
® MOTOROLA

8-BIT MICROPROCESSING UNIT

The MC6809E is a revolutionary high performance 8-bit microprocessor
which supports modern programming techniques such as position independ­
ence, reentrancy, and modular programming.

This third-generation addition to the M6800 Family has major architectural
improvements which include additional registers, instructions, and addressing
modes.

The basic instructions of any computer are greatly enhanced by the
presence of powerful addressing modes. The MC6809E has the most com­
plete set of addressing modes available on any 8-bit microprocessor today.

The MC6809E has hardware and software features which make it an ideal
processor for higher level language execution or standard controller applica­
tions. External clock inputs are provided to allow synchronization with
peripherals, systems, or other MPUs.
MC6800 COMPATIBLE
• Hardware ~ Interfaces with All M6800 Peripherals
• Software ~ Upward Source Code Compatible Instruction Set and

Addressing Modes
ARCHITECTURAL FEATURES
• Two 16-Bit Index Registers
• Two 16-Bit Indexable Stack Pointers
• Two 8-Bit Accumulators can be Concatenated to Form One 16-Bit

Accumulator
• Direct Page Register Allows Direct Addressing Throughout Memory
HARDWARE FEATURES
• External Clock Inputs, E and Q, Allow Synchronization
• TSC Input Controls Internal Bus Buffers
• LlC Indicates Opcode Fetch
• AVMA Allows Efficient Use of Common Resources in a Multiprocessor

System
• BUSY is a Status Line for Multiprocessing
• Fast Interrupt Request Input Stacks Only Condition Code Register and

Program Counter
• Interrupt Acknowledge Output Allows Vectoring By Devices
• Sync Acknowledge Output Allows for Synchronization to External Event
• Single Bus-Cycle RESET
• Single 5-Volt Supply Operation
• NMI Inhibited After RESET Until After First Load of Stack Pointer
• Early Address Valid Allows Use With Slower Memories
• Early Write Data for Dynamic Memories
SOFlWARE FEATURES
• 10 Addressing Modes

• M6800 Upward Compatible Addressing Modes
• Direct Addressing Anywhere in Memory Map
• Long Relative Branches
• Program Counter Relative
• True Indirect Addressing
• Expanded Indexed Addressing

0-, 5-, 8-, or 16-Bit Constant Offsets
8- or 16-Bit Accumulator Offsets
Auto-Increment/ Decrement by 1 or 2

• Improved Stack Manipulation
• 1464 Instruction with Unique Addressing Modes
• 8 x 8 Unsigned Multiply
• 16-Bit Arithmetic
• Transfer/Exchange All Registers
• Push/ Pull Any Registers or Any Set of Registers
• Load Effective Address

Me6S0gE

HMOS
(HIGH-DENSITY N-CHANNEL, SILICON-GATE)

a-BIT
MICROPROCESSING

UNIT

VSS

NMi
iAQ

BS

Vee

AO

Al

A2

A3

A4

A7

AS

All

L SUFFIX
CERAMIC PACKAGE

CASE 715

PIN ASSIGNMENT

HACi

TSe

Lie

RESET

AVMA

Q

BUSY

R/W

DO

Dl

D2

D3

D4

D5

D6

D7

A15

A14

A13

Me6S09E

MAXIMUM RATINGS

Rating Symbol Value Unit

Supply Voltage VCC -0.3 to + 7.0 V

Input Voltage Vin 0.3 to + 7.0 V

Operating Temperature Range TL to TH
MC6809E, MC68A09E, MC68809E TA o to + 70 'c
MC6809EC, MC68A09EC, MC68809EC -40 to +85

Storage Temperature Range Tstg -55to+150 'c

THERMAL CHARACTERISTICS
Characteristic Symbol Value Unit

Thermal Resistance
Ceramic 50
Cerdip 8JA 60 'C/W
Plastic 100

POWER CONSIDERATIONS

The average chip-junction temperature, TJ, in 'c can be obtained from:

T J = TA + IPDoOJA)
Where:

T A"" Ambient Temperature, 'c
OJAE Package Thermal Resistance, Junction-to-Ambient, °C/W

PD'" PINT+ PPORT
PINTEICC x VCC, Watts - Chip Internal Power

PPORT'" Port Power Dissipation, Watts - User Determined

This device contains circuitry to protect the
inputs against damage due to high static
voltages or electric fields; however, it is ad­
vised that normal precautions be taken to
avoid application of any voltage higher than
maximum rated voltages to this high im­
pedance circuit.

Reliability of operation is enhanced if unus­
ed inputs are tied to an appropriate logic
voltage levelle.g., either VSS or VCCI.

(1)

For most applications PPORT<C PINT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship between PD and T J lif PPORT is neglected) is:

PD=K+ITJ+273'C) (2)

Solving equations 1 and 2 for K gives:

K = PDolT A + 273'C) + OJAoPD2 (3)

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring PD (at equilibrium)
for a known T A. Using this value of K the values of PD and T J can be obtained by solving equations (1) and (2) Iteratively for any
value of T A.

DC ELECTRICAL CHARACTERISTICS IVCC=5.0 V ±5%, Vss=O Vdc, TA=TL to TH unless otherwise notedl

Characteristic Symbol Min Typ Max Unit

Input High Voltage Logic, a, VIH VSS + 2.0 VCC
RESET VIHR VSS + 4.0 - VCC V

E VIHC VCC-0.75 - VCC+0.3

Input Low Voltage Logic, RESET VIL VSS-0.3 - VSS + 0.8 V
E VILC VSS-0.3 - VSS+04 V
a VILa Vss - 03 - Vss + 0.6 V

Input Leakage Current Logic, a, RESET
lin

- - 2.5
~A IVin = 0 to 5.25 V, VCC = max) E - - 100

de Output High Voltage
IILoad = -205 ~A, VCC = mini 00-07

VOH
VSS + 24 - -

V
IILoad = -145 ~A, Vec = mini AO-A15, R/W VSS + 24 - -
IILoad = -100 ~A, VCC = mini 8A, 8S, L1C, AVMA, 8USY VSS + 24 - -

de Output Low Voltage
VOL - - VSS + 0.5 V

(ILoad = 2.0 rnA, VCC = mini
Internal Power Dissipation (Measured at TA ~ GOC in Steady State Operation) PINT 1.0 W
Capacitance Cin

IVin = 0, TA = 25'C, f = 1.0 MHzl 00-07, Logic Inputs, a, RESET - 10 15 pF E - 30 50
AO-A15, R/W, SA, 85,

Cout - 10 15 pF Lie. AVMA, 8USY
Frequency of Operation MC6809E 0.1 - 1.0

IE and a Inputsl MC68A09E f 0.1 - 1.5 MHz
MC68809E 0.1 - 2.0

Hi-Z 10ff Statel Input Current 00-07
ITS I

- 2.0 10
~A IVin = 0.4 to 2.4 V, VCC = max) AO-A15, R/W - - 100

• Capacitances are periodically tested rather than 100% tested.

MC6809E

BUS TIMING CHARACTERISTICS (See Notes 1 2 3 and 41

Ident. MC6809E MC68A09E MC68B09E
Unit

Number Characteristics Symbol Min Max Min Max Min Max

1 Cycle Time tcyc 1.0 10 0.667 10 0.5 10 ~s

2 Pulse Width, E Low PWEL 450 9500 295 9500 210 9500 ns

3 Pulse Width, E High PWEH 450 9500 280 9500 220 9500 ns

4 Clock Rise and Fall Time tr, tf - 25 - 25 - 20 ns

5 Pulse Width, 0 High PWOH 450 9500 280 9500 220 9500 ns

7 Delay Time, E to Q Rise tEOl 200 - 130 ~. 100 - ns

7A Delay Time, Q High to E Rise tE02 200 - 130 - 100 - ns

7B Delay Time, E High to 0 Fall tE03 200 130 100 ns

7C Delay Time, Q Hlg\1 to c Fall tE04 200 130 - 100 ns

9 Address Hold Time tAH 20 - 20 - 20 - ns

11 Address Delay Time from E Low (BA, BS, R/WI tAD - 200 - 140 - 110 ns

17 Read Data Setup Time tDSR 80 - 60 - 40 ns

18 Read Data Hold Time tDHR 10 - 10 - 10 - ns

20 Data Delay Time from 0 to DO - 200 - 140 - 110 ns

21 Write Data Hold Time tDHW 30 - 30 - 30 - ns

29 Usable Access Time tACC 695 - 440 - 330 - ns

30 Control Delay Time tCD - 300 - 250 - 200 ns

Interrupts, HALT, RESET, and TSC Setup Time tpcs 200 - 140 - 110 - ns

(Figures 6, 7, 8, 9, 12, and 131

TSC Drive to Valid Logic Level (Figure 131 tTSV - 210 150 120 ns

TSC Release MaS Buffers to High Impedance {Figure 131 tTSR - 200 - 140 - 110 ns

TSC Hi-Z Delay Time (Figure 131 lTSD - 120 - 85 - 80 ns

Processor Control Rise and Fall Time (Figure 7)
tPCr' - 100
tPCf

- 100 - 100 ns

FIGURE 1 - READ/WRITE DATA TO MEMORY OR PERIPHERALS TIMING DIAGRAM

}-------------~,r-----------------------------~~IHC

o

0.
)~t";'\~1k----@

~--=--\V

VIH VILC

R/W, Address,---ttlCJ-VO:7\x~r't--------------------=--------ttiv\~"
BA, BS

Read Data
Non-Muxed ____ ~~---_Jj__t--------~~~----------~~-----~-~

Write Data

BUSY, LlC,
AVMA

NOTES:
1. Voltage levels shown are VL:SO.4 V, VH~2.4 V, unless otherwise specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified.
3. Hold time.1 ® I for BA and BS is not specified.
4. Usable access time is computed-by: 1-4-11 max-17.

X>OOQ<)! Not Valid

Me6S09E

FIGURE 2 - EXPANDED BLOCK DIAGRAM

* Internal Three-State Control

FIGURE 3 - BUS TIMING TEST LOAD

5.0 V

MMD6150
or Equiv.

Test Point O-' -e--+t--.

C R MMD7000
or Equiv.

C=3O pF for BA, BS, LlC, AVMA, BUSY
130 pF for 00-07
90 pF for AO-A15, Riw

R = 11.7 kO for 00-07
16.5 kO for AO-A 15, R/W
24 kO for BA, BS, LlC, AVMA, BUSY

Instruction
Register

-+-- VCC

-+-- VSS

FIRQ

IRQ
'--.:;==---l~ LlC

AVMA
R/W
TSC

HAri'
BA

BS
'-----:l~ BUS Y

PROGRAMMING MODEL

As shown in Figure 4, the MC6809E adds three registers to
the set available in the MC6800. The added registers include
a direct page register, the user stack pointer." and a second
index register.

ACCUMULATORS lA, B, D)

The A and B registers are general purpose accumulators
which are used for arithmetic calculations and manipulation
of data.

Certain instructions concatenate the A and B registers to
form a single 16-bit accumulator. This is referred to as theD·
register, and is formed with the A register as the most signifi­
cant byte.

DIRECT PAGE REGISTER lOP)
The direct page register of the MC6809E serves to enhance

the direct addressing mode. The content of this register
appears at the higher address outputs (A8-A15) during direct
addressing instruction execution. This allows the direct
mode to be used at any place in memory, under program
control. To ensure M6800 compatibility, all bits of this
register are cleared during processor reset.

