8s
: BUSY
\
ALV e Timing

*Internal Three-State Control

FIGURE 3 — BUS TIMING TEST LOAD

MMD6150
or Equiv.
Test Point

MMD7000
or Equiv.

C=30 pF for BA, BS, LIC, AVMA, BUSY
130 pF for DO-D7 _
90 pF for AO-A15, R/W

R = 11.7 k@ for DO-D7 _
16.5 k@ for A0-A15, R/W
24 k@ for BA, BS, LIC, AVMA, BUSY

PROGRAMMING MODEL

As shown in Figure 4, the MCB6809E adds three registers to
the set available in the MC6800. The added registers include
a direct page register, the user stack pointer, and a second
index register.

ACCUMULATORS (A, B, D)

The A and B registers are general purpose accumulators
which are used for arithmetic calculations and manipulation
of data.

Certain instructions concatenate the A and B registers to
form a single 16-bit accumulator. This is referred to as the D
register, and is formed with the A register as the most signifi-
cant byte.

DIRECT PAGE REGISTER (DP)

The direct page register of the MCB809E serves to enhance
the direct addressing mode. The content of this register
appears at the higher address outputs (A8-A15) during direct
addressing instruction execution. This allows the direct
mode to be used at any place in memory, under program
control. To ensure M6800 compatibility, all bits of this
register are cleared during processor reset.

MC6809E

FIGURE 4 — PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15 0
X — Index Register
Y — Index Register
U — User Stack Pointer Pointer Registers
S — Hardware Stack Pointer
PC Program Counter
A [B Accumulators
D
7 0
I DP] Direct Page Register

EEONDEnG

CC — Condition Code Register

INDEX REGISTERS (X, Y)

The index registers are used in indexed mode of address-
ing. The 16-bit address in this register takes part.in the cal-
culation of effective addresses. This address may be used to
point to data directly or may be modified by an optional con-
stant or register offset. During some indexed modes, the
contents of the index register are incremented and decre-
mented to point to the next item of tabular type data. All four
pointer registers (X, Y, U, S) may be used as index registers.

STACK POINTER (U, S) .

The hardware stack pointer (S) is used automatically by
the processor during subroutine calls and interrupts. The
user stack pointer (U) is controlled exclusively by the pro-
grammer. This allows arguments to be passed to and from
subroutines with ease. The U register is frequently used as a
stack marker. Both stack pointers have the same indexed
mode addressing capabilities as the X and Y registers, but
also support Push and Pull instructions. This allows the
MCB809E to be used efficiently as a stack processor, greatly
enhancing its ability to support higher level languages and
modular programming.

NOTE
The stack pointers of the MC6809E point to the top of
the stack in contrast to the MC6800 stack pointer,
which pointed to the next free location on stack.

PROGRAM COUNTER

The program counter is used by the processor to point to
the address of the next instruction to be executed by the pro-
cessor. Relative addressing is provided allowing the program
counter to be used like an index register in some situations.

CONDITION CODE REGISTER

The condition code register defines the state of the pro-
cessor at any given time. See Figure 4.

FIGURE 5 — CONDITION CODE REGISTER FORMAT

Lelelnl 1 InTz]v]c]

| -

Carry
Overflow
Zero
Negative
IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

CONDITION CODE REGISTER
DESCRIPTION

BIT0(C)

Bit O is the carry flag and is usually the carry from the
binary ALU. C is also used to represent a "borrow’’ from
subtract like instructions (CMP, NEG, SUB, SBC) and is the
complement of the carry from the binary ALU.

BIT 1 (V)

Bit 1 is the overflow flag and is set to a one by an operation
which causes a signed twos complement arithmetic over-
flow. This overflow is detected in an operation in which the
carry from the MSB in the ALU does not match the carry
from the MSB-1.

BIT 2(2)

Bit 2 is the zero flag and is set to a one if the result of the
previous operation was identically zero.

MC6809E

BIT 3 (N)

Bit 3 is the negative flag, which contains exactly the value
of the MSB of the result of the preceding operation. Thus, a
negative twos complement result will leave N set to a one.

BIT 4 ()

Bit 4 is the TRQ mask bit. The processor will not recognize
interrupts from the TRQ line if this bit is set to a one. NMT,
FIRQ, TRQ, RESET, and SWI all set | to a one. SWI2 and
SWI3 do not affect I.

BIT 5 (H)

Bit 5 is the half-carry bit, and is used to indicate a carry
from bit 3 in the ALU as a result of an 8-bit addition only
(ADC or ADD). This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of
this flag is undefined in all subtract-like instructions.

BIT 6 (F)

Bit 6 is the FIRQ mask bit. The processor will not
recognize interrupts from the FIRQ line if this bit is a one.
NMI, FIRQ, SWI, and RESET all set F to a one. TRQ, SWI2,
and SWI3 do not affect F.

BIT 7 (E)

Bit 7 is the entire flag, and when set to a one indicates that
the complete machine state (all the registers) was stacked,
as opposed to the subset state (PC and CC). The E bit of the
stacked CC is used on a return from interrupt (RTI) to deter-
mine the extent of the unstacking. Therefore, the current E
left in the condition code register represents past action.

PIN DESCRIPTIONS

POWER (Vss, Vce)

Two pins are used to supply power to the part: Vgg is
ground or 0 volts, while Vccis +5.0 V £5%.

ADDRESS BUS (A0-A15)

Sixteen pins are used to output address information from
the MPU onto the address bus. When the processor does
not require the bus for a data transfer, it will output address
FFFF16, R/W=1, and BS=0; this is a “dummy access’ or
VMA' cycle. All address bus drivers are made high-
impedance when output bus available (BA) is high or when
TSC is asserted. Each pin will drive one Schottky TTL load or
four LSTTL loads and 90 pF.

DATA BUS (DO0-D7)

These eight pins provide communication with the system
bidirectional data bus. Each pin will drive one Schottky TTL
load or four LSTTL loads and 130 pF.

READ/WRITE (R/W)

This signal indicates the direction of data transfer on the
data bus. A low indicates that the MPU is writing data onto
the data bus. R/W is made high impedance when BA is high
or when TSC is asserted.

RESET
A low level on this Schmitt-trigger input for greater than
one bus cycle will reset the MPU, as shown in Figure 6. The

reset vectors are fetched from locations FFFE1g and FFFF1g
(Table 1) when interrupt acknowledge is true, (BA®BS=1).
During initial power on, the reset line should be held low until
the clock input signals are fully operational.

Because the MC6809E RESET pin has a Schmitt-trigger in-
put with a threshold voltage higher than that of standard
peripherals, a simple R/C network may be used to reset the
entire system. This higher threshold voltage ensures that all
peripherals are out of the reset state before the processor.

HALT

A low level on this input pin will cause the MPU to stop
running at the end of the present instruction and remain
halted indefinitely without loss of data. When halted, the BA
output is driven high indicating the buses are high im-
pedance. BS is also high which indicates the processor is in
the halt state. While halted, the MPU will not respond to ex-
ternal real-time requests (FIRQ, IRQ) although NMI or
RESET will be latched for later response. During the halt
state, Q and E should continue to run normally. A halted
state (BA®BS=1) can be achieved by pulling HALT low
while RESET s still low. See Figure 7.

BUS AVAILABLE, BUS STATUS (BA, BS)

The bus available output is an indication of an internal
control signal which makes the MOS buses of the MPU high
impedance. When BA goes low, a dead cycle will elapse
before the MPU acquires the bus. BA will not be asserted
when TSC is active, thus allowing dead cycle consistency.

The bus status output signal, when decoded with BA,
represents the MPU state (valid with leading edge of Q).

MPU State MPU State Definition
BA BS

0 0 Normal (Running}

0 1 Interrupt or Reset Acknowledge

1 0 Sync Acknowledge

1 1 Halt Acknowledge

Interrupt Acknowledge is indicated during both cycles of a
hardware vector fetch (RESET, NMi, FIRQ, IRQ, SWI,
SWI2, SWI3). This signal, plus decoding of the lower four
address lines, can provide the user with an indication of
which interrupt level is being serviced and allow vectoring by
device. See Table 1.

TABLE 1 — MEMORY MAP FOR INTERRUPT VECTORS

e e

MS LS P

FFFE FFFF RESET
FFFC FFFD NMI
FFFA FFFB swi

FFF8 FFF9 iRQ

FFF6 FFF7 FIRQ
FFF4 FFF5 SWi2
FFF2 FFF3 Swi3
FFFO FFF1 Reserved

FIGURE 6 — RESET TIMING

| m |m+1|m+2 | m+3 | m+4 | m+5 |m+6 |m+7 | | n |n+1 | n+2| ne3 | n+d | n+5 | n46 | n+7 | n+8 | n+9 [n+10]

aQ
VIHR A i
RESET Vit |
tPCS tPCS pPCS
A
X X X=X X

Address

E

A
SFFFE SFFFE SFFFE SFFFE SFFFE SFFFF SFFFF New PCNew PCH,' SFFFE SFFFE SFFFE SFFFE SFFFE SFFFF SFFFF New PC

can I XC XC)C X X XX X X X) X X X X X

New PCH New PC{ VMA 1st Opcode

New PCH New PC| VMA'

A/ TR GV G G G G
BA TTITTTTR N
8s TN /L . /A
Avma W \ / X ‘,‘: X X X X Y \ /
susy T\ I\ N G G G G M\
ue e W G\ G G G S T

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

360890

FIGURE 7 — HALT AND SINGLE INSTRUCTION EXECUTION TIMING FOR SYSTEM DEBUG

2nd to Last Last Cycle

Cycle of of ! .
Current Current ~ Dead Dead Instruction Instruction Dead

Inst. Inst. Cycle l Halted Cycle l Fetch lExecute Cycle ! Halted

HALT
Bus J A\
Fetch Execute
D G G G, \
on /o \ ——
/

BS

Data 'X__AX_'__X — \ N
Bus J NT

Instruction
Opcode

I G A NG e A
e i S \

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 voits and a high voltage of 2.0 volts, unless otherwise noted.

360890

MC6809E

Sync Acknowledge is indicated while the MPU is waiting
for external synchronization on an interrupt line.

Halt Acknowledge is indicated when the MC6809E is in a
halt condition.

NON MASKABLE INTERRUPT (NMI)*

A negative transition on this input requests that a non-
maskable interrupt sequence be generated. A non-maskable
interrupt cannot be inhibited by the program and also has a
higher priority than FIRQ, IRQ, or software interrupts. Dur-
ing recognition of an NMI, the entire machine state is saved
on the hardware stack. After reset, an NMI will not be recog-
nized until the first program load of the hardware stack
pointer (S). The pulse width of NMI low must be at least one
E cycle. If the NMI input does not meet the minimum set up
with respect to Q, the interrupt will not be recognized until
the next cycle. See Figure 8.