Me6S09E

FIGURE 4 - PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15

x ~ Index Register

Y - Index Register

U - User Stack Pointer

S - Hardware Stack Pointer

PC

A I ,
V

D

o

B

} ""'"'" ",""'"'
Program Counter

Accumulators
/

7 0

I DP I Direct Page Register
~--------------~
7 0

I ElF I H I I I N I z I V I C I cc - Condition Code Register

INDEX REGISTERS (X, VI

The index registers are used in indexed mode of address­
ing. The 16-bit address in this register takes part in the cal­
culation of effective addresses. This address may be used to
point to data directly or may be modified by an optional con­
stant or register offset. During some indexed modes, the
contents of the index register are incremented and decre­
mented to point to the next item of tabular type data. All four
pointer registers (X, V, U, SI may be used as index registers.

STACK POINTER (U, SI

The hardware stack pointer (SI is used automatically by
the processor during subroutine calls and interrupts. The
user stack pointer (UI is controlled exclusively by the pro­
grammer. This allows arguments to be passed to and from
subroutines with ease. The U register is frequently used as a
stack marker. Both stack pointers have the same indexed
mode addressing capabilities as the X and Y registers, but
also support Push and Pull instructions. This allows the
MC6809E to be used efficiently as a stack processor, greatly
enhancing its ability to support higher level languages and
modular programming.

NOTE
The stack pointers of the MC6809E point to the top of
the stack in contrast to the MC6800 stack pointer,
which pointed to the next free location on stack.

PROGRAM COUNTER
The program counter is used by the processor to point to

the address of the next instruction to be executed by the pro­
cessor. Relative addressing is provided allowing the program
counter to be used like an index register in some situations.

CONDITION CODE REGISTER
The condition code register defines the state of the pro­

cessor at any given time. See Figure 4.

FIGURE 5 - CONDITION CODE REGISTER FORMAT

BITO (CI

Carry
Overflow

'----- Zero
'------- Negative

'-----·---IRO Mask
'--------- Half Carry

'----------- FIRO Mask

'------------Entire Flag

CONDITION CODE REGISTER
DESCRIPTION

Bit 0 is the carry flag and is usually the carry from the
binary ALU. C is also used to represent a "borrow" from
subtract like instructions (CMP, NEG, SUB, SBCI and is the
complement of the carry from the binary ALU.

BIT 1 (VI

Bit 1 is the overflow flag and is set to a one by an operation
which causes a Signed twos complement arithmetic over­
flow. This overflow is detected in an operation in which the
carry from the MSB in the ALU does not match the carry
from the MSB-l.

BIT2(ZI

Bit 2 is the zero flag and is set to a one if the result of the
previous operation was identically zero.

Me6S09E

BIT3 (N)

Bit 3 is the negative flag, which contains exactly the value
of the MSB of the result of the preceding operation. Thus, a
negative twos complement result will leave N set to a one.

BIT4 (I)

Bit 4 is the TRCi mask bit. The processor will not recognize
interrupts from the TRCi line if this bit is set to a one. NliilT,
FIRO, iRQ, RESET, and SWI all set I to a one. SWI2 and
SWI3 do not affect I.

BIT 5 (H)
Bit 5 is the half-carry bit. and is used to indicate a carry

from bit 3 in the ALU as a result of an 8-bit addition only
IADC or ADDI. This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of
this flag is undefined in all subtract-like instructions.

BIT6 (F)

Bit 6 is the FIRO mask bit. The processor will not
recognize interrupts from the FI RO line if this bit is a one.
NMI, FIRO, SWI, and RESET all set F to a one. TRQ, SWI2,
and SWI3 do not affect F.

BIT7 (E)

Bit 7 is the entire flag, and when set to a one indicates that
the complete machine state fall the registersl was stacked,
as opposed to the subset state I PC and CCI. The E bit of the
stacked CC is used on a return from interrupt I RTII to deter­
mine the extent of the unstacking. Therefore, the current E
left in the condition code register represents past action.

PIN DESCRIPTIONS

POWER IVSS, Vee)
Two pins are used to supply power to the part: VSS is

ground or 0 volts, while Vce is +5.0 V ±5%.

ADDRESS BUS (AO-A15)

Sixteen pins are used to output address information from
the M PU onto the address bus. When the processor does
not require the bus for a data transfer, it will output address
FFFF16, R/W= 1, and BS=O; this is a "dummy access" or
VMA cycle. All address bus drivers are made high­
impedance when output bus available I BAI is high or when
TSe is asserted. Each pin will drive one Schottky TTL load or
four LSTTL loads and 90 pF.

DATA BUS (00-07)

These eight pins provide communication with the system
bidirectional data bus. Each pin will drive one Schottky TTL
load or four LSTTL loads and 130 pF.

READ/WRITE (R/W)

This signal indicates the direction of data transfer on the
data bus. A low indicates that the MPU is writing data onto
the data bus. R/W is made high impedance when BA is high
or when TSe is asserted.

RESET

A low level on this Schmitt-trigger input for greater than
one bus cycle will reset the MPU, as shown in Figure 6. The

reset vectors are fetched from locations FFFE16 and FFFF16
!Table 11 when interrupt acknowledge is true, IBAoBS= 11.
During initial power on, the reset line should be held low until
the clock input Signals are fully operational.

Because the MC6809E RESET pin has a Schmitt-trigger in­
put with a threshold voltage higher than that of standard
peripherals, a simple R/e network may be used to reset the
entire system. This higher threshold voltage ensures that all
peripherals are out of the reset state before the processor.

HALT

A low level on this input pin will cause the MPU to stop
running at the end of the present instruction and remain
halted indefinitely without loss of data. When halted, the BA
output is driven high indicating the buses are high im­
pedance. BS is also high which indicates the processor is in
the halt state. While halted, the M PU will not respond to ex­
ternal real-time requests IFIRO, IROI although NMI or
RESET will be latched for later response. During the halt
state, 0 and E should continue to run normally. A halted
state IBAoBS = 11 can be achieved by pulling HALT low
while RESET is still low. See Figure 7.

BUS AVAILABLE, BUS STATUS (BA, BS)

The bus available output is an indication of an internal
control signal which makes the MOS buses of the M PU high
impedance. When BA goes low, a dead cycle will elapse
before the MPU acquires the bus. BA will not be asserted
when TSC is active, thus allowing dead cycle consistency.

The bus status output signal, when decoded with BA,
represents the MPU state Ivalid with leading edge of 01.

MPU State MPU State Definition
BA BS
0 0 Normal (Running)

0 1 Interrupt or Reset Acknowledge

1 0 Sync Acknowledge

1 1 Halt Acknowledge

Interrupt Acknowledge is indicated during both cycles of a
hardware vector fetch IRESET, NMI, FIRQ, IRQ, SWI,
SWI2, SW131. This signal, plus decoding of the lower four
address lines, can provide the user with an indication of
which interrupt level is being serviced and allow vectoring by
device. See Table 1.

TABLE 1 - MEMORY MAP FOR INTERRUPT VECTORS
Memory Map For

Interrupt Vector
Vector Locations

MS LS Description

FFFE FFFF RESET
--

FFFC FFFD NMI

FFFA FFFB SWI
FFF8 FFF9 IRO
FFF6 FFF7 Fi'R6
FFF4 FFF5 SWI2

FFF2 FFF3 SWI3
FFFO FFFI Reserved

FIGURE 6 - RESET TIMING

I m I m+1 I m+2 I m+31 m+41 m+5 I m+6 I m+7 I I n I n + 1 I n + 2 I n + 3 I n + 4 I n + 5 I n + 6 I n + 7 I n + 8 I n + 9 I n + 10 I
E

Q

RESET ____ _

Address ==l.Y\._---"'---_..JL_~.L, _ _"_ _ __"'____J'_ _ __"'____J'_ _ _1.'__"_--"'---

Data .ll.I.ll.I=l.Y\._~''---_J'-_--'

R/W~

BA S\\ill\\\
B S ill\\\\\\\

AVMA

=
\~------------------~====~-----

\~--------~r_--------------------------~ \

BUSY~~w-________________ ~r---\~ ________ ~ ~ ____________ ~r---\~ ______ ___
Lie r--""",,~--v----'.~-,r----'

'---------------------~

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

s:
(")
en co
<:)
CD
m

FIGURE 7 - HALT AND SINGLE INSTRUCTION EXECUTION TIMING FOR SYSTEM DEBUG

2nd to Last Last Cycle
Cycle 9f of
Current Current Dead

Halted Halted

Q

I

~ __________ \~ _____ .. ~t~tJC_f ________________ __
~ ----2t-ltpcs

Address ---,,--~v--
Bus

Fetch Execute

R/W

BA ________________ ~!~----~\ \~ __________ ~/
BS ________________ ~!~-----\~----------------~\ /~---------

Data -----,l,--__"r----.
Bus ___ ..J_

Instruction
Opcode

AVMA __________ ~ ____ ~\,_--------------------~/

L1C ------------'/
\--------------.~

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

\'------

3:
n
0»
CO
C)
CD
m

Me6S09E

Sync Acknowledge is indicated while the MPU is waiting
for external synchronization on an interrupt line.

Halt Acknowledge is indicated when the MC6809E is in a
halt condition.

NON MASKABLE INTERRUPT (NMI)"
A negative transition on this input requests that a non­

maskable interrupt sequence be generated. A non-maskable
interrupt cannot be inhibited by the program and also has a
higher priority than FIRQ, IRQ, or software interrupts. Dur­
ing recognition of an NMI, the entire machine state is saved
on the hardware stack. After reset, an NMI will not be recog'
nized until the first program load of the hardware stack
pointer IS), The pulse width of NMIIow must be at least one
E cycle. If the NMI input does not meet the minimum set up
with respect to Q, the interrupt will not be recognized until
the next cycle. See Figure 8.

FAST-INTERRUPT REOUEST (FIRO)"
A low level on this input pin will initiate a fast interrupt se­

quence, provided its mask bit IFI in the CC is clear. This se­
quence has priority over the standard interrupt request IIRQI
and ·is fast in the sense that it stacks only the contents of the
condition code register and the program counter. The inter­
rupt service routine should clear the source of the interrupt
before doing an RTI. See Figure 9.

INTERRUPT REOUEST (IRO)"
A low level input on this pin will initiate an interrupt re­

quest sequence provided the mask bit (I) in the CC is clear.
Since IRQ stacks the entire machine state, it provides a
slower response to interrupts than FIRQ. IRQ also has a
lower priority than FIRQ. Again, the interrupt service routine
should clear the source of the interrupt before doing an RTI.
See Figure 8.

CLOCK INPUTS E, 0
E and Q are the clock signals required by the MC6809E. Q

must lead E; that is, a transition on Q must be followed by a
similar transition on E after a minimum delay. Addresses will
be valid from the MPU, tAD after the falling edge of E, and
data will be latched from the bus by the falling edge of E.
While the Q input is fully TTL compatible, the E input directly
drives internal MOS circuitry and, thus, requires a high level
above normal TTL levels. This approach minimizes clock
skew inherent with an internal buffer. Refer to BUS TIMING
CHARACTERISTICS for E and Q and to Figure 10 which
shows a simple clock generator for the MC6809E.

BUSY
BUSY will be high for the read and modify cycles of a

read-modify-write instruction and during the .access of the
first byte of a dbuble-byte operation (e.g., LDX, STD,
ADDD)' BUSY is also high during the first byte of any in­
direct or other vector fetch (e.g., jump extended, SWI in-
direct, etc.). .

In a multiprocessor system, BUSY indicates the need to

defer the rearbitration of the next bus cycle to insure the in­
tegrity of the above operations. This difference provides the
indivisible memory access required for a "test-and-set"
primitive, using anyone of several read-modify-write instruc­
tions.

BUSY does not become active during PSH or PUL opera­
tions. A typical read-modify-write instruction IASLl is shown
in Figure 11. Timing information is given in Figure 12. BUSY
is valid tCD after the rising edge of Q.