FAST-INTERRUPT REQUEST (FIRQ)"

A low level on this input pin will initiate a fast interrupt se-
quence, provided its mask bit (F) in the CC is clear. This se-
quence has priority over the standard interrupt request (IRQ)
and is fast in the sense that it stacks only the contents of the
condition code register and the program counter. The inter-
rupt service routine should clear the source of the interrupt
before doing an RTI. See Figure 9.

INTERRUPT REQUEST (RQ)*

A low level input on this pin will initiate an interrupt re-
quest sequence provided the mask bit (l) in the CC is clear.
Since IRQ stacks the entire machine state, it provides a
slower response to interrupts than FIRQ. IRQ also has a
lower priority than FIRQ. Again, the interrupt service routine
should clear the source of the interrupt before doing an RTI.
See Figure 8.

CLOCK INPUTS E, Q

E and Q are the clock signals required by the MC6809E. Q
must lead E; that is, a transition on Q must be followed by a
similar transition on E after a minimum delay. Addresses will
be valid from the MPU, taD after the falling edge of E, and
data will be latched from the bus by the falling edge of E.
While the Q input is fully TTL compatible, the E input directly
drives internal MOS circuitry and, thus, requires a high level
above normal TTL levels. This approach minimizes clock
skew inherent with an internal buffer. Refer to BUS TIMING
CHARACTERISTICS for E and Q and to Figure 10 which
shows a simple clock generator for the MC6809E.

BUSY

BUSY will be high for the read and modify cycles of a
read-modify-write instruction and during the access of the
first byte of a double-byte operation (e.g., LDX, STD,
ADDD). BUSY is also high during the first byte of any in-
direct or other vector fetch (e.g., jump extended, SWI in-
direct, etc.).

In a multiprocessor system, BUSY indicates the need to

defer the rearbitration of the next bus cycle to insure the in-
tegrity of the above operations. This difference provides the
indivisible memory access required for a ‘‘test-and-set”
primitive, using any one of several read-modify-write instruc-
tions.

BUSY does not become active during PSH or PUL opera-
tions. A typical read-modify-write instruction (ASL) is shown
in Figure 11. Timing information is given in Figure 12. BUSY
is valid tcp after the rising edge of Q.

AVMA

AVMA is the advanced VMA signal and indicates that the
MPU will use the bus in the following bus cycle. The predic-
tive nature of the AVMA signal allows efficient shared-bus
multiprocessor systems. AVMA is low when the MPU is in
either a HALT or SYNC state. AVMA is valid tcp after the
rising edge of Q.

LIC

LIC (last instruction cycle) is high during the last cycle of
every instruction, and its transition from high to low will indi-
cate that the first byte of an opcode will be latched at the end
of the present bus cycle. LIC will be high when the MPU is
halted at the end of an instruction (i.e., not in CWAI or
RESET), in sync state, or while stacking during interrupts.
LIC is valid tcp after the rising edge of Q.

TSC

TSC (three-state control) will cause MOS address, data,
and R/W buffers to assume a high-impedance state. The
control signals (BA, BS, BUSY, AVMA, and LIC) will not go
to the high-impedance state. TSC is intended to allow a
single bus to be shared with other bus masters (processors
or DMA controllers). _

While E is low, TSC controls the address buffers and R/W
directly. The data bus buffers during-a write operation are in
a high-impedance state until Q rises at which time, if TSC is
true, they will remain in a high-impedance state. If TSC is
held beyond the rising edge of E, then it will be internally
latched, keeping the bus drivers in a high-impedance state
for the remainder of the bus cycle. See Figure 13.

MPU OPERATION

During normal operation, the MPU fetches an instruction
from memory and then executes the requested function.
This sequence begins after RESET and is repeated indefinite-
ly unless altered by a special instruction or hardware occur-
rence. Software instructions that alter normal MPU opera-
tion are: SWI, SWI2, SWI3, CWAI, RTI, and SYNC. An
interrupt or HALT input can also alter the normal execution
of instructions. Figure 14 is the flowchart for the MC6809E.

* N—M| FIRQ, and TR_G requests are sampled on the falling edge of Q. One cycle is required for synchronization before these interrupts are recog-
nized. Th(—:-I Eendnng interrupt(s) will not be serviced until completion of the current instruction unless a SYNC or CWAI condition is present. If

IRQ and

do not remain low until completion of the current instruction, they may not be recoriqnizedA However, NMI is latched and need

only remain low for one cycle. No interrupts are recognized or latched between the falling edge of RESET and the rising edge of BS indicatin:
RE%ET acknowledge. See RESET sequence in the MPU flowchart in Figure 14. 9 ecd 9

FIGURE 8 — TRQ AND NMI INTERRUPT TIMING

Last Cycle
of Current Instruction
Instruction Interrupt Stacking and Vector Fetch Sequence Fetch
i< >e—>]
[m=2|m=1] m |[m+1|[m+2| m+3|m+4|m+5|m+6|m+7| m+8|m+9 [m+10|m+11|m+12|m+13|m+14|m+15|m+16|m+17|m+18| n | n+1|
S I e s e

Q

el G G G G G G G G () (G () () G G G G G G S G G G G

Bus PC PC FFFF SP-1 SP-2 SP-3 SP—4 SP-5 SP—6 SP—7 SP—8 SP—9SP-10SP—11SP—12 FFFF FEEC FFED FFFF New New
pCS (NMD) (NM1) PC PC+1

TRQ or (FTEE% FFF9

N vic (IRQ)

b XX) X XX X X X XC X XT XC X C X)X X O X X XX

VMA PCL PCH USL USH IYL IYH XL IXH DP ACCB ACCA CCR VMA New New VMA

PCH PCL
R/W_Y X) \ /
8 XX\
Bs X__ X\ /A U
awa_ X X— Y\ / A A __/ X
BUSY)\ : 7\)
LiC / -

N U [U s [oy s e Y Sy

*
E clock shown for reference only.
NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

360890

FIGURE 9 — FIRQ INTERRUPT TIMING

Last Cycle
of Current) Instruction
&strucuon Interrupt Stacking and Vector Fetch Sequence N Femh;l
™~ T R 1
| m-2 | m-1 | m | m+1 [m+2 | m+3 | m+4 | m+5 | m+6 ' m+7 |m+8 | m+9 | n+1 I n+ |
S [I O A O
AN O [O e I I B o

s Y Y X X X X XXX

PC PC FFFF SP—1 SP-2 SP—3 SFFFF S$FFF6 $FFF7 SFFFF New PC New PC+1
r*tPcs
Lt

mvlj

s XX X— X XWQ(PXX X X X X=X

CL PCH CCR VMA New PCH New PCL VMA

v XX . /
N G
s X0 T\
o XX\ [N/ | —
= —
S T e e e Y Y e Y T 1 1 I R e N O

* E clock shown for reference only. .
NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

360890

MC6809E

FIGURE 10 — CLOCK GENERATOR

MRDY

-
|
|
|
I |
STRETCH I
5 Optional
MRDYICucun
|
|
|
_——_g_——
_I -{>Q to- System and Processor
3. &7
CLR PRE
4
J of{8le8, oft —{>E 10 System
v 1 Jase 6 _l7aLs76 Vee
osc. o U —opus || 1500
1 = 12 |
K E
PRE_| 14 Kewr? 3.3k
2 8 L 2N2222A
o]
+5V

NOTE: If optional circuit is not included the CLR and PRE
inputs of U2 and U3 must be tied high.

STRETCH

FIGURE 11 — READ-MODIFY-WRITE INSTRUCTION EXAMPLE (ASL EXTENDED INDIRECT)

Memory Memory
Location Contents
PC — $0200 $68
$0201 $9F
$0202 $63
$0203 $00
$0204
/_\
$6300 $E3
$6301 $D6
$E3D6 $6C
L

Contents Description

ASL Indexed Opcode
Extended Indirect Postbyte
Indirect Address Hi-Byte
Indirect Address Lo-Byte

Next Main Instruction

Effective Address Hi-Byte
Effective Address Lo-Byte

Target Data

tﬂf:eﬁ‘ﬁ':;: FIGURE 12 — BUSY TIMING

| mor | m | m+1 | me2 | m43 | m+4 | mi5 | m+6 | me7 | me8 | m+9 | m+0 | o |

$0200 $0201 $0202 $0203 $FFFF $6300 $6301 $FFFF $E3D6 $FFFF $E3D6 $0204

Data X X X X X X X X X X X X X
$D6 VMA $5C VMA

368 SOF 563 500 VA SE3 $88
RW__ X) ' -/
BUSsY_)\
AVMA Y

FIGURE 13 — TSC TIMING

L3 i

R/W, Address

MPU Data

\/

\—See Note 1

NOTES:
1. Data will be asserted by the MPU only during the interval while R/W is low and (E or Q) is high. A composite bus cycle is shown to give most cases of
timing.
2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

360890\

MC6809E

ADDRESSING MODES

The basic instructions of any computer are greatly en-
hanced by the presence of powerful addressing modes. The
MCB6809E has the most complete set of addressing modes
available on any microcomputer today. For example, the
MCB6809E has 59 basic instructions; however, it recognizes
1464 different variations of instructions and addressing
modes. The addressing modes support modern program-
ming techniques. The following addressing modes are avail-
able on the MC6809E:

Inherent (Includes Accumulator)

Immediate

Extended

Extended Indirect

Direct

Register

Indexed

Zero-Offset
Constant Offset
Accumulator Offset
Auto Increment/Decrement
Indexed Indirect
Relative
Short/Long Relative Branching
Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATOR)

In this addressing mode, the opcode of the instruction
contains all the address information necessary. Examples of
inherent addressing are: ABX, DAA, SWI, ASRA, and
CLRB.

IMMEDIATE ADDRESSING

In immediate addressing, the effective address of the data
is the location immediately following the opcode (i.e., the
data to be used in the instruction immediately following the
opcode of the instruction). The MCB809E uses both 8- and
16-bit immediate values depending on the size of argument
specified by the opcode. Examples of instructions with im-
mediate addressing are:

LDA #$20
DX #$F000
LDY #CAT

NOTE

signifies immediate addressing; $ signifies hexadeci-
mal value to the MC6809 assembler.

EXTENDED ADDRESSING

In extended addressing, the contents of the two bytes
immediately following the opcode fully specify the 16-bit
effective address used by the instruction. Note that the
address generated by an extended instruction defines an
absolute address and is not position independent. Examples
of extended addressing include:

LDA CAT
STX MOUSE
LDD $2000

EXTENDED INDIRECT

As a special case of indexed addressing (discussed
below), one level of indirection may be added to extended
addressing. In extended indirect, the two bytes following the
postbyte of an indexed instruction contain the address of the
data.

LDA [CAT]
LDX [$FFFE]
STU [DOG]

DIRECT ADDRESSING
Direct addressing is similar to extended addressing except

that only one byte of address follows the opcode. This byte
specifies the lower eight bits of the address to be used. The
upper eight bits of the address are supplied by the direct
page register. Since only one byte of address is required in
direct addressing, this mode requires less memory and exe-
cutes faster than extended addressing. Of course, only 256
locations (one page) can be accessed without redefining the
contents of the DP register. Since the DP register is set to
$00 on reset, direct addressing on the MCB809E is upward
compatible with direct addressing on the M6800. {ndirection
is not allowed in direct addressing. Some examples of direct
addressing are:

LDA where DP=$00

LDB where DP=$10

LDD <CAT

NOTE

< is an assembler directive which forces direct
addressing. '

REGISTER ADDRESSING

Some opcodes are followed by a byte that defines a
register or set of registers to be used by the instruction. This
is called a postbyte. Some examples of register addressing
are:

TFR X, Y Transfers X into Y

EXG A, B Exchanges A with B

PSHS A, B, X,Y PushY, X, Band A onto S
stack

PULU X,Y,D Pull D, X, and Y from U
stack

INDEXED ADDRESSING

In all indexed addressing, one of the pointer registers (X,
Y. U, S, and sometimes PC) is used in a calculation of the ef-
fective address of the operand to be used by the instruction.
Five basic types of indexing are available and are discussed
below. The postbyte of an indexed instruction specifies the
basic type and variation of the addressing mode, as well as
the pointer register to be used. Figure 15 lists the legal for-
mats for the postbyte. Table 2 gives the assembler form and
the number of cycles and bytes added to the basic values for
indexed addressing for each variation.

FIGURE 14 — FLOWCHART FOR MC6809E INSTRUCTIONS

Logic
Disarm NMi

SYNC

NOTES: 1. Asserting RESET will result in entering the reset
sequence from any point in the flowchart.
2. BUSY is high during first vector fetch cycle.

Interrupts

FIRGeF

Stack PC, U, Y.
X, DP, B, A, CC

Stack
PC, CC

Tatch
Interrupt

Note2

(Vect

tor)+PC

Wi

FREC

SWI

FFFA

iRQ

FFF8

—
FIRQ

FFF6

CIr N Logic

SWI2

FFF4

Swi3

FFF2

Execution

0~8S

i

cwal
Bus State BA | BS
Running 0 0
Interrupt or Reset Acknowledge| 0 1
Sync Acknowledge 1 0
Halt Acknowledge 1 1

360890

MC6809E

FIGURE 15 — INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

Register Field: RR

00 = X
x = Don’t Care 01 =Y
d=Offset Bit 0=U
i_0=Not Indirect MN=:s
~ 1=Indirect

. . Indexed

ST s 4] STz Addressing
Mode
O| R|Rjd]| d]d]d|d]|EA=,R + 5Bit Offset
1] R|R|JO]JO]JO]JO]O R+
1{R|RJiJOjoOoJoO]n1 R+ +
1] R|RjOJOfJOJ1]O ,—R
1 R|R i 0|0 1 1 ,——R
1] R]JRjiJO]J1]O}O EA = ,R +0 Offset
1J]R|R}liJOl1]j0] 1]EA=,R+ ACCB Offset
1 R| R i 01 1 0 [EA = ,R + ACCA Offset
1{R|R}ji]1]0]0] 0] EA=,R +8Bit Offset
1| R|R|[i|]1[0]O0} 1]|EA= R +16 Bit Offset
1 R| R i 1 0 1 1 EA = ,R +D Offset
1] x| x| i|] 1] 1]0] 0]EA=PC +8Bit Offset
1 x | x i 1 1 0 1 | EA = ,PC +16 Bit Offset
1| R]JRLi]1[1]1]1 EA = [,Address]
T R ———
I———Addressing Mode Field
Indirect Field
(Sign Bit when b7 = 0)

‘ZERO-OFFSET INDEXED — In this mode, the selected
pointer register contains the effective address of the data to
be used by the instruction. This is the fastest indexing mode.

Examples are:

LDD O, X
LDA .S

CONSTANT OFFSET INDEXED — In this mode, twos
complement offset and the contents of one of the pointer
registers are added to form the effective address of the
operand. The pointer register’s initial content is unchanged
by the addition.

Three sizes of offset are available:

5-bit (- 16 to +15)
8-bit (—128 to +127)
16-bit (— 32768 to + 32767)

The twos complement 5-bit offset is included in the post-
byte and, therefore, is most efficient in use of bytes and
cycles. The twos complement 8-bit offset is contained in a
single byte following the postbyte. The twos complement
16-bit offset is in the two bytes following the postbyte. In
most cases the programmer need not be concerned with the
size of this offset since the assembler will select the optimal
size automatically.

Examples of constant-offset indexing are:

LDA 23X
LDX -2,8
LDY 300,X
LDU CAT)Y

TABLE 2 — INDEXED ADDRESSING MODE

Non Indirect Indirect
Type Forms Assembler Postbyte +|+ | Assembler Postbyte + |+
Form Opcode ~I# Form Opcode ~|#
Constant Offset From R No Offset R 1RR00100 0]0 LR] 1RR10100 310
(2s Complement Offsets) 5-Bit Offset n, R ORRnnnnn 110 defaults to 8-bit
8-Bit Offset n, R 1RR01000 111 [n, R] 1RR11000 411
16-Bit Offset n, R 1RR01001 412 [n, R] 1RR11001 712
Accumulator Offset From R A Register Offset A, R 1RR00110 1{0 [A, R] 1RR10110 410
(2s Complement Offsets) B Register Offset B, R 1RR00101 110 (B, R] 1RR10101 410
D Register Offset D, R 1RR01011 | 4]0 [D, R] 1RR11011 7]0
Auto Increment/Decrement R Increment By 1 R+ 1RR00000 2{0 not allowed
Increment By 2 R+ + 1RR00001 | 3]0 | LR++1 [1RR10001 [6]0
Decrement By 1 ,—R 1RR00010 20 not allowed
Decrement By 2 .——R 1RR00011 3{0 [,— —R] 1RR10011 6|0
Constant Offset From PC 8-Bit Offset n, PCR 1xx01100 111 [n, PCR] 1xx11100 41
(2s Complement Offsets) 16-Bit Offset n, PCR 1xx01101 5|2 [n, PCRI] 1xx11101 812
Extended Indirect 16-Bit Address — — —| - [n] 10011111 512

R=X, Y, UorS RR:
x = Don’t Care 00=X
01=Y
10=U
11=8
+

~

and ‘; indicate the number of additional cycles and bytes respectively for the particular indexing variation.

MC6809E

ACCUMULATOR-OFFSET INDEXED — This mode is

similar to constant offset indexed except that the twos com-
plement value in one of the accumulators (A, B, or D) and
the contents of one of the pointer registers are added to form
the effective address of the operand. The contents of both
the accumulator and the pointer register are unchanged by
the addition.- The postbyte specifies which accumulator to
use as an offset and no additional bytes are required. The ad-
vantage of an accumulator offset is that the value of the off-
set can be calculated by a program at run-time.
Some examples are:

LDA B,Y
"LDX D, Y
LEAX B, X

AUTO INCREMENT/DECREMENT INDEXED — In the
auto increment addressing mode, the pointer register con-
tains the address of the operand. Then, after the pointer
register is used, it is incremented by one or two. This ad-
dressing mode is useful in stepping through tables, moving
data, or creating software stacks. In auto decrement, the
pointer register is decremented prior to use as the address of
the data. The use of auto decrement is similar to that of auto
increment, but the tables, etc., are scanned from the high to
low addresses. The size of the increment/decrement can be
either one or two to allow for tables of either 8- or 16-bit data
to be accessed and is selectable by the programmer. The
pre-decrement, post-increment nature of these modes
allows them to be used to create additional software stacks
that behave identically to the U and S stacks.

Some examples of the auto increment/decrement
addressing modes are:

LDA X+
STD Y+ +
LDB ,-Y
LDX ,--S

Care should be taken in performing operations on 16-bit
pointer registers (X, Y, U, S) where the same register is used
to calculate the effective address.

Consider the following instruction:

STX 0,X+ + (X initialized to 0)
The desired result is to store a zero in locations $0000 and
$0001, then increment X to point to $0002. In reality, the fol-
lowing occurs:

0—temp calculate the EA; temp is a holding register
X+2—+X perform auto increment
X—-(temp) do store operation

INDEXED INDIRECT
All of the indexing modes, with the exception of auto in-
crement/decrement by one or a + 5-bit offset, may have an
additional level of indirection specified: In indirect address-
ing, the effective address is contained at the location
specified by the contents of the index register plus any off-
set. In the example below, the A accumulator is loaded in-
directly using an effective address calculated from the index
register and an offset.
Before Execution
A= XX (don't care)
X=$F000

$0100 LDA [$10,X] EA is now $F010

$FO10 $F1 $F150 is now the
$FO11 $50 new EA
$F150 $AA

After Execution
A=$AA (actual data loaded)
X =$F000

All modes of indexed indirect are included except those
which are meaningless (e.g., auto increment/decrement by
1 indirect). Some examples of indexed indirect are:

LDA [X]
LDD [10,8]
LDA [B,Y]
LDD [X+ +1]

RELATIVE ADDRESSING

The byte(s) following the branch opcode is (are) treated as
a signed offset which may be added to the program counter.
If the branch condition is true, then the calculated address
(PC + signed offset) is loaded into the program counter.
Program execution continues at the new location as indi-
cated by the PC; short (one byte offset) and long (two bytes
offset) relative addressing modes are available. All of
memory can be reached in long relative addressing as an ef-
fective address interpreted modulo 216. Some examples of
relative addressing are:

BEQ CAT (short)
BGT DOG (short)
CAT LBEQ RAT (long)
DOG LBGT RABBIT (long)
L]
L]
L]
RAT NOP

RABBIT NOP

PROGRAM COUNTER RELATIVE
The PC can be used as the pointer register with 8- or 16-bit
signed offsets. As in relative addressing, the offset is added
to the current PC to create the effective address. The effec-
tive address is then used as the address of the operand or
data. Program counter relative addressing is used for writing
position independent programs. Tables related to a particular
routine will maintain the same relationship after the routine is
moved, if referenced relative to ‘the program counter.
Examples are:
LDA CAT, PCR
LEAX TABLE, PCR
Since program counter relative is a type of indexing, an
additional level of indirection is available.
LDA [CAT, PCR]
LDU [DOG, PCRI]

MC6809E

INSTRUCTION SET
The instruction set of the MCB80SE is similar to that of the Transfer/ Exchange Postbyte
MCB800 and is upward compatible at the source code level. T T
The number of opcodes has been reduced from 72 to 59, but L Jsou-mel l Destination I

because of the expanded architecture and additional ad- : Register Field
dressing modes, the number of available opcodes (with dif- 0000=D (A:B) 1000= A
ferent addressing modes) has risen from 197 to 1464. 0001 =X 1001=B

Some of the new instructions are described in detail 0010=Y 1010=CCR
below. 0011=U 1011=DPR

) 0100=S
0101=PC

PSHU/PSHS NOTE

The push instructions have the capability of pushing onto All other combinations are undefined and INVALID.
either the hardware stack (S) or user stack (U) any single LEAX/LEAY/LEAU/LEAS

register or set of registers with a single instruction.
9 gister ingle instruct The LEA (load effective address) works by calculating the

effective address used in an indexed instruction and stores
PULU/PULS that address value, rather than the data at that address, in a
pointer register. This makes all the features of the internal
addressing hardware available to the programmer. Some of
the implications of this instruction are illustrated in Table 3.