AVMA
AVMA is the advanced VMA signal and indicates that the

MPU will use the bus in the following bus cycle. The predic­
tive nature of the AVMA signal allows efficient shared-bus
multiprocessor systems. AVMA is low when the MPU is in
either a HALT or SYNC state. AVMA is valid tCD after the
rising edge of Q.

LlC
LlC lIast instruction cycle) is high during the last cycle of

every instruction, and its transition from high to low will indi­
cate that the first byte of an opcode will be latched at the end
of the present bus cycle. LlC will be high when the MPU is
halted at the end of an instruction (i.e., not in CWAI or
RESET), in sync state, or while stacking during interrupts.
LlC is valid tCD after the rising edge of Q.

TSC
TSC (three-state control) will cause MOS address, data,

and R/IN buffers to assume a high-impedance state. The
control signals IBA, BS, BUSY, AVMA, and LlC) will not go
to the high-impedance state. TSC is intended to allow a
single bus to be shared with other bus masters (processors
or DMA controllers).

While E is low, TSC controls the address buffers and R/IN
directly. The data bus buffers during·a write operation are in
a high-impedance state until Q rises at which time, if TSC is
true, they will remain in a high-impedance state. If TSC is
held beyond the rising edge of E, then it will be internally
latched, keeping the bus drivers in a high-impedance state
for the remainder of the bus cycle. See Figure 13.

MPU OPERATION

During normal operation, the MPU fetches an instruction
from memory and then executes the requested function.
This sequence begins after RESET and is repeated indefinite­
ly unless altered by a special instruction or hardware occur­
rence. Software instructions that alter normal MPU opera­
tion are: SWI, SWI2, SWI3, CWAI, RTI, and SYNC. An
interrupt or HALT input can also alter the normal execution
of instructions. Figure 14 is the flowchart for the MC6809E.

"NMI. RRQ, and rim requests are sampled on the fallin~ edge of Q. One cycle is required for synchronization before these interrupts are recog­
nized. Th~ndlng Interru~t(sl Will not be serviced until completion of the current instruction unless a SYNC or CWAI condition is present. If
IRQ and FIRQ do not remain low until completion of the current Instrucnan, they may not be reco~nSed. However, f\/1iiii is latched and need
onlSEfmain low for one cycle. No interrupts are recognized or latched between the. falling edge of E ET and the rising edge of BS indicating
RE acknowledge. See I'fEID sequence in the MPU flowchart in Figure 14.

Last Cycle
of Current
Instruction

I ...)01 ...

FIGUR~ 8 - IRO AND NMI INTERRUPT TIMING

Interrupt Stacking and Vector Fetch Sequence

Instruction
Fetch

)01... .1

I m-2 I m-l I m I m+ 1 I m+21 m+31 m+41 m+5 I m+61 m+ 71 m+SI m+9Im+ 10 Im+ lllm+ 121m+ 131m+ 141m+ 151m+ 161m+ 171m+ lsi n n+ 1 I

o
Address I

Bus -P~~~J~---1~-p-c~L-p-c~L-__ JL __ ~L-__ JL __ -fi~ __ JL __ -A ____ JL __ ~ ____ A-__ -A~~~~~~~~~~~~~~~~~~~~~~~

1RQ or -...r I PCS

NMI ~~-~--~~~~~---------------
Data __ ~ ____ JL __ -1\ ____ JL __ -A~~/L __ --'\~~/L~--'\~~'~~~~ __ ~L-__ JL __ ~~ __ JL __ ~ ____ JL __ ~~==A-__ -A ____ J~==~ ____ lL __ -A

R/W~ \
BA~~ __ ~====~ ______ ___
BS~~~~~================================~ ___ ~~/ ___ -, \

AVMA __ -A ____ ~ __ -1

BUSY~~~==~r--\~~====~---c=== LlC ______ ~

* E clock shown for reference only.

NOTE: Timing measurements are refererlced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

~ o en co
~
m

Q

Address
Bus

last Cycle
of Current
I Instruction
0(., ...

I m-2 , m-l m

FIGURE 9 - FIRQ INTERRUPT TIMING

Interrupt Stacking and Vector Fetch Sequence

I m+l 1 m+2 , m+3 , m+4 I m+5 , m+6 I m+7 , m+8 m+9

Instruction

., ... Fetch .1

n+1 n+

RRQ ~ __ fr __ t_pc_s __ __

Data

PCl PCH CCR VMA New PCH New PCl VMA

R/W~ \'-____ ---'J
BA~~ __ __

BS~ _____________ ..J/ \'-------
AVMA

BUSY ~ r-----\,.---~ __ ~f \~ ____ ~~

LlC --'-__ ---J

* E clock shown for reference only.

NOTE: Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

Me6S09E

FIGURE 10 - CLOCK GENERATOR

r­
I

------------------,
I
I
I
I
IMRDY

I
I
I

+5V
I
I
I
I
I

Optional
MRDY fireuit

I
I
I L ____ _ _ __ ...1

4 MHz

o

MRDY

Si'RE'i'CH ---------V/.

+5V

~--I----------~~Q to System and Processor

I.!.!.+_------,--!:> E to System

NOTE: If optional circuit is not included the CLR and PRE
inputs of U2 and U3 must be tied high.

FIGURE 11 - READ-MODIFY-WRITE INSTRUCTION EXAMPLE IASL EXTENDED INDIRECT)

Memory
Location

PC-$0200

$0201

$0202

$0203

$0204

Memory

~ -- $68

$9F

$63

$00

L-- -
$6300~
$6301~

Contents Description

ASL Indexed Opcode

Extended Indirect Postbyte

Indirect Address Hi-Byte

Indirect Address La-Byte

Next Main Instruction

Effective Address Hi-Byte

Effective Address La-Byte

Target Data

Last Cycle of FIGURE 12 - BUSY TIMING
Current Instr.

m-l m I m+l m+2 I m+3 I m+4 I m+5 I m+6 m+7 m+S 1 m+9 I m+l0 I

Q

$0200 $0201 $0202 $0203 $FFFF $6300 $6301 $FFFF $E3D6 $FFFF $E3D6

Data X ~ X X X X X X X X X
$68 $9F $63 $00 VMA $E3 $D6 VlVIA $5C VI'AA $SS

R/W~ r \ /
BUSY

LlC

AVMA

}, / \ / \
/ \ I

FIGURE 13 - TSC TIMING

Q ~C-. ____ ======-=-:Jf...!.-! __ 1~---...:ftPCS
'''~ 'k I I

TSC ==-~~_1-'--'-...J7_/ -.:..,J :"'" .""~ ~: ""~ ;--!-lTSV_

R/w' Address }- < I }-- < ___ '---__
---1 \.-tDDW ~ ~;..-.tT.:...:Sc.:.V __ _

MPUData ________ ----')---------<~ (~ __ _
~seeNotelJ

NOTES:
1. Data will be asserted by the MPU only during the inte~val while R/W is low and (E or 0) is high. A composite bus cycle is shown to give most cases of

timing.
2. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

3:
(')
en
CO
0
CD
m

$0204

X

\

Me6S09E

ADDRESSING MODES

The basic instructions of any computer are greatly en­
hanced by the presence of powerful addressing modes. The
MC6809E has the most complete set of addressing modes
available on any microcomputer today. For example, the
MC6809E has 59 basic instructions; however, it recognizes
1464 different variations of instructions and addressing
modes. The addressing modes support modern program­
ming techniques. The following addressing modes are avail­
able on the M C6809E:

Inherent .!Includes Accumulator)

Immediate

Extended
Extended Indirect

Direct

Register

Indexed
Zero-Offset
Constant Offset
Accumulator Offset
Auto I ncrement/ Decrement
Indexed Indirect

Relative
Short/Long Relative Branching
Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATOR)

In this addressing mode, the opcode of the instruction
contains all the address information necessary. Examples of
inherent addressing are: ABX, DAA, SWI, ASRA, and
CLRB.

IMMEDIATE ADDRESSING

In immediate addressing, the effective address of the data
is the location immediately following the opcode ii.e., the
data to be used in the instruction immediately following the
opcode of the instruction). The MC6809E uses both 8- and
16-bit immediate values depending on the size of argument
specified by the opcode. Examples of instructions with im­
mediate addressing are:

LDA #$20
LDX #$FOOO

LDY #CAT

NOTE
signifies immediate addressing; $ signifies hexadeci­
mal value to the MC6809 assembler.

EXTENDED ADDRESSING

In extended addressing, the contents of the two bytes
immediately following the opcode fully specify the 16-bit
effective address used by the instruction. Note that the
address generated by an extended instruction defines an
absolute address and is not position independent. Examples
of extended addressing include:

LDA CAT

STX MOUSE

LOD $2000

EXTENDED INDIRECT

As a special case of indexed addressing (discussed
below), one level of indirection may be added to extended
addressing. In extended indirect, the two bytes following the
postbyte of an indexed instruction contain the address of the
data.

LDA [CAT]

LDX [$FFFE]

STU [DOG]

DIRECT ADDRESSING

Direct addressing is similar to extended addressing except
that only one byte of address follows the opcode. This byte
specifies the lower eight bits of the address to be used. The
upper eight bits of the address are supplied by the direct
page register. Since only one byte of address is required in
direct addressing, this mode requires less memory and exe­
cutes faster than extended addressing. Of course, only 256
locations (one page) can be accessed without redefining the
contents of the DP register. Since the DP register is set to
$00 on reset, direct addressing on the MC6809E is upward
compatible with direct addressing on the M6800. Indirection
is not allowed in direct addressing. Some examples of direct
addressing are:

LDA where DP=$oo

LDB where DP= $10

LDD <CAT

NOTE
< is an assembler directive which forces direct
addressing.

REGISTER ADDRESSING

Some opcodes are followed by a byte that defines a
register or set of registers to be used by the instruction. This
is called a postbyte. Some examples of register addressing
are:

TFR X, Y Transfers X into Y
EXG A, B Exchanges A with B
PSHS A, B,X, Y Push Y, X, B and A onto S

stack
PULU X, Y, D Pull D, X, and Y from U

stack

INDEXED ADDRESSING

In all indexed addressing, one of the pointer registers (X,
Y, U, S, and sometimes PC) is used in a calculation of the ef­
fective address of the operand to be used by the instruction.
Five basic types of indexing are available and are discussed
below. The post byte of an indexed instruction specifies the
basic type and variation of the addressing mode, as well as
the pointer register to be used. Figure 15 lists the legal for­
mats for the postbyte. Table 2 gives the assembler form and
the number of cycles and bytes added to the basic values for
indexed addressing for each variation.

FIGURE 14 ~ FLOWCHART FOR MC6809E INSTRUCTIONS

NOTES: 1. Asserting RESET will result in entering the reset
sequence from any point in the flowchart.

2. BUSY is high during first vector fetch cycle.

Bus State BA BS

Running o 0

Interrupt or Reset Acknowledge 0

Sync Acknowledge o
Halt Acknowledge

s:
(')

~ o
CD
m

Me6809E

FIGURE 15 - INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

Poet-Byte Ragiatar Bit Indexed
Add_ing 7 6 6 4 3 2 1 0 Mode

0 R R d d d d d EA = ,R + 5 Bit Offset
1 R R 0 0 0 0 0 ,R+
1 R R i 0 0 0 1 ,R+ +
1 R R 0 0 0 1 0 ,-R
1 R R i 0 0 1 1 ,--R
1 R R i 0 1 0 0 EA = ,R +0 Offset
1 R R 0 1 0 1 EA =,R + ACCB Offset
1 R R 0 1 1 0 EA - ,R + ACCA Offset
1 R R 1 0 0 0 EA = ,R + B Bit Offset
1 R R 1 0 0 1 EA = ,R + 16 Bit Offset
1 R R 1 0 1 1 EA - ,R + 0 Offset
1 x x 1 1 0 0 EA - ,PC +8 Bit Offset
1 x x 1 1 0 1 EA = ,PC + 16 Bit Offset
1 R R 1 1 1 1 EA = (.Addressl --~ ..