The pull instructions have the same capability of the push
instruction, in reverse order. The byte immediately following
the push or pull opcode determines which register or N .
registers are to be pushed or pulled. The actual push/pull se- The LEA instruction also allows the user to access data

quence is fixed; each bit defines a unique register to push or and tables in a position independent manner. For example:
pull, as shown below. LEAX MSG1, PCR

LBSR PDATA (Print message routine)

Push/Pull Postbyte Stacking Order °
Pull Order MSG1 FCC ‘MESSAGE’
| I I I] I] —l] | This sample program prints: ‘"MESSAGE’. By writing
L CCr cc MSG1, PCR, the assembler computes the distance between
| A A the present address and MSG1. This result is placed as a
B 8 constant into the LEAX instruction which will be indexed
e DPR DP‘ from the PC value at the time of execution. No matter where
—_ X X Hi the code is located when it is executed, the computed offset
Y - X Lc_’ from the PC will put the absolute address of MSG1 into the X
S/U Y Hi pointer register. This code is totally position independent.
PC UTSL?-l' The LEA instructions are very powerful and use an internal
u/s Lc: holding register (temp). Care must be exercised when using
PC Hi the LEA instructions with the auto increment and auto
PC Lo decrement addressing modes due to the sequence of internal
operations. The LEA internal sequence is outlined as follows:
Push Order LEAa ,b+ (any of the 16-bit pointer registers X, Y,
U, or S may be substituted for a and b.)
Increasing 1. b—temp (calculate the EA)
Memory) .
2. b+1—b (modify b, postincrement)
3. temp—a (load a)
TFR/EXG :
Within the MCB809E, any register may be transferred to or LEAa ,—b

exchanged with another of like size; i.e., 8-bit to 8-bit or

16-bit to 16-bit. Bits 47 of postbyte define the source 1. b—1—~temp (calculate EA with predecrement)

register, while bits 0-3 represent the destination register. 2. b—1—+b (modify b, predecrement)
These are denoted as follows: 3. temp—a (load a)
TABLE 3 — LEA EXAMPLES
Instruction Operati Ci
LEAX 10,X | X+ 10 —X Adds 5-Bit Constant 10 to X
LEAX 500, X | X + 500 — X Adds 16-Bit Constant 500 to X
LEAY A Y | Y+A —Y Adds 8-Bit A Accumulator to Y
LEAY D,Y| Y+D —Y Adds 16-Bit D Accumulator to Y
LEAU-10,U | U=10 —U Substracts 10 from U
LEAS -10,S | §-10 — S Used to Reserve Area on Stack
LEAS 10,S | S+10 —S Used to ‘Clean Up’ Stack
LEAX 5,8 |[S+56 -—=+X Transfers As Well As Adds

MC6809E

Auto increment-by-two and auto decrement-by-two instruc-
tions work similarly. Note that LEAX ,X+ does not change
X; however LEAX, — X does decrement X.LEAX 1,X should
be used to increment X by one. ‘

MUL o

Multiplies the unsigned binary numbers in the A and B ac-
cumulator and places the unsigned result into the 16-bit D
accumulator. This unsigned multiply also allows multiple-
precision multiplications.

LONG AND SHORT RELATIVE BRANCHES

The MCB809E has the capability of program counter
relative branching throughout the entire memory map. In
this mode, if the branch is to be taken, the 8- or 16-bit signed
offset is added to the value of the program counter to be
used as the effective address. This allows the program to
branch anywhere in the 64K memory map. Position indepen-
dent code can be easily generated through the use of relative
branching. Both short (8 bit) and long (16 bit) branches are
available.

<~ 8SYNC

After encountering a sync instruction, the MPU enters a
sync state, stops processing instructions, and waits for an
interrupt. If the pending interrupt is non-maskable (NM) or
maskable (FIRQ, TRQ) with its mask bit (F or I) clear, the pro-
cessor will clear the sync state and perform the normal inter-
rupt stacking and service routine. Since FIRQ and TRQ are
not edge-triggered, a low level -with a minimum duration of
three bus cycles is required to assure that the interrupt will
be taken. If the pending interrupt is maskable (FIRQ, IRQ)
with its mask bit (F or) set, the processor will clear the sync
state and continue processing by executing the next in-line
instruction. Figure 16 depicts sync timing.

SOFTWARE INTERRUPTS

A software interrupt is an instruction which will cause an
interrupt and its associated vector fetch. These software in-
terrupts are useful in operating system calls, software
debugging, trace operations, memory mapping, and soft-
ware development systems. Three levels of SWI are available
on this MC6809E and are prioritized in the following order:
SWI, SWi2, SWI3.

16-BIT OPERATION

The MCB809E has the capability of processing 16-bit data.
These instructions include loads, stores, compares, adds,
subtracts, transfers, exchanges, pushes, and pulls.

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart (Figure
16) illustrates the memory-access sequence corresponding

to each possible instruction and addressing mode in the

MCB809E. Each instruction begins with an opcode fetch.
While that opcode is being internally decoded, the next pro-
gram byte is always fetched. (Most instructions will use the
next byte, so this technique considerably speedsthrough-
put.) Next, the operation of each opcode will follow the
flowchart. VMA is an indication of FFFF1g on the address
bus, R/W=1 and BS=0. The following examplés illustrate
the use of the chart.

Example 1: LBSR (Branch Taken)
Before Execution SP= FO00

]
(]
L]

. $8000 LBSR 4" CAT

$A000 CAT

CYCLE-BY-CYCLE FLOW

Cycle # | Address | Data |R/W |Description
1 8000 17 1 |Opcode Fetch
2 8001 20 1 |Offset High Byte
3 8002 00 1 |Offset Low Byte
4 FFFF * 1 |VMA Cycle
5 FFFF * 1 |VMA Cycle
6 AO00 * 1 |Computed Branch Address
7 FFFF * 1 |VMA Cycle :
8 EFFF 80 0 |Stack High Order Byte of
Return Address
9 EFFE 03 0 |Stack Low Order Byte of
Return Address
Example 2: DEC (Extended)
$8000 DEC $A000

$A000 FCB $80

CYCLE-BY-CYCLE FLOW

Cycle # | Address | Data | R/W |Description
1 8000 7A 1 |Opcode Fetch
2 8001 A0 1 |Operand Address, High Byte
3 8002 00 1 |Operand Address, Low Byte
4 FFFF * 1 |VMA Cycle
5 AO00 80 1 [Read the Data
6 FFFF * 1 |VMA Cycle
7 FFFF 7F 0 |Store the Decremented Data

*The data bus has the data at that particular address.

INSTRUCTION SET TABLES

The instructions of the MCB809E have been broken down
into five different categories. They are as follows:

8-bit operation (Table 4)

16-bit operation (Table 5)

Index register/stack pointer instructions {(Table 6)

Relative branches (long or short) (Table 7)

Miscellaneous instructions (Table 8)

Hexadecimal values for the instructions are given in
Table 9.

PROGRAMMING AID

Figure 18 contains a cofnpilation of data that will assist
you in programming the MC6809E.

FIGURE 16 — SYNC TIMING

Last Cycle Sync Last Cycle
of Previous Opcode of Sync
Instruction, Fetch Execute Sync Acknowledge Instruction

G350 U s A e O
TN U [) O O I O I
Address T X PC X PC+‘I\[—)‘r I M—__X'_l_
s X X XX A X X

1
|
T G S S ,
s)\ / v | \
BS \ \ |
AVMA :X X \ l{ /

A
\l
LIC / \ / \m _& | ‘C See Note 1
tpct
lﬁ ﬁﬂ See Note 2

R —>| fe—tecs

NOTES: 1. If the associated mask bit is set when the interrupt is requested LIC will go low and this cycle will be an instruction fetch from address
location PC+ 1. However, if the interrupt is accepted (NMi or an unmasked FIRQ or IRQ) LIC will remain high and interrupt processing
will start with this cycle as m on Figures 8 and 9 (Interrupt Timing).

2. If mask bits are clear, IRQ and FIRQ must be held low for three cycles to guarantee that interrupt will be taken, although only one cycle
is necessary to bring the processor out of SYNC.
3. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

360890

MC6809E

NOTES:
1. Each state shows:
Data Bus

Address Bus

2. Address NNNN is location of opcode.

3. If opcode is a two byte opcode subsequent
addresses are in parenthesis (—).

4. Two-byte opcodes are highlighted.

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 1 of 5)

Relative Add!

Opcode Fetch
NNNN

Opcode=
10 or 112

Opcode, 2nd Byte
NNNN +1

2nd Byte=
10 or 112

Mode

r

Offset High

. NNNN+1(2)

Offset Low
NNNN + 2(3)

FFFF

Yes

Take

BCC, BCS, BEQ, BGE, BGT, BHI,
BHS, BLE, BLD, BLS, BLT, BMI,
BNE, BPL, BRA, BAN,

BSR, BVC, BVS Qfiset

NNNN + 1

Branch?

No

Don't Care

Sub. Dest. Addr.

FFFF

Return Addr. Low

Return Addr. High

MC6809E

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 2 of 5)

Inherent Addressing Mode

ABX RTS ASLA/B MUL SWi, Biia, ATl SYNC CWAI
ASRA/8 awis. 1
cLRare [Oonicae | [oontcae]| [oonicae] [oonicae] [comask | o Sondiion
ode Register
NNNN + 1 DAA | TR B BETITESE B TS | [] | ISR | -
Stack
DECA/8
INCA/8
e Dor1Cas T S v S o
on't Care
o] LsAae - [OonicCare] v Somic.
NOP FFFF
o Don't Care PC Low " Don't Care
SEX EFPE Interrupt
TSTA/B Present? Interrupt
Present?
[pontcae | [ontcare | [oomtcae] [pchian] Yes
| FFFF] [|| FFFF] [stacc] [Aregser |
Stack Interrupt
Vector High
Don't Care User Stack Low PC High -
FFFX
FFF B Register T
Interrupt
Don'tCare |- [User Stack High User Stack Low Vector Low
FFFF Stack Direct Page Stack FFFX T
Register
Stack
[| [Enee]

FFFF

FFFF

FFFF

Don't Care

Y Register High

X Register High

Direct Page
Register

X Register High

X Register Low

Y Register High

Stack

[[user stack Hign |

Condition
Code Register

Stack

| pciow]

FRFF

Interrupt
Vector High

FFFX

¥

Interrupt
Vector Low

FFFX+ 1

FFFF

[sex]

| FFFF

Y Register Low

_v Register High

X Register Low

X Register High

Direct Page
Register

Stack

MC6809E

FIGURE 17 — CYCLE-BY-CYLE PERFORMANCE (Sheet 3 of 5)

Immediate Addressing Mode Direct Extended
Addressing Addressing
TFR TG PULU PSHU "All nstructions| Aede. plode
: PULS PSHS : ‘Address Low "Address High
Post Byte Post Byte Post Byt PSHU, NNNN + 1(2) NNNN +1(2)
L ve | | yve | [Postayie] ost Byte PSHS.
NNNN+ 1 NNNN+ 1 NNNN+ 1 NNNN+ 1] PULS, i 3
B ”:v Don't Care ‘Address Low
an
| oontcae | | Donicare.] [dontcae -} Don't Care, Yes EXG NNNN+ 2031

| FFFF FFFF. FFFE]

| x Register High |

[rrer]

| X Register Low |

11] 1
R

[sec]

{osac]

] Y
[Dontcae | [Dontcae | [Dontcae]

y
| Dontcare |

| T

| X Register Low. |

|

[x Register High |

FFFF FFFF

FFFF

Condition
Code Register

[oswe]

]

[sk]

Don't Care

FRFF

Y Registér Low.

U/S Stack

Don't Care

Direct Page
Register

Stack

Direct Page
Register

Pointer High
Stack U/S Stack
Pointer Low
U/S Stack
Pointer Low
Stack U/S Stack
. Pointer High
Stack

Stack

Condition
Code Register

L swk]

[steck

MC6809E

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet 4 of 5)

Indexed Addressing Mode

NNNN + (2)

®

0 Offset 561 Offset B Bit Ouseir 76611 Offset I AT8 onml D OllselT Tnc/Dec Tnc/Dec PCt 16811 Extended PC18B1t
From R From R From R From R From R From R Rbyl Rby2 Offset Indirect Offset
Don't Care ontcae | [omser | [omseirion | [oontcae | [oontcare Dot Care | [Dontcare | [[Ottsetrigh | [Adaress tign
| ISR N IR EN BN IETTTEEEN B ICTOOEREN B IR | NNNN+23) | [anan+ 23 | [neNs200 | eeneam | e]
] y] ¥ Y
| Don't Care I | dontcare | [oftsetiow | [Dontcae | [Cpontcare | [Toontcare | [oontcare | [Cofisettow]| [(AddressLow
FEFF

L

I I R |

L

FFFF

]

[ICEETE A N |

NNNN + 3(4)

NNNN + 3(4)

Don't Care
FFFF

NNNN + 4(5)

FFFF

Don't Care Don't Care Don’t Care Don‘t Care Don't Care
NNNN + 4(5) FFFF FFFF NNNN + 4(5) NNNN + 4(5)

FFFF

Don't Care

Indirect?

Indirect High
XXXX

Indirect Low
XXXX + 1

FFFF

No

XXXX

om R

Constant Offset fre

No Offset
8-Bit Offset
16-Bit Offset

Index Register
Index Register + Offset Byte
Index Register + Offset High Byte: Offset Low Byte

Accumulator Offset from R

A Register Offset
8 Register Offset
D Register Offset

Index Register + A Register
Index Register + B Register
Index Register + D Register

Auto Increment/ Decrement R

Increment by 2
Decrement by 2

Index Register”
Index Register -2

rom PC

Constant Offset fr

8-Bit Offset
16-bit Offset

16-Bit Address

Program Counter + Offset Byte
Program Counter + Offset High Byte: Ofiset Low Byte

Address High Byte: Addres Low Byte

* The index register 15 incremented following the indexed access

MC6809E

FIGURE 17 — CYCLE-BY-CYCLE PERFORMANCE (Sheet5 of 5)

Effective Addre
ANDCC, VP ADCA/S. STA/B 0. ST0. 5060 ASL, ASR, TST TSR TEAS,
ORCC (All Except ADDA/B, (Al Except s STU, STX, CLR, COM, (Al Except (All Except | LEAV,
(Immediate | Immediate) ANDA/B, immediatel [SEEA DEC, INC, Immediate) Immediate) LEAX,
Only} BITA/B, LDX, Except LSL. LSR, LEAY
CMPA/B, Immediate] NEG, ROL, (indexed Only}
EDRA/B, RDR (All Soicag
LDA/B, Except
ORA/B, immediate)
SBCA/B,
SUBA/B
Register High Regstertigh | [~ Date | [Daa] [TDawrign] [Dontcare | | Dontcare |
(Write)
A FFFF FFFF
o Vo J e C= 11 1 []
e | oontcare } | Don'tcare] [oaatow] fpcrowwritel]
(Write) FFFF Lorere] [easr) [st}
EA+1 ¥ ¥ ¥
Data DataWite) | [Don'tCare | [DontcCare | [PCHigh writel]
5 1 1 =

Constant-Offset from R
o

Effective Address (EA)

index Register

5-8it Offset Index Register
8-Bit Offset Index Register + Post Byte
16-Bit Offset Index Register + Post Byte High: Post Byte Low

Accumulator Offset from R
A Register Offset
8 Register Offset
D Register Offset

Auto Increment/ Decrement R

increment by

Increment by 2
Decrement by 1
Decrement by 2

Constant Offset from PC
Offset

Index Register + A Register
Index Register + B Register
Index Register + D Register

Index Register,
Index Register
Index Register ~ 1

Index Register -2

Program Counter + Offset Byte

16-Bit Offset Program Counter + Offset High Byte: Offset Low Byte
Direct Direct Page Register: Address Low
Extended Address High: Address Low
Immediate NNNN + 1

The index register is incremented following the indéxed access

MC6809E

TABLE 4 — 8-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s) Operation
ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator

ASL, ASLA, ASLB

Arithmetic shift of accumulator or memory left

ASR, ASRA, ASRB

Arithmetic shift of accumulator or memory right

BITA, BITB Bit test memory with accumulator

CLR, CLRA, CLRB Clear accumulator or memory location

CMPA, CMPB Compare memory from accumulator

COM, COMA, COMB Complement accumulator or memory location
DAA Decimal adjust A accumulator

DEC, DECA, DECB Decrement accumulator or memory location
EORA, EORB Exclusive or memory with accumulator

EXG R1, R2 Exchange R1 with R2 (R1, R2 = A, B, CC, DP)
INC, INCA, INCB Increment accumulator or memory location
LDA, LDB Load accumulator from memory

LSL, LSLA, LSLB

Logical shift left accumulator or memory location

LSR, LSRA, LSRB

Logical shift right accumulator or memory location

MUL Unsigned multiply (A x B — D)
NEG, NEGA, NEGB Negate accumulator or memory
ORA, ORB Or memory with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROR, RORA, RORB

Rotate accumulator or memory right

SBCA, SBCB Subtract memory from accumulator with borrow
STA, STB Store accumulator to memory

SUBA, SUBB Subtract memory from accumulator

TST, TSTA, TSTB Test accumulator or memory location

TFR R1, R2 Transfer R1 to R2 (R1, R2 = A, B, CC, DP)

NOTE: A, B, CC or DP may be pushed to (pulled from) either stack with PSHS, PSHU (PULS,

" PULU) instructions.
TABLE 5 — 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s) Operation
ADDD Add memory to D accumulator
CMPD Compare memory from D accumulator
EXG D, R Exchange D with X, Y, S, U or PC
LDD Load D accumulator from memory
SEX Sign Extend B accumulator into A accumulator
STD Store D accumulator to memory
SUBD Subtract memory from D accumulator
TFR D, R Transfer Dto X, Y, S, U or PC
TFR R, D Transfer X, Y, S, U or PC to D

NOTE: D may be pushed (pulled) to either stack with PSHS, PSHU (PULS,
PULU) instructions.

TABLE 6 — INDEX REGISTER/STACK POINTER INSTRUCTIONS

Instruction Description
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X, Y, S, U or PC with D, X, 'Y, S, U or PC
LEAS, LEAU Load effective address into stack pointer
LEAX, LEAY Load effective address into index register
LDS, LDU Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, Y, U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y, S, or PC onto user stack
PULS Pull A, B, CC, DP, D, X, Y, U or PC from hardware stack
PULU Pull A, B, CC, DP, D, X, Y, S or PC from hardware stack
STS, STU Store stack pointer to memory
STX, STY Store index register to memory
TFR R1, R2 Transfer D, X, Y, S, UorPCto D, X, Y, S, Uor PC
ABX Add B accumulator to X (unsigned)

‘MC6809E

TABLE 7 — BRANCH INSTRUCTIONS

Instruction J Description
SIMPLE BRANCHES
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BMI, LBMI Branch if minus
BPL, LBPL Branch if plus
BCS, LBCS Branch if carry set.
BCC, LBCC Branch if carry clear
BVS, LBVS Branch if overflow set
BVC, LBVC Branch if overflow clear
SIGNED BRANCHES
BGT, LBGT Branch if greater (signed)
BVS, LBVS . Branch if invalid 2's complement result
BGE, LBGE Branch if greater than or equal (signed)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLE, LBLE Branch if less than or equal (signed)
BVC, LBVC Branch if valid 2's'complement result
BLT, LBLT Branch if less than (signed)
UNSIGNED BRANCHES

BHI, LBHI Branch if higher (unsigned)
'BCC, LBCC Branch if higher or same {unsigned)
BHS, LBHS Branch if higher or same (unsigned)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLS, LBLS Branch if lower or same’ (unsigned)
BCS, LBCS Branch if lower (unsigned)
BLO, LBLO Branch if lower (unsigned)

. OTHER BRANCHES
BSR, LBSR Branch to subroutine
BRA, LBRA Branch always
BRN, LBRN Branch never

TABLE 8 — MISCELLANEOUS INSTRUCTIONS

Instruction Description
ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR condition code register
JMP Jump
JSR Jump to subroutine
RTI Return from interrupt
RTS Return from subroutine