'----Addressing Mode Field

L.-------Indirect Field
(Sign Bit when b7 = 01

L.----------'--Register Field: RR

x = Don't Care
d = Offset Bit
. 0= Not Indirect
1= 1 = Indirect

00 = X
01 = Y
10 = U
11 = S

ZERO-OFFSET INDEXED - In this mode, the selected
pointer register contains the effective address of the data to
be used by the instruction. This is the fastest indexing mode.

Examples are:

LOO O,X

LDA ,5

CONSTANT OFFSET INDEXED - In this mode, twos
complement offset and the contents of one of the pointer
registers are added to form the effective address of the
operand. The pointer register's initial content is unchanged
by the addition.

Three sizes of offset are available:

5-bit (-16 to + 15)

8-bit (- 128 to + 127)

lS-bit (- 32768 to + 32767)

The twos complement 5-bit offset is included in the post­
byte and, therefore, is most efficient in use of bytes and
cycles. The twos complement 8-bit offset is contained in a
single byte following the postbyte. The twos complement
16-bit offset is in the two bytes following the postbyte. In
most cases the programmer need not be concerned with the
size of this offset since the assembler will select the optimal
size automatically.

Examples of constant-offset indexing are:

LOA 23,X

LOX -2,5

LOY 3OO,X
LOU CAT,Y

TABLE 2 - INDEXED ADDRESSING MODE

Type

Constant Offset From R
(2s Complement Offsets)

Accumulator Offset From R
(2s Complement Offsets)

Auto Increment/Decrement R

Constant Offset From PC
(2s Complement Offsets)

Extended Indirect
R = X, Y, U or 5 RR:
x = Don't Care 00= X

01=Y
10=U
11=5

Forma

No Offset
5-Bit Offset
B-BitOffset
16-Bit Offset
A Register Offset
B Register Offset
o Register Offset
Increment By 1
Increment By 2
Decrement By 1
Decrement By 2
B-BitOffset
lS-Bit Offset
lS-Bit Address

Non Indirect
Aaaembler Poetbyte

Form Opcode

R lRROO100
n, R ORRn"nnn
n, R lRR01000
n, R lRR0100l
A, R lRROO110
B, R lRROO101
0, R lRR01011
,R+ lRROOOOO

,R+ + lRROOOOl
,-R lRROOO10

,- -R lRROOO11
n, PCR lxxOl100
n, PCR lxxOl101

- -

Indirect

+ + Assembler Poetbyte + + - , Form Opcode - ,
0 0 [RI 1 BB.1.lllOO. i 3 lJl.
1 0 defaults to B-bit
1 1 (n, RI lRR11000 4 1
4 2 (n, RI lRRll00l 7 2
1 0 (A, RI lRR10110 4 0
1 0 (B, RI lRR10l0l 4 0
4 0 (0, RI lRRll011 7 0
2 0 not allowed
3 0 (,R+ +1 lRR1000l l 6 0
2 0 not allowed
3 0 (.- -RI lRR10011 6 0
1 1 [n, peRI lxxl1100 4 1
5 2 [n, PCRI lxxl1101 8 2
- - [nl 10011111 5 2

!..and ~ indicate the number of additional cycles and bytes respectively for the particular indexing variation.

Me6809E

ACCUMULATOR-OFFSET INDEXED - This mode is
similar to constant offset indexed except that the twos com­
plement value.in one of the accumulators (A, B, or D) and
the contents of one of the pOinter registers are added to form
the effective address of the operand. The contents of both
the accumulator and the pointer register are unchanged by
the addition. The post byte specifies which accumulator to
use as an offset and no additional bytes are required. The ad­
vantage of an accumulator offset is that the value of the off­
set can be calculated by a program at run-time.

Some examples are:
LDA B, Y
LDX 0, Y
LEAX B, X

AUTO INCREMENT/DEC.REMENT INDEXED - In the
auto increment addressing mode, the pointer register con­
tains the address of the operand. Then, after the pointer
register is used, it is incremented by one or two. This ad­
dressing mode is useful in stepping through tables, moving
data, or creating software stacks. In auto decrement, the
pointer register is decremented prior to use as the address of
the data. The use of auto decrement is similar to that of auto
increment, but the tables, etc., are scanned from the high to
low addresses. The size of the increment/ decrement can be
either one or two to allow for tables of either 8- or 16-bit data
to be accessed and is selectable by the programmer. The
pre-decrement, post-increment nature of these modes
allows them to be used to create additional software stacks
that behave identically to the U and 5 stacks.

Some examples of the auto increment/ decrement
addressing modes are:

LDA ,X+
STD ,Y+ +
LDB ,-V

LDX ,--5
Care should be taken in performing operations on 16-bit

pointer registers (X, Y, U, 5) where the same register is used
to calculate the effective address.

Consider the following instruction:
STX O,X+ + (X initialized to 0)

The desired result is to store a zero in locations $0000 and
$0001, then increment X to point to $0002. In reality, the fol­
lowing occurs:
O-temp
X+2-X
X-(temp)

calculate theEA; temp is a holding register
perform auto increment

do store operation

INDEXED INDIRECT
All of the indexing modes, with the exception of auto in­

crement/ decrement by one or a ± 5-bit offset, may have an
additional level of indirection specified: In indirect address­
ing, the effective address is contained at the location
specified by the contents of the index register plus any off­
set. In the example below, the A accumulator is loaded in­
directly using an effective address calculated from the index
register and an offset.

Before Execution
A= XX (don't care)
X= $Fooo

$0100 LDA [$10,X]

$F010 $Fl
$FOll $50

$Fl50 $AA

After Execution

EA is now $F010

$Fl50 is now the
new EA

A= $AA (actual data loaded)
X= $Fooo

All modes of indexed indirect are included except those
which are meaningless (e.g., auto increment/decrement by
1 indirect!. Some examples of indexed indirect are:

LDA [,X]
LDD [10,5]
LDA [B,Y]

LDD [,X++]

RELATIVE ADDRESSING

The byte(s) following the branch opcode is (are) treated as
a signed offset which may be added to the program counter.
If the branch condition is true, then the calculated address
(PC + signed offset) is loaded into the program counter.
Program execution continues at the new location as indi­
cated by the PC; short (one byte offset) and long (two bytes
offset) relative addressing modes are available. All of
memory can be reached in long relative addressing as an ef­
fective address interpreted modulo 216. Some examples of
relative addressing are:

CAT
DOG

RAT
RABBIT

BEQ
BGT
LBEQ
LBGT

NOP
NOP

CAT
DOG
RAT
RABBIT

PROGRAM COUNTER RELATIVE

(short)
(short)
Iiong)
lIong)

The PC can be used as the pointer register with 8- or 16-bit
signed offsets. As in relative addressing, the offset is added
to the current PC to create the effective address. The effec­
tive address is then used as the address of the operand or
data. Program counter relative addressing is used for writing
position independent programs. Tables related to a particular
routine will maintain the same relationship after the routine is
moved, if referenced relative to the program counter.
Examples are:

LDA CAT, PCR
LEAX TABLE, PCR

Since program counter relative is a type of indexing, an
additional level of indirection is available.

LDA [CAT, PCR]
LDU [DOG, PCR]

Me6S09E

INSTRUCTION SET
The instruction set of the MC6809E is similar to that of the

MC6800 and is upward compatible at the source code level.
The number of opcodes has been reduced from 72 to 59, but
because of the expanded architecture and additional ad­
dressing modes, the number of available opcodes (with dif­
ferent addressing modes) has risen from 197 to 1464.

Some of the new instructions are described in detail
below.

PSHU/PSHS
The push instructions have the capability of pushing onto

either the hardware stack (S) or user stack (U) any single
register or set of registers with a single instruction.

PULU/PULS
The pull instructions have the same capability of the push

instruction, in reverse order. The byte immediately following
the push or pull opcode determines which register or
registers are to be pushed or pulled. The actual pushl pull se­
quence is fixed; each bit defines a unique register to push or
pull, as shown below.

Push/Pull Postbyte

I I I I I I I I I
CCR
A
8

l I
DPR
X
Y
Stu
PC

TFR/EXG

Stacking Order
Pull Order

+ CC
A
8

DP
X Hi
X Lo
Y Hi
Y Lo

U/S Hi
U/S Lo
PC Hi
PC Lo

t
Push Order

Increasing
Memory

+

Within the MC6809E, any register may be transferred to or
exchanged with another of like size; i. e., 8-bit to 8-bit or
16-bit to 16-bit. Bits 4-7 of postbyte define the source
register, while bits 0-3 represent the destination register.
These are denoted as follows:

Transfer/Exchange Postbyte

ISou:rce I I D~sti~ati~n
Register Field

()()()()=D IA:8)
000l=X
OO10=Y
ooll=U
0100= S
0101 = PC

NOTE

1000= A
1001=8
1010= CCR
1011 = DPR

All other combinations are undefined and INVALID.

LEAX/LEAY/LEAU/LEAS
The LEA (load effective address) works by calculating the

effective address used in an indexed instruction and stores
that address value, rather than the data at that address, in a
pointer register. This makes all the features of the internal
addressing hardware available to the programmer. Some of
the implications of this instruction are illustrated in Table 3.

The LEA instruction also allows the user to access data
and tables in a position independent manner. For example:

LEAX MSG1, PCR
LBSR PDATA (Print message routine)

MSG1 FCC 'MESSAGE'

This sample program prints: 'MESSAGE'. By writing
MSG1, PCR, the assembler computes the distance between
the present address and MSG1. This result is placed as a
constant into the LEAX instruction which will be indexed
from the PC value at the time of execution. No matter where
the code is located when it is executed, the computed offset
from the PC will put the absolute address of MSG1 into the X
pointer register. This code is totally position independent.

The LEA instructions are very powerful and use an internal
holding register (tempI. Care must be exercised when using
the LEA instructions with the auto increment and auto
decrement addressing modes due to the sequence of internal
operations. The LEA internal sequence is outlined as follows:

LEAa ,b+ (any of the 16-bit pointer registers X, Y,
U, or S may be substituted for a and b.)

1. b-temp

2. b+1-b

3. temp-a

LEAa ,- b

1. b-1-temp
2: b-1-b

3. temp-a

(calculate the EA)

(modify b, postincrementl
(load a)

(calculate EA with predecrement)
(modify b, predecrement)
(load a)

TABLE 3 - LEA EXAMPLES
Instruction Operation Comment

LEAX 10,X X + 10 -X Adds 5'8it Constant 10 to X
LEAX 5OO,X X+500-X Adds 16-8it Constant 500 to X
LEAY A,Y Y+A -Y Adds 8-Bit A Accumulator to Y

LEAY D,Y Y+D -Y Adds 16-08it D Accumulator to Y
LEAU -10, U U - 10 -U Substracts 10 from U
LEAS -10, S S - 10 -S Used to Reserve Area on Stack
LEAS 10, S S + 10 -S Used to 'Clean Up' Stack
LEAX 5, S S+5 -X Transfers As Well As Adds

Me6S09E

Auto increment-by-two and auto decrement-by-two instruc­
tions work similarly. Note that LEAX, ,X+ does not change
X; however lEAX, - X does decrement X. LEAX 1 X should
be used to increrpent X by one.