SWI, SWI2, SWI3

Software interrupt (absolute indirect)

SYNC

Synchronize with interrupt line

MC6809E

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES

OP | Mnem Mode | ~ # OP | Mnem Mode |~ # OP | Mnem Mode |~ #
00 NEG Direct | 6 2 30 LEAX Indexed [4+ | 2+ 60 NEG Indexed |6+ | 2+
o1 | * A 31 | LEAY 4+ |2+] 61 | * A

02 * 32 LEAS 44+ |2+ 62 *

03 COM 6 2 33 LEAU Indexed | 4+ | 2+ 63 coMm 6+ | 2+
04 LSR 6 2 34 PSHS Immed |5+ |2 64 LSR 6+ | 2+
05 * 35 PULS Immed |5+ |2 65 *

06 ROR 6 2 36 PSHU Immed | 5+ 2 66 ROR 6+ 2+
07 ASR 6 2 37 PULU Immed | 5+ |2 67 | ASR 6+ | 2+
08 ASL, LSL 6 2 38 * - 68 ASL, LSL 6+ | 2+
09 ROL 6 2 39 RTS Inherent | 6 1 69 ROL 6+ | 2+
0A DEC 6 2 3A ABX 3 1 B6A DEC 6+ | 2+
0B * 3B RTI 6/15| 1 68 *

ocC INC 6 2 3C CWAI =202 6C INC 6+ | 2+ |
oD TST 6 2 3D MUL Inherent| 11 1 6D TST 6+ | 2+
OE [JMP ‘L 3 2 3E | * - 6E | JMP 3+ | 2+
OF CLR Direct | 6 2 3F SWiI Inherent | 19 1 6F CLR Indexed |6+ | 2+
10 Page 2 - - - 40 NEGA Inherent| 2 1 70 NEG Extended| 7 3
11 | Page3 - - - 41 | * ﬂ\ 7| ox A

12 NOP Inherent| 2 1 42 * 72 *

13 SYNC Inherent| =4 1 43 COMA 2 1 73 COM 7 3
14 * 44 LSRA 2 1 74 LSR 7 3
15 * 45 * 75 *

16 LBRA Relative | 5 3 46 RORA 2 1 76 ROR 7 3
17 LBSR Relative | 9 3 47 ASRA 2 1 77 ASR 7 3
18 * 48 ASLA, LSLA 2 1 78 ASL, LSL 7 3
19 DAA Inherent| 2 1 49 ROLA 2 1 79 ROL 7 3
1A ORCC Immed | 3 2 4A DECA 2 1 7A DEC 7 3
1B | * - 48 * 7B *

1C ANDCC Immed | 3 2 4C INCA 2 1 7C INC 7 3
1D SEX Inherent| 2 1 4D TSTA 2 1 70 TST 7 3
1E EXG Immed | 8 2 4E * 7€ JMP Y 4 3
1F TFR Immed | 6 2 4F CLRA Inherent| 2 1 7F CLR Extended| 7 3
20 BRA Relative | 3 2 50 NEGB Inherent| 2 1 80 SUBA Immed |2 2
21 | BRN A |3 2 51 | * A 81 | cmpa 2 2
22 BHI 3 2 52 * 82 SBCA 2 2
23 BLS 3 2 53 COMB 2 1 83 SUBD 4 3
24 BHS, BCC 3 2 54 LSRB 2 1 84 ANDA 2 2
25 BLO, BCS 3 2 55 | * 85 BITA 2 2
26 BNE 3 2 56 RORB 2 1 86 LDA 2 2
27 BEQ 3 2 57 ASRB 2 1 87 *

28 BVC 3 2 58 ASLB, LSLB 2 1 88 EORA 2 2
29 BVS 3 2 59 ROLB 2 1 89 ADCA 2 2
2A BPL 3 2 5A | DECB 2 1 8A ORA 2 2
28 BMI 3 2 58 * 8B ADDA 2 2
2C | BGE 3 2 5C | INCB 2 1 8C | CMPX Immed |4 3
20 BLT 3 2 5D TSTB 2 1 8D BSR Relative | 7 2
2E BGT 1 3 2 5E * Y 8E LDX Immed |3 3
2F BLE Relative | 3 2 5F CLRB Inherent| 2 1 8F *

LEGEND:

~Number of MPU cycles (less possible push pull or indexed-mode cycles)
Number of program bytes
* Denotes unused opcode

MC6809E

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES (CONTINUED)

OP Mnem Mode | ~ | # 0P | Mnem Mode |~| # Jop |Mnem Mode |~ | #
90 SUBA Direct 14 2 co | suss Immed |2 2
91 CMPA : A |4 2 c1 | cmpB 2 2 Page 2 and 3 Machine
92 SBCA 4 2 c2 | sece 2 2 Codes
93 SUBD 6 2 C3 | ADDD 4 3
94 ANDA 4 2 c4 .| ANDB 2 2 1021 | LBRN Relative | 5 4
95 BITA 4 2 cs | BiITB immed |2 2 1022 | LBHI 56) | 4
96 LDA 4 2 c6 | LDB Immed |2 2 1023 | LBLS 5(6) | 4
97 STA 4 2 c7 | * 1024 | LBHS, LBCC 5(6) | 4
98 EORA 4 2 C8 | EORB 2 2 1025 [LBCS, LBLO 5(6) | 4
99 ADCA 4 2 c9 | ADCB 2 2 1026 | LBNE 5(6) [4
9A ORA 4 2 CA | ORB 2 2 1027 | LBEQ 56) | 4
9B ADDA 4 2 CB | ADDB. 2 2 1028 | LBVC 5(6) | 4
9C CMPX 6 2 cc | Lbb 3 3 1029 | LBVS 56) [4
9D JSR 7 2 cD | * 102A | LBPL 5(6) | 4
9E LDX vy |5 2 CE| LDU Immed |3 3 1028 | LBMI 56)| 4
9OF STX Direct |5 2 CF | = 102C | LBGE 5(6) | 4
A0 SUBA indexed | 4+ | 2+ DO | SUBB Direct 14 | 2 }gig tgéTT y g:g; 2
‘Al CMPA A e+] 2+ D1 | cmpB Adel 2 | oz | oee Relati
D2 SBCB 4 2 elative | 5(6) | 4
A2 SBCA 4+ 1 2+ 103F | SWI2 Inherent {20 | 2
A3 SUBD 6+ | 2+ D3 | ADDD 612
1083 | CMPD Immed {5 4
A4 ANDA 4+ | 24 D4 | ANDB 412 1 j0sc | cmpy 5 |4
A5 BITA , 4+ | 2+ D5 | BITB 41 2
06 DB 4 2 108E | LDY Immed |4 4
A6 LDA 4+ | 2+ 1093 | CMPD Direct |7 3
A7 STA 4+ | 2+ D7 | STB 4 2 109C | CMPY. 7 3
A8 EORA 4+ | 24 D8 | EORB 412 1 10k | Loy 6 |3
A9 ADCA 4+ | 2+ gi és(B:B 3 % 100F [STY Direct (6 | 3
AA ORA 4+ | 2+ os | Abos 4 2 10A3 | CMPD Indexed [7+ | 3+
AB ADDA 4+ | 2+ 10AC| CMPY 7+ | 3+
AC CMPX 6+ | 2+ DC | LDD 51 2 0
AD JSR 7+ | 2+ DD | STD 51 2 | AEly il
oe | Lou ‘} 5 2 10AF | STY Indexed |6+ | 3+
AE LDX \} 5+ | 2+ . 10B3 | CMPD Extended (8 4
AF STX Indexed |5+ | 2+ DF | sTU Direct 15 | 2 X 108c|cmpy 8 |4
EO SUBB Indexed | 4+| 2+ 10BE | LDY 7 4
BO SUBA Extended| 5 3 E1 | cmpPB A 4+| 2+ f 10BF|STY Extended |7 4
Bl CMPA A |5 3 E2 | SBCB 4+ 2+ 1 10CE|LDS immed |4 | 4
B2 SBCA 5 3 E3 | ADDD 6+ 2+ | 10DE|LDS Direct |6 3
B3 SUBD 7 3 E4 | ANDB 4+ 2+ | 10DF|STS Direct |6 3
B4 ANDA 5 3 E5 | BITB 4+ 2+ [10EE |LDS Indexed [6+ | 3+
B5 BITA 5 3 E6 | . LDB 4+ 2+) 10EF |STS Indexed |6+ | 3+
B6 LDA 5 3 €7 | sTB 4+ 2+ | 10FE |LDS Extended|7 4
B7 STA 5 3 E8 | Eors 4+ 2+ | 10FF|STS Extended|7 4
B8 EORA 5 3 E9 | ADCB 4+ 2+ § 113F [swi3 Inherent {20 | 2
B9 ADCA 5 3 EA | ORB 4+ -2+ ¥ 1183 |cmPU Immed |5 4
BA ORA 5 3 EB | ADDB 4+ 2+ | 118c|cmps Immed |5 4
BB ADDA 5 3 EC | LDD 5+ 2+ | 1193 | CMPU Direct |7 3
BC CMPX 7 3 ED | STD 5+ 2+ | 119C|CcMPS Direct |7 3
BD JSR 8 3 EE | LDU Y |54 2+ } 11A3]CMPU Indexed |7+ | 3+
S'E ;2; . wd : g g EF | STU Indexed. |5+ 2+ | 11ac|cmps Indexed |7+ | 3+
xtende
FO SuUBB Extended| 5 3 :1:3 gmgg E::g:gzg g :
F1 | cmpB 5[3
F2 | sBCB 5 3
F3 | ADDD 7 3
F4 | ANDB 5 3
F5 | BITB 5 3
F6 | LDB 5 3
F7 | sTB 51 3
NOTE: All unused opcodes are both undefined F8 EORB 5 3
and illegal Fo | ADCB o
FA | ORB 5 3
FB | ADDB Extended| 5 3
FC | LDD Extended| 6 3
FD | STD 6 3
FE | LDU 6 3
FF STU Extended| 6 3

MC6809E

FIGURE 18 — PROGRAMMING AID

Addressing Modes
lmmed_ig!e Direct Indexed Extended Inherent 5]3]/2]|1]0
Instruction| Forms |Op [~ | #| Op |~ | #]| Op| ~| # | Op| ~ Op| ~| # Description HIN|Z|V|C
ABX X 3A| 3 1| B+ X—X (Unsigned) elejejoje
ADC ADCA 8 | 2| 2| 99 |4 | 2| A9|4+|2+|B9| 5| 3 A+M+C—-A A RERERIR]
ADCB CO|2| 2| D9 |4 | 2| EQ{4+j2+| F9| 5| 3 B+M+C—8 [IRARERIR]
ADD ADDA 88 |2| 2| 9B 4| 2| AB|{4+|2+|BB| 5| 3 A+M=A AR ERERIN]
ADDB CB|2| 2| DB |4 | 2| EB|4+|2+|FB| 5| 3 B+M-B A RERE R
ADDD C3 |4 3| D3|6 2| E3|6+|2+| F3| 7 3 D+M:M+1-D eftft]t]t
AND ANDA 84]2 2|1 94 |4 2| Ad|4+[2+ B4| b 3 AAM=A elt|t]O]e
ANDB Ca |2 2| D4 | 4 2| B4|4+|2+| F4| 5 3 BAM-B eft{t]0]e
ANDCC [1C |3 | 2 CC A IMM—CC 7
ASL ASLA 48| 2 1 A P So— Sluftftf?
ASL 08 |6 | 2] 68|6+|2+|78| 7|3 MIT by () HEBERE
ASR ASRA 471 2 1 A — Sltftfeft
ASRB 57| 2| 1 B}Q{m@—»ﬂ glt]t|e]t
ASR 07 | 6 2| 676+ 2+| 77| 7 3 . M 7 0 C 8lt[t[ef!
BIT BITA 85 | 2 2| 95 |4 2| AS5(4+[2+|B5| 5 3 Bit Test A (M A A) e|1|t]|0O|e
BITB C5 | 2 2| D5 | 4 2| E5(4+[2+ F5 | 5 3 Bit Test B (M A B} o|1|t[Ofe
CLR CLRA 4F | 2 1]0—A el0[1(0f0O
CLRB S5F| 2 110-8 e(Of1[0fO
CLR OF |6 | 2| 6F |6+| 2+ 7F| 7 | 3 0—-M *|l0|1[/0]0
CMP CMPA 81 |2 2191 |4 2| A4+ 2+|B1| 5 3 Compare M from A 8|ttt
CMPB Ci|2| 2| D1|4 2| EY[4+f{2+|F1|[5| 3 Compare M from B ltltft]
CMPD 10165 41 10 |7 3| 10|7+|[3+| 10| 8 4 Compare M:M + 1 from D ARERARER
83 93 A3 B3
CMPS M5 4] 11 [7]3] 11|7+|3+[11] 8] 4 Compare M:M + 1 from S el
8C 9C AC 8C
CMPU 1n|s 4 1|7 31 11 |7+]3+| 11| 8 4 Compare M:M + 1 from U et t]t
83 93 A3 B3 . .
CMPX 8C | 4 31 9C |6 2| AC|6+| 2+ |BC| 7 3 Compare M:M + 1 from X ettty
CMPY 0|5 410 (7] 3] 10|7+|3+|10]| 8] 4 Compare M:M + 1 from Y el
8C 9C AC BC
coM COMA 43] 2| 1[A-A efrfrfofn
coms 53| 2 1 E— B eft]|t]{O1
COM 03 |6 | 2| 63[6+]|2+| 73| 7| 3 M—M ef1]1]0]1
CWAI 3C [0 2 CC A IMM—CC Wait for Interrupt 7
DAA 19] 2 1 | Decimai Adjust A eft]t]O]!
DEC DECA aal 2] 1]A-1=A oft|t]t]e
DECB 5A 2| 1{B-1-B elr|tft]e
DEC OA | 6 2| 6A[6+|2+|T7A| 7 3 M-1-M elt|tft]e
EOR EORA 88 | 2 2| 98 |4 2| AB|4+]|2+|B8| 5 3 AN¥-M—-A e|lt|t|Ofe
EORB c8 |2 2| D8 |4 2| EB|4+|2+| FB| 5 3 B¥M—B el1]|1]0]e
EXG R1,R2 |1E]|8] 2 R1-R2Z o efefefe
INC INCA 4c| 2 T[A+1-A eftjtjt)e
INCB 5C| 2 1{B+1—B LEREREERE R
INC 0OC |6] 2|6C[6+]2+]7C| 7] 3 M+1-M elt]tjt]e
JMP OE [3]| 2| 6E|3+|2+[7E| 4| 3 ea3—pC o|ofofefe
JSR 9D | 7 2| AD|(7+|2+(BD| 8 .3 Jump to Subroutine eje|ejale
LD LDA 86 | 2| 2| 9% |4 | 2| A6|4+|2+|B6]| 5| 3 M—A o[t]t]of e
LDB c6|2| 2| D6|4]| 2| E6fa+|2+|F6] 5] 3 M—B eftft]ofe
LDD cci{3| 3|bpc|6|2|€Ec|s+|2+|FC| 6] 3 M:M+1-D eft|t|ofe
LDS 04| a4l 10 |6|3|10]|6+[3+]10] 7] 4 M:M+1-S eltf1|O]e
CE DE EE FE
LDy CE[3]| 3| DE|5 | 2| EE(5+|2+|FE| 6| 3 M:M+1-U elt1]|t]|0fe
LDX 8E | 3| 3] 9E |6 | 2| AE{5+({ 2+ BE| 6| 3 M:M+1-X el1]t1]0]e
LDY 0|4 10|86 106+ 3+ 10 7| 4 M:M+1-Y ol 0f e
8E 9E AE BE
LEA LEAS 32[4+] 2+ EAS—~S ofefe]e]e
LEAU 33|4+| 2+ EA3—~U olelofefe
LEAX 30 [4+] 2+ EA3—X efef1]efe
LEAY 31|4+] 2+ EA3-Y eleft|e]e
LEGEND: M Complement of M t Testand set if true, cleared otherwise
OP Operation Code (Hexadecimal) — - Transfer Into * Not Affected
~ Number of MPU Cycles H Half-carry (from bit 3) CC Condition Code Register
Number of Program Bytes N Negative (sign bit) : - Concatenation
+ Arithmetic Plus Z Zero result V Logical or
— Arithmetic Minus V Overflow, 2's complement A Logical and
® Multiply C Carry from ALU ¥ Logical Exclusive or

MC6809E

FIGURE 18 — PROGRAMMING AID (CONTINUED)

Addressing -Modes
Immediate Direct Indexed1 Extended Inherent : 5[3]2]1]0
Instruction| Forms [Op] ~ [#[Op[~] #| Op] ~] #] Op[~ p] ~ T # Description HIN}Z|V|C
LsL LSLA . . 48| 2 1 A < el
LsLe s 2| 1| B0 |«|: [:[1]:
.| LSL 08| 6| 2| 68|6+|2+] 78| 7| 3 . M) b7 bo A REEREER
LSR LSRA AR ’3 slof1fe]t
LSRB s 2| 1| Ego T |« fo|i]+]:
. LSR : 04] 6] 2| 646+ 2+[74] 7| 3 b7 . bo ¢ Jelo]t|e]t
MUL 3D| 11| 1 [AxB—D (Unsigned) oot |9
NEG NEGA] 2] 1]A+1-A A EREREAE
NEGB 50 | 2 1 3+ 1-B A RERE RN
NEG 0| 6| 2| 606+ 2+| 70| 7| 3 M+1-M RN R R R
NOP . 12 2 1 [No Operation oo (o (e o
OR ORA 8A| 2 [2] 9A| 4] 2| AA|4+| 2+| BA| 5| 3 AV M—A . 1|0
' ORB CA| 2 | 2| DA| 4| 2| EA|4+]| 24| FA| 5| 3 BVM-8B . 1|0}
ORCC 1Al 3. [2 CC VIMM—=CC 7
PSH PSHS 34(5+4] 2 Push Registers on S Stack oo jeje e
PSHU 36|5+4] 2 Push Registers oni U Stack oo jefe]e
PUL PULS 355+ 2 Pull Registers from S Stack olofe .
< PULU 37|5+4| 2 Pull Registers from U Stack oo e .
ROL ROLA 49| 2 1A ettt
ROL 09| 6| 2| 696+ 24 79| 7] 3 W T 5) el
ROR RORA 6 2[1]A el |t
RORB s 2|1|] ot fife]
ROR 06| 6| 2| 66|6+[2+] 76| 7| 3 c by bo eft]tle]t
RTI 3B |6/15] 1 |Return From Interrupt 7
RTS 39| 5| 1 |Return from Subroutine oo (oo |0
SBC SBCA 82| 2 | 2924 2| A2|4+|2+| B2| 5| 3 A-M-C—-A 8l [ttt
'SBCB C2) 2 | 2| 0D2) 4} 2|E]|4+|2+| F2| 5] 3 B-M-C-B AR ERERE
SEX 1D| 2| 1|Sign Extend B into A *l1|1]0]e
ST STA 971 4| 2| A7|4+| 2+| B7| 5| 3 A—-M elt{t|ofe
STB D7 4| 2| E7|4+|2+| F7| 5} 3 B—M et |t]0]e
STD DD 5| 2| ED|5+|2+| FD| 6| 3 D—-M:M+1 |t {1]|0fe
STS 0|6 3[10|6+|3+] 10} 7] 4 S—=MM+1 et 1]|O]e
DF EF FF
STU DF| 6| 2| EF|5+|2+| FF| 6| 3 U=M:M+1 et {1]0]e
STX 9F | 6| 2| AF|5+|2+| BF| 6| 3 X=M:M+1 et |1]0]e
STY 1016 3110 017 Y-M:M+1 et |t]O}e
9F AF [6+| 3+| BF
suB SUBA 80| 2 |2| 9|4 2|A0j4+]2+{BO| 5] 3 A-M—A 8ttt |t
SuUBB Co| 2 |2|DOf4 | 2|EO|4+|2+|FO| 5| 3 B-M—-B gt ittt
SUBD 83| 4 |3]93]6] 2]|A3|6+[2+|B3[7] 3 D-M:M+1-D et gt
SwWi swi® 3F [19| 1 [Software Interrupt 1 oo fofe]e
SwWi26 10 | 20 | 2 [Software Interrupt 2 oo fe o (o
3F
swizb - 11 [20| 1 |Software Interrupt 3 oo oo |-
{ 3F .
SYNC 13 | 24| 1 [Synchronize to Interrupt o [o jo[o]e
TFR R1,R2 [1F] 6 |2 | R1—R22 o Jofofe]e
TST TSTA 4D | 2 | 1 |TestA e (1t 10]e
TSTB . . 6D 2 [1 |TestB e it |t |0]e
TST 0D|.6] 2)6D[6+]|2+]|7D| 7| 3 Test M e[t |t |0 (e
NOTES: . ‘ - ’
1. * This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table,
Table 2.