MUL
Multiplies the unsigned binary numbers in the A and B ac­

cumulator and places the unsigned result into the 16-bit D
accumulator. This unsigned multiply also allows multiple­
precision multiplications.

LONG AND SHORT RELATIVE BRANCHES
The MC6809E has the capability of program counter

relative branching throughout the entire memory map. In
this mode, if the branch is to be taken, the 6- or 16-bit signed
offset is added to the value of the program counter to be
used as 'the effective address. This allows the program to
branch anywhere in the 64K memory map. Position indepen­
dent code can be easily generated through the use of .relative
branching. Both short (B bit) and long (16 bit) branches are
available.

<SYNC
Aftar encountering a sync instruction, the MPUenters a

sync state, stops processing instructions, and waits for an
interrupt. If the pending interrupt is non-maskable (NMII or
maskable (FIRO, IRO) with its mask bit (F 0,11 clear, the pro­
cessor will clear the sync state and perform the normal inter­
rupt stacking and serVice routine. Since FIROand IRO are
not edge-triggered, a low level·with a minimum duration of
three bus cycles is required to assure that the interrupt will
be taken. If the pending interrupt is maskable (FIRO, IRO)
with its mask bit (F or I) set, the processor will clear the sync
state and continue processing by executing the next in-line
instruction. Figure 1,6 depicts sync timing.

SOFnNAREINTERRUPTS
A software interrupt is an instruction which will cause an

'interrupt and its associated vector fetch. These software in­
terrupts are useful in operating system calls, software
debugging, trace operations, memory mapping, and soft­
ware development systems. Three levels of SWI are available
on this MC6809E and are prioritized in the following order:
SWI, SWI2, SWI3.

16-BIT OPERATION
The MC6809E has the capability of processing 16-bit data.

These instructions include loads, stores, compares, adds,
subtracts, transfers, exchanges, pushes, and p·ulls.

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart (Figure
16) illustrates the memory-access sequence corresponding
to each possible instruction and addressing mode in the
MC6809E. Each instruction begins with an opcode fetch.
While that opcode is being internally decoded, the next pro­
gram byte is always fetched. (Most instru,ctions will use the
next byte, so this technique con.siderably speed~ th~.()ugh­
put.) Next, the operation of each opcode 'will follow the
flowchart. VMA is an indication of FFFF16 on the address
bus, R/W=1 and BS=O .. The following examples illustrate
the use of the chart.

Example 1: LBSR IBranch Taken)
Before Execution S P = FOOO

$8000 LBSR CAT

$AOOO CAT

CYCLE-BY-CYCLE FLOW

Cycle # Address Data RfW Description

1 8000 17 1 Opcode Fetch
2 8001 20 1 Offset High Byte
3 8002 00 1 Offset Low Byte
4 FFFF * 1 VMA Cycle
5 FFFF * 1 VMA Cycle
6 AOOO * 1 Computed Branch Address
7 FFFF * 1 VM,A Cycle
8 EFFF 80 0 Stack High Order Byte of

Return Address
9 EFFE 03 0 Stack Low Order Byte of

Return Address

Example 2: DEC (Extended)

$8000
$AOOO

Cycle #

1
2
3
4
5
6
7

DEC
FCB

Address
8000
8001
8002
FFFF
AOOO
FFFF
FFFF

$AOOO
$80

CYCLE-BY-CYCLE FLOW

Data RfW Description

7A 1 Opcode Fetch
AO 1 Operand Address, High Byte
00 1 Operand Address, Low Byte

* 1 Vf:lA Cycle
80 1 Read the Data

* 1 Vf:lA Cycle
7F 0 S tore the Decremented Data

* The data bus has the data at that particular address.

INSTRUCTION SET TABLES

The inStructions of the M C68Ci9E have been broken down
into five different categories. They are ,as follows:

B-bit operation (Table 4)
16-bit operation (Table 5)
Index register/stack pointer instructions (Table 6)
Relative branches (long or short) (Table 7)
Miscellaneous instructions (Table B)

Hexadecimal values for the instructions are given in
Table 9.

PROGRAMMING AID

Figure 18 contains a co~pilation of data that will assist
you in programming·theMC6809E.

FIGURE 16 - SYNC TIMING

Last Cycle Sync Last Cycle
of Previous Opcode Sync Acknowledge of Sync
~1~ns_t_ru_c_ti~o~nr~F_et_c_h~I~Ex_e_c_u_te~I~----__________________ ~yr--------------------------~_+I~ns-t-ru-c-ti~on~ 10(•.• ..0(...; -I. .1

G

Address======X=======X=~~:J~~~~~----------------------~-----------l------------------------~~~~~c=====~~====)(====~

Data=>c======x=======x======J(======)---------------------~----------_1---------------------------1c======X======~C=====:J

R/W~ ~--------------------~~~,-----------7-----------------------J

SA ==:) _____ -----11 \.-------~----------~\~-------------------------
SS~~ __________________________ ,,-____ ~ ______________________________ ___

AVMA~ ____________ ~\ __________ ~l~ ______ ~----------~/
.' I

LlC ~ ,
_---'I '-----1 x~ _______ S_e_e_N_o_t_e_1 ________ __ ,

~tiltPcf
IRO, ---J.~,-----------NMI, VIL ~ See Note 2
FIRG ~tPcs

NOTES: 1. If the associated mask bit is set when the interrupt is requested, Lie will go low and this cycle will be an instruction fetch from address
location PC + 1. However, if the interrupt is accepted (N M loran unmasked Fl RQ or fRO) LIe will remain high and interrupt processing
will start with this cycle as m on Figures 8 and 9 (Interrupt TimingJ.

2. If mask bits are clear, IRQ andFiRO must be held low for three cycles 10 guarantee that interrupt will be taken, although only one cycle
is necessary to bring the processor out of SYNC.

3. Timing measurements are referenced to and from a low voltage of 0.8 volts and a high voltage of 2.0 volts, unless otherwise noted.

MC6809E

NOTES

Data Bus

Address Bus L-........ '-'--=~

2 Address NNNN is location of opcode

3 If opcode is a two byte opcode sUbSequent
addresses are in parenthesis (-).

4. Two-byte opcodes are highlighted

FIGURE 17 - CYCLE-BY-CYCLE PERFORMANCE ISheet 1 of 5)

No

Me6S0gE

~ Inherer\tAddressmgModf'

ABxt RTSI :;~:;~
Don'teare DOr1'tCare ~?~~,B,
NNNN+ 1

• • DEC;A'_'
Don'teare PC High LSLA',~

Stack

+ 0~~AB
PCLow ~?,~i'

:~:MB

•
Don't Care

FIGURE 17 - CYCLE-BY-CYCLE PERFORMANCE (Sheet 2 of 5)

........,M,...U..JLL! ,--,S~~"f4
Don't Care Don't Care

+ +
0011 1 Care Don't Care

FFFF

+ +
Don'leare PC Low

Stack

• •
Don'teare PCH,gh

FFFF Stack

+ +
Don'leare Us€,StackLow

FFFF Stack

~ +
Don't Care UserStackH,gh

FFFF

+ • Don'teare YReglsterLow

FFFF Stack

• • Don'teare Y ReglsterH'gh

FFFF Stack

+ +
Don'leare X Aeg,ster Low

Stack

~ i
X Aeglster High

Slack

+

•
BReglster

Stack

A Register

Stack

•

RTll
Don'teare

NNNN+ 1

t
CCA

BReglster

Stack

£AeglsterHogh

X Register Low

Stack

t
Y AeglsterH'gh

Stack

Y Register low

Stack

+
User Stack High

Stack

i-
User Stack Low

Stack

Stack

+
+- Stack

Don't Care ~

FFFF

t

I v~n~t~;~~h I
FFFX

•
I v:~:;U~~ I

FFFX+l

•
t

SYNC ~

Don I Cilr~

NNNN+ 1

~
Don tCare

3 State

CWAlt

CCMask l co~~n~~~~;'er J
Stack

+
Don'teare

NNNN+2

i
DOr1'tCare

+
PC Low

Stack

~C""C"NO Present l

y"

+
PC High

Stack

i
User Stack Low l v:~7~;~~ J

Stack FFFX+l

t t
User Stack High Don tCare

Stack

i
y Register Low

Stack

J
y Register High

Stack

i
X Register Low

Stack

+
X Register HLgh

Stack

i
L D'~~~t,~:;e J

Stack

+
BReglster

Stack

t
A Register

Stack

L-

MC6809E

FIGURE 17 -CYCLE-BY-CYLE PERFORMANCE (Sheet 3 of 5)

Direct

.-____ ~~~----~~-------------L------~~~--~--------------~~~,A'?~:~:~;"~g~_,
Except

PSHU NNNN -!; 112)
PSHS,
PULS,
HR,

'"' "G
Don'fCare Address Low

NNNN+2131

Me6S09E

FIGURE 17 - CYCLE-BY-CYCLE PERFORMANCE iSheet4of51

Constant Olfsetfrom A
No Offset
8·BilOffSP.t
16-BIIOffset

AccurnulalorOffsel from R
A Regis\erOflset
B Register Offset
o RegisterOlfsel

Auto Increme/II/Dec/ernen! R
InCfementby2
Decrement by2

Constant Offsetlrom PC
8-8110115el
16-bltDllsel

Extendedlndirecl
~

The ,ndel(register IS Incremented folloWII'lg the In(!exed access

xxxx

IndexA&glster
Index RegISter + Offset Byte
Index Register + Offset High Byte" Offset Low Bvte

Index Register + A Register
Index RegIster + B Register
Index Register + 0 Register

InOeJ(Reglsler­
Index Register -2

Program Counter + Offset Byte
Program Counter + Offset High Byte Offset Low Byte

Address High Bvte Addles Low Byte

Me6S09E

ANDCC,
DRce IAII Except

(Immediate Immediatel
Only),

FIGURE 17 - CYCL.E-BY-CYClE PERFORMANCE (Sheet 5 of 5)

Conslartt Offset from A
No 0ffset
5-Bll0ffset
8-81t Ollset.
1&-811 Offset

Accumulator Offset from R
A Register Oilse!
S"Reglster Offset
o Register Offset

A-uto Increment/Decrement R
Increment by 1
Incrementby2
Decrement by 1
Oecremer'ltby2

ConstantO/lsB! from PC
8-BltOffset
16·BI\ Offset

Immediate

~STX.
_(All
Except

• Immediate)

*.:rhemdex register is Incremented followmg thelndElxedaccess

CLR, COM.
DEC,INC,
LSL.LSR.
NEG, ROL,
RDA (All
Except
Immediatel

(All Except
Immediate)

Effective Address lEAl

Index Aegls,ler
Index Register
Index Register + Post Byte
Index Register + Post Byte High: Post Byle Low

Index Reglster'+ A Register
Index Register + B Reg~lster
Index Register + 0 Register

Index Register.
Index Register
Index Reglster-1
Index Reglster'-2

Program Counter + Ollset Byte
Program Counter + Ollset High Byte. Ollset Low Byte

Direct Page Register: Address Low

Address .Hlgh. Address Low

NNNN+l

(All Except
Immediate~

Me6S09E

TABLE 4 - B-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s) Operation

ADCA,ADCB Add memory to accumulator with carry

ADDA,ADDB Add memory to accumulator

ANDA,ANDB And memory with accumulator

ASL, ASLA, ASLB Arithmetic shift of accumulator or memory left

ASR,ASRA,ASRB Arithmetic shift of accumulator or memory right

BITA, BITB Bit test memory with accumulator

CLR, CLRA, CLRB Clear accumulator or memory location

CMPA, CMPB Compare memory from accumulator

COM, COMA, COMB Complement accumulator or memory location

DAA Decimal adjust A accumulator

DEC,DECA,DECB Decrement accumulator or memory location

EORA, EORB Exclusive or memory with accumulator

EXG Rl, R2 Exchange Rl with R2 (Rl, R2 = A, B, CC, DP)

INC, INCA, INCB Increment accumulator or memory location

LOA, LOB Load accumulator from memory

LSL, LSLA, LSLB Logical shift left accumulator or memory location

LSR, LSRA, LSRB Logical shift right accumulator or memory location

MUL Unsigned multiply (A x B - D)

NEG, NEGA, NEGB Negate accumulator or memory

ORA,ORB Or memory with accumulator

ROL, ROLA, ROLB Rotate accumulator or memory left

ROR, RORA, RORB Rotate accumulator or memory right

SBCA, SBCB Subtract memory from accumulator with borrow

STA,STB Store accumulator. to memory

SUBA,SUBB Subtract memory from accumulator

TST,TSTA, TSTB Test accumulator or memory location

TFR Rl, R2 Transfer Rl to R2 (Rl, R2 = A, B, CC, DP)

NOTE: A, B, CC or DP may be pushed to (pulled from) either stack with PSHS, PSHU (PULS,
. PULU) instructions.

TABLE 5 - l6-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic(s) Operation

ADDD Add memory to 0 accumulator

CMPD Compare memory from 0 accumulator

EXG 0, R Exchange 0 with X, Y, S, U or PC

LDD Load 0 accumulator from memory

SEX Sign Extend B accumulator into A accumulator

STD Store 0 accumulator to memory

SUBD Subtract memory from 0 accumulator

TFR 0, R Transfer 0 to X, Y, S, U or PC

TFR R, 0 Transfer X, Y, S, U or PC to 0

NOTE: 0 may be pushed (pulled) to either stack with PSH5., PSHU (PULS,
PULU) instructions.

TABLE 6 INDEX REG)STERISTACKPOINTER INSTRUCTIONS -
Instruction Description

CMPS, CMPU Compare memory from stac~.· pointer

CMPX, CMPY Compare memory from index register

EXG Rl, R2 Exchange 0, X, Y, S, U or PC with D, X, Y, S, U or PC

LEAS, LEAU Load effective ~ddress into stack pointer

LEAX, LEAY Load effective address into index regtster

LOS, LOU Load stack pointer from memOfY

LDX, LDY Load index register from memory

PSHS Push A, B, CC, DP, D, X, Y, U, or PC onto hardware stack

PSHU Push A, B, CC, DP, 0, X, Y, S, or PC onto user stack

PULS Pull A, B, CC, DP, D, X, Y, U or PC from hardware stack

PULU Pull A, B, CC, DP, 0, X, Y, S or PC from hardware stack

STS, STU Store stack pointer to memory

STX, STY Store index register to memory

TFR Rl, R2 Transfer 0, X, Y, S, U or PC to D, X, y, S, U or PC

ABX Add B accumulator to ?< (unsigned)

Me6S09E

TABLE 7 - BRANCH INSTRUCTIONS

Instruction Description

SIMPLE BRANCHES

BEQ, LBEQ Branch if equal

BNE, LBNE Branch if not equal

BMI, LBMI Branch if minus

BPL, LBPL Branch if plus

BCS, LBCS Branch if carry set.

BCC, LBCC Branch if carry clear

BVS, LBVS Branch if overflow set

BVC, LBVC Branch if overflow clear

SIGNED BRANCHES

BGT, LBGT Branch if greater (signed)

BVS, LBVS Branch if invalid 2'5 complement result

BGE~ LBGE Branch if greater tha'n or equal (signed)

BEQ, LBEQ Branch if equal

BNE, LBNE Branch if not equal

BLE, LBLE Branch if less than or equal (signed)

BVC, LBVC Branch if valid 2's complement result

BLT, LBLT Branch If less than (signed)

UNSIGNED BRANCHES

BHI, LBHI Branch if higher (unsigned)

BCC, LBCC Branch if higher or same (unsigned)

BHS, LBHS Branch if higher or same (unsigned)

BEQ, LBEQ Branch if equal

BNE, LBNE Branch if not equal

BLS, LBLS Branch if lower or same' (:unsignedl

BCS, LBCS Branch if lower (unsigned)

BLO, LBLO Branch if lower (unsigned)

OTHER BRANCHES

BSR, LBSR Branch to subroutine

BRA, LBRA Branch always

BRN, LBRN Branch never

TABLE 8 - MISCELLANEOUS INSTRUCTIONS

Instruction Description

ANDCC AND condition code regi,ster

CWAI AND condition code register, then wait for interrupt

NOP No operation

ORCC OR condition code register

JMP Jump

JSR Jump to subroutine

RTI Return from interrupt

RTS Return from subroutine

SWI, SWI2, SWI3 Software interrupt (absolute indirect)

SYNC Synchronize with interrupt line

Me6S0gE

TABLE 9 - HEXADECIMAL VALUES OF MACHINE CODES

OP Mnem Mode - # OP Mnem Mode

()() NEG Direct 6 2 30 LEAX

:~:[: 01 · 31 LEAY
02 · 32 LEAS
03 COM 6 2 33 LEAU
04 LSR 6 2 34 PSHS Immed

05 · 35 PULS Immed

06 ROR 6 2 36 PSHU Immed

07 ASR 6 2 37 PULU Immed

08 ASL, LSL 6 2 38 · -
09 ROL 6 2 39 RTS Inherent

OA DEC 6 2 3A ABX t OB · 3B RTI
OC INC 6 2 3C CWAI
00 TST 6 2 3D MUL Inherent
OE JMP 3 2 3E · -
OF CLR Direct 6 2 3F SWI Inherent

10 Page 2 - - - 40 NEGA Inherent
11 Page 3 - - - 41 *
12 NOP Inherent 2 1 42 *
13 SYNC Inherent ~4 1 43 COMA
14 * 44 LSRA
15 * 45 *
16 LBRA Relative 5 3 46 RORA
17 LBSR Relative 9 3 47 ASRA
18 · 48 ASLA, LSLA
19 OAA Inherent 2 1 49 ROLA
1A ORCC Immed 3 2 4A OECA
1B * - 4B · 1C ANOCC Immed 3 2 4C INCA
10 SEX Inherent 2 1 40 TSTA
1E EXG Immed 8 2 4E *
1F TFR Immed 6 2 4F CLRA Inherent

20 BRA Relative 3 2 50 NEGB Inherent
21 BRN 3 2 51 *
22 BHI 3 2 52 *
23 BLS 3 2 53 COMB
24 BHS, BCC 3 2 54 LSRB
25 BLD, BCS 3 2 55 *
26 BNE 3 2 56 RORB
27 BEQ 3 2 57 ASRB
28 BVC 3 2 68 ASLB, LSLB
29 BVS 3 2 59 ROLB
2A BPL 3 2 5A OECB
2B BMI 3 2 5B *
2C BGE 3 2 5C INCB
20 BLT 3 2 50 TSTB
2E BGT 3 2 5E *
2F BLE Relative 3 2 5F CLRB Inherent

LEGEND:
- Number of MPU cycles (Jess possible push pull or indexed-mode cycles)
Number of program bytes
* Denotes unused opcode

- # OP

4+ 2+ 60
4+ 2+ 61
4+ 2+ 62
4+ 2+ 63
5+ 2 64
5+ 2 65
5+ 2 66
5+ 2 67

68
5 1 69
3 1 6A

6/15 1 6B
~20 2 6C
11 1 60

6E
19 1 6F

2 1 70
71
72

2 1 73
2 1 74

75
2 1 76
2 1 77
2 1 78
2 1 79
2 1 7A

7B
2 1 7C
2 1 70

7E
2 1 7F

2 1 80
81
82

2 1 83
2 1 84

85
2 1 86
2 1 87
2 1 68
2 1 89
2 1 8A

8B
2 1 8C
2 1 80

8E
2 1 8F

Mnem Mode - #

NEG Indexed 6+ 2+ · · COM 6+ 2+
LSR 6+ 2+ · ROR 6+ 2+
ASH 6+ 2+
ASL, LSL 6+ 2+
ROL 6+ 2+
DEC 6+ 2+ · INC 6+ 2+
lST 6+ 2+
JMP 3+ 2+
CLR Indexed 6+ 2+

NEG Extended 7 3

*
*
COM 7 3
LSR 7 3

*
ROR 7 3
ASR 7 3
ASL, LSL 7 3
ROL 7 3
OEC 7 3

*
INC 7 3
TST 7 3
JMP 4 3
CLR Extended 7 3

SUBA Immed 2 2
CMPA 2 2
SBCA 2 2
SUBO 4 3
ANOA 2 2
BITA 2 2
LOA 2 2 · EORA 2 2
AOCA 2 2
ORA 2 2
AOOA 2 2
CMPX Immed 4 3
BSR Relative 7 2
LOX Immed 3 3 ·

Me6S09E

TABLE 9 - HEXADECIMAL VALUES OF MACHINE CODES (CONTINUED)

OP Mnem Mode - # OP Mnem Mode - # OP I Mnem 1 Mode I- I #
90 SUBA Direct 4 2 CO SUBB Immed 2 2
91 CMPA 4 2 Cl CMPB

r
2 2 Page 2 and 3 Machine

92 SBCA 4 2 C2 SBCB 2 2 Codes
93 SUBD 6 2 C3 ADDD 4 3
94 ANDA 4 2 C4 ANDB 2 2 1021 LBRN Relative 5 4
95 BITA 4 2 C5 BITB Immed 2 2 1022 LBHI 5161 4
96 LDA 4 2 C6 LDB Immed 2 2 1023 LBLS 5161 4
97 STA 4 2 C7 *

I
1024 LBHS, LBCC 5161 4

98 EORA 4 2 C8 EORB 2 2 1025 LBCS, LBLO 5(6) 4
99 ADCA 4 2 C9 ADCB 2 2 1026 LBNE 5161 4
9A ORA 4 2 CA ORB 2 2 1027 LBEQ 5161 4
9B ADDA 4 2 CB ADDB" 2 2 1028 LBVC 5161 4
9C CMPX 6 2 CC LDD 3 3 1029 LBVS 5(6) 4
9D JSR 7 2 CD . 102A LBPL 5161 4
9E LDX 5 2 CE LDU Immed 3 3 102B LBMI 5161 4
9F STX Direct 5 2 CF . 102C LBGE 5(6) 4