2. R1 and R2 may be any pair of 8 bit or any pair of 16 bit registers.

. The 8 bit registers are: A, B, CC, DP

The 16 bit registers are: X, Y, U, S, D, PC

. EA'is the effective address.
. Thg PSH and PUL instructions require 5 cycles plus 1 cycle for each byte pushed or pulled.
. 5(6) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions).
SWi sets | and F bits. SWI2 and SWI3 do not affect | and F.
Conditions Codes set as a direct result of the instruction.
.. Vaue of half-carry flag is undefined.
Special Case — Carry set if b7 is SET.

©®NOO AW

MC6809E

FIGURE 18 — PROGRAMMING AID (CONTINUED)

Branch Instructions

SIGNED CONDITIONAL BRANCHES (Notes 1-4)

Test True oP False oP

r>m BGT 2E BLE 2F

rzm BGE 2C BLT 2D

r=m BEQ 27 BNE 26

rsm BLE 2F BGT 2E

r<m BLT 2D BGE 2C
NOTES:

1. All conditional branches have both short and long variations.

2
3.
4.
5

All short branches are 2 bytes and require 3 cycles.
All conditional long branches are formed by prefixing the short branch opcode with $10 and using a 16-bit destination offset.
All conditional long branches require 4 bytes and 6 cycles if the branch is taken or 5 cycles if the branch is not taken.

5(6) means: 5 cycles if branch not taken, 6 cycles if taken.

UNSIGNED CONDITIONAL BRANCHES (Notes 1-4)

Test True oP False oP
>m BHI 22 BLS 23
rz2m BHS 24 BLO 25
r=m BEQ 27 BNE 26
rsm BLS 23 BHI 22
r<m BLO 25 BHS 24

. Addressing
|__Mode | M
Relative | 6§/3]2{1]0 ive | 513]2111)0
Instruction| Forms | OP| ~5| # D H|N|Z|V|C Instruction| Forms (OP|~5| # D HIN|Z]|V|[C
BCC BCC 24| 3 | 2 |Branch C=0 ejefelole BLS BLS 23| 3 | 2 |Branch Lower olejefofe
LBCC 10 |5(6)| 4 |Long Branch olejelele or Same
24 C=0 LBLS 10 (5(6)] 4 [Long Branch Lower (e]ele|e e
BCS BCS 25| 3 | 2 fBranch C=1 ol K 23 or-Same
LBCs 10 |5(6)| 4 |Long Branch . BLT BLT 2D} 3 | 2 |Branch<Zero elolejoie
25 C=1 LBLT 10 [5(6)| 4 [Long Branch<Zero |e|ele|e e
BEQ BEQ 27 3 | 2 |Branchz=1 ele|ejele 2D
LBEQ 10 {5(6)| 4 |Long Branch olofeofe]e BMI BMI 2B| 3 | 2 {Branch Minus elelolefe
27 Z=1 LBMI 10 |5(6){ 4 [Long Branch Minus [e|e]eje e
BGE BGE 2C| 3 | 2 [BranchzZero ofefefefe 28
LBGE 10 |5(6)| 4 [Long BranchzZero | ®[®|e(] e BNE BNE 26| 3 | 2 |BranchZ=0 ofeo]e]e|e
2C LBNE 10 | 5(6) | 4 |Long Branch olo|efefe
BGT BGT 26| 3 | 2 [Branch>Zero efele]e]e 2 z=0
LBGT 10]5(6)| 4 |Long Branch>Zero || e e[efe BPL BPL 2A| 3 | 2 |Branch Plus oo ole
2E LBPL 10 |5(6)| 4 |Long Branch Plus ojojefe e
BHI BHI 22| 37| 2 [Branch Higher o[efe]e]e 2A
LBHI 10 | 5(6)] 4 |Long Branch Higher | @ (e[e|e]e BRA BRA 20| 3 2 |Branch Always oloejofe e
22 LBRA 16| 5 | 3 |Long Branch Always |e [e[e]e |e
BHS BHS 24| 3 | 2 |Branch Higher e|ojefoie BRN BRN 21| 3 | 2 |Branch Never olefole (o
or Same LBRN 10| 5 | 4 [Long Branch Never |e (e |e|e e
LBHS 10 |5(6)| 4 |Long Branch Higher | e | e[e| oo 21
24 or Same BSR BSR 8D| 7 | 2 [Branch to Subroutine | ® ofefe
BLE BLE 2F| 3 | 2 [BranchsZero ejefejele LBSR 17| 9 | .3 [Long Branch to . ele|e
LBLE 10|5(6)| 4 |Long BranchsZero | e|e|lefe]e Subroutine
x* BVC BVC | 28| 3 | 2 [Branch V=0 e+
BLO BLO 25| 3 [2 [Branch lower MR E LBvC 10 [5(6) | 4 |Long Branch elefe]e e
LBLO 10| 5(6)| 4 [Long Branch Lower | e | e[e[e| e 28 V=0
% BVS BVS 29 3 | 2 |Branch V=1 T .
LBVS 10 |5(6) | 4 [Long Branch elefefole
29 V=1
SIMPLE BRANCHES
OoP ~ £ SIMPLE CONDITIONAL BRANCHES (Notes 1-4)
BRA 20 3 2 Test True OP False oP
LBRA % 5 3 N=1 BMI 28 BPL 2A
BRN 213 2 z=1 BEQ 27 BNE 26
LBRN 1021 5 4 V=1 BVS 29 BVC 28
BSR 8D 7 2 C=1 BCS 25 BCC 24
LBSR 17 9 3

MC6809E

INDEXED ADDRESSING MODES

Nondirect Indirect
Assembler | Post-Byte | +|+ | Assembler |Post-Byte [+ |+
Type Forms Form Opcode |~|# Form Opcode |~} #
Constant Offset From R No Offset , R |1RR00100{0(0 [, R [1RR10100 | 3|0
5-Bit Offset n, R ORRnnnnn| 10 defaults to 8-bit
8-Bit Offset n,-R | TRR0O1000| 1]1 [n, R JIRR11000 | 4]1
16-Bit Offset n, R |1RR01001]4]2| I[n, Rl JIRR11001}7]|2
Accumulator Offset From R A—Register Offset AR 1RR00110} 1|0 [A, RI. ['RR10110 | 4|0
B —Register Offset B. R 1TRR0O0101| 110 (B, Rl |1RR10101 | 4|0
D — Register Offset D, R 1RR01011} 4|0 [D, Rl [TRR11011 | 7|0
Auto Increment/Decrement R Increment By 1 , R+ 1RR00000{ 20 not allowed
Increment By 2 , R ++ |1RRO0001 (3|0 [, R ++]|1RR10001 6{0
Decrement By 1 ,-R 1RR00010{ 2|0 not allowed
Decrement By 2 ,--R|1RRO0011)3]0| [, --R] [IRR10011{6]0
Constant Offset From PC 8-Bit Offset n, PCR -11XX01100{ 1{1 | [n, PCR] [IXX11100 | 4]1
16-Bit Offset n, PCR |1XX01101{5|2] [n, PCR] 1XX11101 | 8|2
Extended Indirect 16-Bit Address - —- [n] 10011111 | 5|2
R=X,Y,U,orS RR: 00=X 10=U
X=Don't Care 01=Y 1M=S
INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS 6809 PROGRAMMING MODEL
Indexed L_|—l
Post-Byte Register Bit Addressing X — Index Register
7]6]5[4[3]2]1]0 Mode -
O[RIRTx[x[x|x|x | EA=.R + 5 Bit Offset Y — Index Register .)
TTRIRTO (o010 010 R+ Ty Pointer Register
TIR|R|T[0]0]0]1 R+ + — seroac
1]RIR1010101T}0 - R S — Hardware Stack
1{R|R]I[0]Of1]1 ,-- R
1{R{R{I]O]1{0]O EA = , R + 0 Offset Program Counter
1|R{R]I]O]1]|0]1 EA = , R'+ ACCB Offset
1|R{R]1{0]1]1]0 |EA=,R + ACCA Offset -A “ Accumulators
1|R[R]I}]1]0(0]|O EA = , R+ 8-Bit Offset
T{R{R{I}1]0f0]1 EA = , R + 16-Bit Offset H/——/
TIRIR]I {1011 EA = , R + D Offset D
T x|x|1|1]1]10]0 |EA =, PC + 8BitOffset Di P Regist
T[T [T [7[0]1 [EA =.PC + i6BitOffset irect Page Register. .
1T|RIRf1 |11 [1]1 EA = [, Add - iti
| - | { ress] ARNNNENE CC— Condition Code
YT | — carvs
: Addressing Mode Field arry-sorrow
Overflow
Indirect Field Zero
. . Negative
(Sign bit when by = 0) IRQ Interrupt Mask
Half Carry

X = Don't Care

- Register Field: RR

0=y
0=U
Mn=:s

Fast Interrupt Mask
Entire State on Stack

MC6809E

Push/Pull Post Byte

LITTITTT]

Transfer/ Exchange Post Byte

Source l l Destination
Loy el

Register Field

0000=D (A-B) 0101=PC
0001 =X 1000=A
0010=Y 1001=8
0011 =U 1010=CCR
0100=S 1011=DPR

6809 Stacking Order
Pull Order
CCR
A cc
B A
DPR B
X DP
Y X Hi
S/U X Lo
PC Y Hi
Y Lo
U/S Hi
U/S Lo
PC Hi
PC Lo
4
Push Order
b

Increasing Memory

ORDERING INFORMATION

6809 Vectors
FFFE Restart
FFFC NMI
FFFA SWI
FFF8 IRQ
FFF6 FIRQ
FFF4 SW12
FFF2 SW13
FFFO Reserved

Package Temperature

Type Frequency Range Order Number
Ceramic 1.0 MHz 0°C to 70°C MCB809EL
L Suffix 1.0 MHz —40°C to 85°C MCB809ECL
1.5 MHz 0°C to 70°C MCB8A0SEL

1.6 MHz —40°C to 85°C | MCB8A09ECL
2.0 MHz 0°C to 70°C MC68BO9EL

2.0 MHz —40°C to 85°C | MCB8BO9ECL
Plastic 1.0 MHz 0°C to 70°C MC6809EP
P Suffix 1.0 MHz —40°C to 85°C MCB809ECP
1.5 MHz 0°C to 70°C MCB8A09EP

1.5 MHz —40°C to 85°C | MC6BAO9ECP
2.0 MHz 0°C to 70°C MCB8BO9EP

2.0 MHz —40°C to 85°C | MC68BO9ECP
Cerdip 1.0 MHz 0°C to 70°C MC6809ES
S Suffix 1.0 MHz | —40°C to 85°C MCB809ECS
1.6 MHz 0°C to 70°C MCB8A09ES

1.5 MHz —40°C to 85°C | MC68AO09ECS

2.0 MHz 0°C to 70°C MCB8B0O9ES

2.0 MHz | —40°C to 85°C_| MC68BOSECS