2 102D LBLT 5161 4
AO SUBA Indexed 4+ 2+ DO SUBB Direct 4

LBGT 5161 4 102E
AI CMPA 4+ 2+ Dl CMPB 4 2

LBLE Relative 5161 4 102F
A2 SBCA 4+ 2+ D2 SBCB 4 2

SWI2 Inherent 20 2 I03F
A3 SUBD 6+ 2+ D3 ADDD 6 2

CMPb Immed 5 4 1083
A4 ANDA 4+ 2+ D4 ANDB 4 2

CMPY I 5 4 D5 BITB 4 2 108C
A5 BITA 4+ 2+ 108E LDY Immed 4 4
A6 LDA 4+ 2+ D6 LDB 4 2

Direct 7 3 1093 CMPD
A7 STA 4+ 2+ D7 STB 4 2

CMPY t 7 3 D8 EORB 4 2 I09C
A8 EORA 4+ 2+ 109E LDY 6 3
A9 ADCA 4+ 2+ D9 ADCB 4 2

6 3 4 2 I09F STY Direct
AA ORA 4+ 2+ DA ORB

10A3 CMPD Indexed 7+ 3+
AB ADDA 4+ 2+ DB ADDB 4 2

t 7+ 3+ 5 2 lOAC CMPY
AC CMPX 6+ 2+ DC LDD

10AE LDY 6+ 3+ DD STD 5 2 AD JSR 7+ 2+ lOAF STY Indexed 6+ 3+
AE LDX 5+ 2+ DE LDU 5 2

Extended 8 4 5 2 10B3 CMPD
AF STX Indexed 5+ 2+ DF STU Direct

10BC CMPY

~ 8 4
EO SUBB Indexed 4+ 2+ lOBE LDY 7 4

BO SUBA Extended 5 3 El CMPB 4+ 2+ 10BF STY Extended 7 4
Bl CMPA 5 3 E2 SBCB 4+ 2+ lOCE LDS Immed 4 4
B2 SBCA 5 3 E3 ADDD 6+ 2+ lODE LDS Direct 6 3
B3 SUBD 7 3 E4 ANDB 4+ 2+ 10DF STS Direct 6 3
B4 ANDA 5 3 E5 BITB 4+ 2+ 10EE LDS Indexed 6+ 3+
B5 BITA 5 3 E6 LDB 4+ 2+ 10EF STS Indexed 6+ 3+
B6 LDA 5 3 E7 STB 4+ 2+ 10FE LDS Extended 7 4
B7 STA 5 3 E8 EORB 4+ 2+ 10FF STS Extended 7 4
B8 EORA 5 3 E9 ADCB 4+ 2+ 113F SWI3 Inherent 20 2
B9 ADCA 5 3 EA ORB 4+ 2+ 1183 CMPU Immed 5 4
BA ORA 5 3 EB ADDB 4+ 2+ 118C CMPS Immed 5 4
BB ADDA 5 3 EC LDD 5+ 2+ 1193 CMPU Direct 7 3
BC CMPX 7 3 ED STO 5+ 2+ 119C CMPS Direct 7 3
BD JSR 8 a EE LOU 5+ 2+ l1A3 CMPU Indexed 7+ 3+
BE LDX 6 3 EF STU Indexed 5+ 2+ llAC CMPS Indexed 7+ 3+
BF STX Extende d 6 3 l1B3 CMPU Extended 8 4 FO SUBB Extended 5 3

11BC CMPS Extended 8 4 Fl CMPB ! 5 3
F2 SBCB 5 3
F3 ADDD 7 3
F4 AN DB 5 3
F5 BITB 5 3
F6 LDB 5 3
F7 STB 5 3

All unused opcodes are both undefined F8 EORB 5 3 NOTE:
F9 ADCB 5 3 and illegal
FA ORB 5 3
FB AODB Extended 5 3
FC LDD Extended 6 3
FD STD t 6 3
FE LOU 6 3
FF STU Extende d 6 3

Me6S09E

FIGURE 18 - PROGRAMMING AID

Addressing Modes
Immediate Direct Indexed Extended Inherent 5 3 2 1 0

Instruction Forms Op - # Op - # Op # Op - # Op - # Description H N Z V C
ABX 3A 3 1 B + X- X (Unsigned) · · · · · ADC ADCA 89 2 2 99 4 2 A9 4+ 2+ B9 5 3 A+M+C-A I I I I I

ADCB C9 2 2 D9 4 2 E9 4+ 2+ F9 5 3 B+M+C-B I I I I I
ADD ADDA 8B 2 2 9B 4 2 AB 4+ 2+ BB 5 3 A+M-A I I I I I

ADDB CB 2 2 DB 4 2 EB 4+ 2+ FB 5 3 B+M-B I I I I I
ADDD C3 4 3 D3 6 2 E3 6+ 2+ F3 7 3 D+M:M+1-D · I I I I

AND ANOA 84 2 2 94 4 2 A4 4+ 2+ B4 5 3 AA M A · I I 0 · ANOB C4 2 2 D4 4 2 E4 4+ 2+ F4 5 3 B A M-8 · I I 0 · ANOCC 1C 3 2 CC A IMM-CC 7

ASL ASLA 48 2 1 ~1[H I lim If-o
B I I I I

ASLB 58 2 1 B I I I I
ASL 08 6 2 68 6+ 2+ 78 7 3 M c b7 bO 8 I I I I

ASR ASRA 47 2 1 A~- 8 I I · I
ASR8 57 2 1 ~llllill iHJ 8 I I · I
ASR 07 6 2 67 6+ 2+ 77 7 3 7 Eo c 8 I I · I

81T BITA 85 2 2 95 4 2 A5 4+ 2T B5 5 3 Bit Test A (M A AI · I I 0 · BITB C5 2 2 D5 4 2 E5 4+ 2+ F5 5 3 Bit Test B (M A BJ · I I 0 ·
CLR CLRA 4F 2 1 O-A · 0 1 0 0

CLR8 5F 2 1 O-B · 0 1 0 0
CLR OF 6 2 6F 6+ 2+ 7F 7 3 O-M · 0 1 0 0

CMP CMPA 81 2 2 91 4 2 A1 4+ 2+ B1 5 3 Compare M from A 8 I I I I
CMPB C1 2 2 D1 4 2 El 4+ 2+ F1 5 3 Compare M from B 8 I I I I
CMPO 10 5 4 10 7 3 10 7+ 3+ 10 8 4 Compare M:M + 1 from D · I t I I

83 93 A3 B3
CMPS 11 5 4 11 7 3 11 7+ 3+ 11 8 4 Compare M: M + 1 from S · I I I I

8C 9C AC 8C
CMPU 11 5 4 11 7 3 11 7+ 3+ 11 8 4 Compare M.M + 1 from U · I I I I

83 93 A3 B3
CMPX 8C 4 3 9C 6 2 AC 6+ 2+ BC 7 3 Compare M M + 1 from X · I I I I
CMPY 10 5 4 10 7 3 10 7+ 3+ 10 8 4 Compare M.M + 1 from Y · I I I I

8C 9C AC BC

COM COMA 43 2 1 A-A · I I 0 1
COMB 53 2 1 B-B · t I 0 1
COM 03 6 2 63 6+ 2+ 73 7 3 liii-M · I I 0 1

CWAI 3C 2:l2C 2 CC A IMM-CC Walt for Interrupt 7

DAA 19 2 1 DeCimal Adjust A · I I 0 I

DEC OECA 4A 2 1 A-1 A · I I t · DECB 5A 2 1 B-1-B · t t t · DEC OA 6 2 6A 6+ 2+ 7A 7 3 M-1-M · t I t ·
EOR EORA B8 2 2 98 4 2 A8 4+ 2+ B8 5 3 A-II-M-A · t I 0 · EORB C8 2 2 D8 4 2 E8 4+ 2+ F8 5 3 B¥M-B · t t 0 · EXG R1, R2 1E 8 2 R1- R22 · · · · · INC INCA 4C 2 1 A+ 1--A · I t t · INCB 5C 2 1 B+ 1-B · t t t · INC DC 6 2 6C 6+ 2+ 7C 7 3 M+1-M · t t t · JMP OE 3 2 6E 3+ 2+ 7E 4 3 EA3_ PC · · · · · JSR 90 7 2 AD 7+ 2+ BD 8 3 Jump to Subroutine · · · · ·
LD LDA 86 2 2 96 4 2 A6 4+ 2+ B6 5 3 M-A · t I 0 · LDB C6 2 2 D6 4 2 E6 4+ 2+ F6 5 3 M-B · t t 0 · LDD CC 3 3 DC 5 2 EC 5+ 2+ FC 6 3 M M+1-D · t t 0 · LDS 10 4 4 10 6 3 10 6+ 3+ 10 7 4 MM+1-S · t t 0 · CE DE EE FE

LDU CE 3 3 DE 5 2 EE 5+ 2+ FE 6 3 M.M+1-U · t t 0 · LDX 8E 3 3 9E 5 2 AE 5+ 2+ BE 6 3 M.M+1-X · t t 0 · LDY 10 4 4 10 6 3 10 6+ 3+ 10 7 4 MM+1-Y · t t 0 · 8E 9E AE BE

LEA LEAS 32 4+ 2+ EA3_S · · · · · LEAU 33 4+ 2+ EA3_ U · · · · · LEAX 30 4+ 2+ EA3_X · · t · · LEAY 31 4+ 2+ EA3_ y · · I · ·
LEGEND: liii Complement of M Test and set if true, cleared otherwise
OP Operation Code (Hexadecimal) Transfer Into Not Affected

Number of MPU Cycles H Half-carry (from bit 3) CC Condition Code Register
Number of Program Bytes N Negative (sign bit) Concatenation

+ Arithmetic Plus Z Zero result V Logical or

Arithmetic Minus V Overflow, 2's complement A Logical and

Multiply C Carry from ALU ¥ Logical Exclusive or

Me6S09E

FIGURE 18 - PilOGRAMMING AID (CONTINUED)

Addre~ing ·M~es

Immedtate Direct Indexed1 Extended Inherent 5 3 2 1 0
In~ruction Forms up - • up - , up - , up - , Op - , Description H N Z V C

LSL lSLA 48 2 1 ~I[H liTIIIl f-o' · , , , , LSLB 58 2 1 · j , , ,
LSL (1) 6 2 58 6+ 2+ 78 7 3 M cb7 bQ · , , , , LSR 'LSRA 44 2 1 AI . · 0 , · , LSRB 54 2 1 . ~ 0 -111 I 11111-0 · Q , · , LSR 04 6 2 54 6+ 2+ 74 7 3 b7 bQ C · 0 , · , MUL 30 11 1 A x B-- D (UnsIgned) · · , · 9

NEG NEGA 40 2 1 A+1-A 8 , , , ,
NEGB 50 2 1 8+ 1-B 8 , , , ,
NEG 00 6 2 60 6+ 2+ 70 7 3 M+.1-M 8 , , , ,

NOP 12 2 1 No Operation · · · · · OR ORA 8A 2 2 9A 4 2 AA 4+ 2+ BA 5 3 AV M-A · , , 0 · ORB CA 2 2 OA 4 2 EA 4+ 2+ FA 5 3 B V M-B · , , 0 · ORCC 1A 3 2 CC V 'MM-CC 7
PSH PSHS 34 5+ 4 2 Push Registers on S .Stack · · · · · PSHU 36 5+ 4 2 Push ReQisters on U Stack · · · · · P\JL' PULS 35 5+ 2 Pull Registers from S Stack · · · · · PULU 37 5+ 4 2 Pull Registers from U Stack · · · · · ROl' ROLA 49 2 1

~} ~ III 1111 ~ · , , , , ROLB 59 2 1 · , , , , ROL 09 6 2 69 6+ 2+ 79 7 3 C b7 60 · , , , , ROR RORA 46 2 1 ~}~IIIIIIIP · , , · , RORB 58 2 1 · , , · , ROR 06 6 2 66 6+ 2+ 76 7 3 C b7 bQ · , , · 1

RT' 3B 6115 1 Return From Interrupt 7

RTS 39 5 1 Return from Subroutine · · · · · SBC SBCA 82 2 2 92 4 2 A2 4+ 2+ B2 5 3 A M C-A 8 , , , ,
'SBCB C2 2 2 02 4 2 E2 4+ 2+ F2 5 3 B-M-C-B 8 , j , ,

SEX 10 2 1 Sign Extend B into A · , , 0 · ST STA 97 4 2 A7 4+ 2+ B7 5 3 A-M • , , 0 · STB D7 4 2 E7 4+ 2+ F7 5 3 B-M · , , o '.
STD DD 5 2 ED 5+ 2+ FD 6 3 D-M:M+1 · , , 0 · STS 10 6 3 10 6+ 3+ 10 7 4 S-M:M+1 · , I 0 · DF EF FF
STU DF 5 2 EF 5+ 2+ FF 6 3 U-M:M+1 · , , 0 · STX 9F 5 2 AF 5+ 2+ BF 6 3 X-M:M+1 · , , O. · STY 10 6 3 10 10 7 4 Y-M:M+1 · , , 0 · 9F AF 6+ 3+. 8F

SUB SUBA 80 2 2 90 4 2 AO 4+ 2+ BO 5 3 A-·M A 8 , , , ,
SUBB CO 2 2 DO 4 2 EO 4+ 2+ FO 5 3 B-M-B 8 , , , ,
SUBD 83 4 3 93 6 2 A3 6+. '2+ B3 1 3 D-M:M+1-D · , , , , SWI SWlo 3F 19 1 Software"·lnterrupf 1 · · · · · SWIz6 10 20 2 Software Interrupt 2 · · · · · 3F
SWIJ6 11 20 1 Software Interrupt 3 · · · · · 3F

SYNC 13 ~4 1 Synchronize to Interrupt · · · · · TFR R1, R2 1F 6 2 R1-R2" · · · · · TSJ TSTA 4D 2 1 Test A · , j 0 · TSTB 5D 2 1 Test 8 · , j 0 · TST OD .6 2 6D 6+ 2+ 70 7 3 Test M · , , 0 ·
NOTES:

1. 'This column gives a basa cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table,
Table 2 .

. 2: Rl and R2 may be any pair of a bit or· any pair of 16 bit registers .
. The.a biuegisters are: A, B, CC, DP
The 16 bit registers are: X, Y, U., S, D, PC

. 3. EA is the effective address.

4. The PSH andPUL ·instr,uctions require 5 cycles plus 1 cycle for each byte pushed 'or pulled.

5. 5(61 means: 5 cycles if branch not taken, 6 cycles if taken !Branch instructions).
6. SWI sets. I and F bits:··swi2 and SWI3 do not affect I imd F.

7. Conditions Codes set as a direct result of the instruction.

8. Vaue of half-carry flag is undefined.

9. Special Casa - Carry sat il b7 is SET.

Me6809E

. FIGURE 18 - PROGRAMMING AID (CONTINUED)

Branch Instructions

AddreuOIg AddraBling - M_
Relative 5 3 2 1 0 2 I 0

Il"IIItrUction Forms OP -5 , Delcription H N Z V e Instruction Form. OP -5 , Desc:ription H N Z V C

Bee Bee 24 3 2 Branch C-O · • · · · BlS BlS 23 3 2 Branch Lower · · · · · lBCC 10 5161 4 Long Branch .. · · · · or Same
24 C=O lBlS 10 5161 4 Long Branch Lower · · · · · BeS BeS 25 3 2 Branch C= 1 · · · · · 23 or· Same

lBCS 10 5161 4 Long Branch · · · · · BlT BlT 2D 3 2 8ranch<Zero · · · · · 25 C=1 lBlT 10 5161 4 Long 8ranch<Zero · · · · · BEO BEO 'n 3 2 Branch Z;:::: 1 · · · · · 2D

lBEO 10 5161 4 Long Branch · · · · · BMI BMI 2B 3 2 Branch Minus · · · · · 27 Z=1 lBMI 10 5161 4 Long Branch Minus · · · · · BGE BGE 2C 3 2 Branch O!: Zero · · · · · 2B
lBGE 10 5161 4 Long Branch i!': Zero· · · · · · BNE BNE 26 3 2 Branch Z"" 0 · · · · · 2C cBNE 10 5161 4 Long Branch · · · · · BGT BGT 2E 3 2 Branch> Zero · · · · · 26 Z=O

lBGT 10 5161 4 Long Branch> Zero · · · · · BPl BPl 2A 3 2 Branch Plus · · · · ·
f-sHj-'

2E

BHI 22 3 2 Branch Higher · · · · ·
lBPl 10 5161 4 Long Branch Plus · · · · · 2A

lBHI 10 5161 4 Long Branch Higher · · · · · BRA BRA 20 3 2 Branch Always · · · · · 22 lBRA 16 5. 3 Long Branch Always · · · · · BHS BHS 24 3 2 Branch Higher · · · · · BRN BRN 21 3 2 Branch Never · · · · · or Same LBRN 10 5 4 Long Branch Never · · · · · lBHS 10 5161 4 Long Branch Higher · · · · · 21
24 or Same BSR BSR aD 7 2 Branch to S·ubroutine · · · · · BlE BlE 2F 3 2 Branch:s Zero · · · · · lBSR 17 9 .3 Long Branch to · · · · · lBlE 10 5161 4 Long Bran9h:s Zero · · · · · Subroutine
2F BVe BVC 28 3 2 Branch V=O · · · · · BlO BlO 25 3 2 Branch lower · · · · · lBVC 10 5161 4 Long Branch · · · · · lBlO 10 5161 4 Long Branch Lower · · · · · 2B v=o
25 BVS BVS 29 3 2 B.ranch V- 1 · · · · · lBVS 10 5161 4 Lc;mg Branch .1. · · · 29 V=I 1

SIMPLE BRANCHES

OP SIMPLE CONDITIONAL BRANCHES (Notes 1-41
BRA 20 3 2 T8111 True OP F OP
LBRA 16 5 3 N=1 BMI 2B BPl 2A
BRN 21 3 2 Z=1 BEQ 27 BNE 26
lBRN 1021 5 4 V=1 BVS 29 BVC 28
BSA 80 7 2 C=1 BCS 25 BCC 24
lBSR 17 9 3

SIGNED CONDITIONAL BRANCHES (Notes 1-4) UNSIGNED CONDmONAL BRANCHES (Notes 1-41

T8111 True OP False OP T8111 True .OP False OP

r>m BGT 2E BlE 2F r>m BHI 22 BlS 23
r~m BGE 2C BlT 20 r~m BHS .24 BlO 25
.r=m BEQ 27 BNE 26 r=m BEQ 27 BNE 26
rsm BlE 2F BGT 2E rsm BLS 23 BHI 22
r<m BlT 20 BGE 2C r<m BlO 25 BHS 24

NOTES:
1. All condilional branches have both short and long variations.
2. All short branches are 2 bytes and require 3 cycles.

3. All conditional long branches are formed by prefixing the short branch opcode with $10 and using a 16-bit destinalion offset.

4. All conditional long branches require 4 by1~s and 6 cycles if the branch is laken or 5 cycles if the branch is not laken.
5. 5161 means: 5 cycles if branch not taken, 6 cycles if laken.

Me6S09E

INDEXED ADDRESSING MODES

Type Fonns

Constant Offset From R No Offset
5-Bit Offset
8-Bit Offset
16-Bit Offset

Accumulator Offset From R A - Register Offset
B - Register Offset'
D - Register Offset

Auto I ncrement/Decremenf R Increment By 1
Increment By 2
Decrement By 1
Decrement By 2

Constant Offset From PC 8-Bit Offset

16-Bit Offset

Extended Indirect 16-Bit Address

7
a
1

1

1

1

1

1

1

1

1

1

1

1

1

-R X, Y, U, or S
X = Don't Care

INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

Indexed
Post-Byte Register Bit Addressing
6 5 4 3 2 t 0 Mode
R R x x x x x EA , R + 5 Bit Offset

R R a a a a a ,R +

R R I a a a 1 , II. + +

R II. a a a 1 a ,- R
R R I a a 1 1 , -- R

R R I a 1 a a EA=,R+OOffset

R R I a 1 a 1 EA = , R + ACCB Offset

R R I a 1 1 a EA = , R + ACCAOffset

R R I 1 0 a a EA = ,R+ 8-BitOffset

R 'R I 1 a a 1 EA = , R + 16-Bit Offset

R R I 1 a 1 1 EA= ,11.+ DOffset

x x I 1 1 a a EA - , PC + 8-Bit Offset

x .• I 1 1 a 1 EA - , PC + 16-Bit Offset

R R 1 1 1 1 1 EA - [, Addressl

I I I I r .. 1... . 'r'. '., ~ddressing Mode Field ". Indirect Field

ISign bit when b7 = 01

. ." . ,. Register Field: RR
00 = X

01 = Y
10 = U

X = Don't Care 11 = S

Nondirect Indirect

Assembler
Form

,R
n, R
n, R
n, R

A, R
B, R
D, R

,R+
,R + +

,-R
, --R

n, PCR

n, PCR

-
-RR.oo X

01=Y

Post-Byte
Opcode

lRR00100
ORRnnnnn
1RROlooo
1RROlool

1RR00110
lRRool0l
lRR010l1

lRROOOOO
lRRooool
lRRoool0
lRRoooll

lXXOlloo

lXXOll01

-
-10 U

11=S

++ Assembler ,Post-Byte
- # Form Opcode

a a L Rl ..I~ RR10lOO
1 a defaults to a:bit
1 1 in, Rl lRR11000
A 2 in, Rl lRRllool

1 a lA, Rl lRR10ll0
1 a [8, Rl l11Rl0l0l
4 a [D, Rl lRRll0ll

2 a not allowed
3 a L R ++111RRlOOOl
2 a not allowed
3 a [, --Rl lRRlOOll

1 1 in, PCRl lXXllloo

5 2 [n, PCRl lXXlll0l

-- [nl 10011111

~~:::::' r}'~o .. ,,,._
U - User Stack I
S - Hardware Stack I

PC I Program Counter

Accumulators

DP Direct Page Register

CC- Condition Code

Carry-Borrow

Overflow

L----Zero
1-____ Negative

'--'-----IRO Interrupt Mask

'------- Half Carry
1-_______ Fast Interrupt Mask

I-----'--~-- Entire State on Stack

+ +

- #
3 a

4 1
7 2

4 a
4 a
7 a

6 a

6 a
4 1

8 2

5 2

Me6S09E

Pushl Pull Post Byte 6809 Stacking Order

CCR
A

'-----B
L-----DPR

'----,..---X
'--------Y

'---------S/U
L---~------PC

Transfer/Exchange Post Byte

~ouice I I De~tin~tion:

Pull Order

~
CC
A
B

DP
X Hi

X Lo
Y Hi
Y Lo

U/S Hi

U/S Lo
PC Hi

PC Lo
t

6809 Vectors
FFFE Restart
FFFC NMI
FFFA SWI
FFF8 IRQ
FFF6 FIRQ
FFF4 SW12
FFF2 SW13
FFFO Reserved

Register Field
0000= D IA-BI
000l=X
0010=Y

OO11=U
0100= S

0101 = PC
l000=A
1001 = B
101O=CCR
1011 =DPR

Push Order

~
Increasing Memory

ORDERING INFORMATION

Package Temperature
Type Frequency Range Order Number

Ceramic 1.0 MHz O°C to lO°C MC6809EL
L Suffix 1.0 MHz -40°C to 85°C MC6809ECL

1.5 MHz O°C to lO°C MC6BA09EL
1.5 MHz -40°C to 85°C MC6BA09ECL
2.0 MHz OOC to lOoC MC6BB09EL
2.0 MHz -40°C to 85°C MC6BB09ECL

Plastic 1.0 MHz O°C to lO°C MC6809EP
P Suffix 1.0 MHz -40°C to B5°C MC6B09ECP

1.5 MHz OOC to lO°C MC6BA09EP
1.5 MHz -40°C to 85°C MC6BA09ECP
2.0 MHz OOC to lOoC MC6BB09EP
2.0 MHz -40°C to B5°C MC6BB09ECP

Cerdip 1.0 MHz OOC to lO°C MC6809ES
S Suffix 1.0 MHz -40°C to 85°C MC6809ECS

1.5 MHz OOC to lO°C MC6BA09ES
1.5 MHz -40°C to B5°C MC6BA09ECS
2.0 MHz OOC to lO°C MC6BB09ES
2.0 MHz -40°C to 85°C MC6BB09ECS

