@ MOTOROLA

(1.0 MHz)

MCGSAO9E

(1.5 MHz)

MC68BOSE

(2.0 MHz)

8-BIT MICROPROCESSING UNIT

The MC6809E is a revolutionary high performance 8-bit microprocessor
which supports modern programming techniques such as position in-
dependence, reentrancy, and modular programming.

This third-generation addition to the M6800 family has major architectural
improvements which include additional registers, instructions and addressing
modes.

The basic instructions of any computer are greatly enhanced by the
presence of powerful addressing modes. The MC6B09E has the most com-
plete set of addressing modes available on any 8-bit microprocessor today.

The MCB809E has hardware and software features which make it an ideal

processor for higher level language execution or standard controller applica-
tions. External clock inputs are provided to allow synchronization with
peripherals, systems or other MPUs.
MC6800 COMPATIBLE
® Hardware — Interfaces with All M6800 Peripherals
@ Software — Upward Source Code Compatible Instruction Set and
Addressing Modes
ARCHITECTURAL FEATURES
® Two 16-bit Index Registers
® Two 16-bit Indexable Stack Pointers
® Two 8-bit Accumulators can bé Concatenated to Form One 16-Bit
Accumulator

® Direct Page Register Allows Direct Addressing Throughout Memory\

HARDWARE FEATURES

External Clock Inputs, E and Q, Allow Synchronization

TSC Input Controls internal Bus Buffers

LIC Indicates Opcode Feich

AVMA Allows Efficient Use of Common Resources in

A Muitiprocessor System

BUSY is a Status Line for Muitiprocessing

Fast Interrupt Request Input Stacks Only Condition Code Register
and Program Counter

Interrupt Acknowledge Output Allows Vectoring By Devices

SYNC Acknowledge Output Allows for Synchronization to External
Event

® Single Bus-Cycle RESET

® Single 5-Voit Supply Operation
[] I Inhibited After Until After First Load of Stack Pointer
® Early Address Valid Allows Use With Slower Memories

® Early Write-Data for Dynamic Memories

SOFTWARE FEATURES
® 10 Addressing Modes
e M6800 Upward Compatible Addressing Modes

Direct Addressing Anywhere in Memory Map
Long Relative Branches
Program Counter Relative
True indirect Addressing
Expanded Indexed Addressing:

0, 5, 8, or 16-bit Constant Offsets

8, or 16-bit Accumulator Offsets

Auto-increment/ Decrement by 1 or 2
® Improved Stack Manipulation
® 1464 Instructions with Unique Addressing Modes
® 8 x 8 Unsigned Multiply
® 16-bit Arithmetic
® Transfer/Exchange All Registers
® Push/Pull Any Registers or Any Set of Registers
® Load Effective Address

HMO!

(HIGH-DENSITY N-CHANNEL, SILICON-GATE)

8-BIT
MICROPROCESSING
UNIT

L SUFFIX
CERAMIC PACKAGE
CASE 715

P SUFFIX
PLASTIC PACKAGE
CASE 711

S SUFFIX
CERDIP PACKAGE

CASE 734

FIGURE 1 — PIN ASSIGNMENT

vee

A10
Al
A12

AACT
[Tsc
LIC
[IRESET
[TAVMA
ja

13
[IBUSY
R/W
oo
01
D2
103
104
o5
100]
107
A15
13
jA13

4-298

MC6809E®MC68A09E*MC68BOSE

MAXIMUM RATINGS

! Rating Symbol Vaiue Unit This device contains circuitry to protect the

Supply Voltage ~ vee ~031w0 +70| V inputs against damage due to high ;tmic

Thout Voltage v, 03w 370l v voltages or electric fields; however, it is ad-

i - g n A _ vised that normal precautions be taken to

Operating Temperature Range TLoTH avoid application of any voltage higher than

MCBB0SE, MCBBAO09E, MCEBBOSE TA Oto +70 °C maximum rated voltages to this high im-
Storage Temperature Range Tstg —B5t0 +150 | °C pedance circuit.

Reliability of operation is enhanced if unus-
ed inputs are tied to an appropriate logic
voltage level {e.g., either Vgg or VcC).

THERMAL CHARACTERISTICS

Ch Symbol Value Unit
Thermal Resistance
Ceramic 60
Cerdip AT 60 °C/W
Plastic 100

POWER CONSIDERATIONS

The average chip-junction temperature, T, in °C ¢an be obtained from:
Ty=TA+ (PD*OJA) M
Where:
T A= Ambient Temperature, °C
6= Package Thermal Resistance, Junction-to-Ambient, °C/W
PD=PINT+PPORT
PINT=ICcC x VCC, Watts — Chip Internal Power
PpORT = Port Power- Dissipation, Watts — User Determined

For most applications PPORT < PINT and can be neglected. PPORT may become significant if the device is configured to
drive Darlington bases or sink LED loads.

An approximate relationship between Pp and T (if PPORT is neglected) is:

Pp=K (T +273°C) @
Solving equations 1 and 2 for K gives: \
K =Ppe(TA+273°C) + 8 A%PD2 \ 3

Where K is a constant pertaining to the particular part. K can be determined from equation 3 by measuring Pp (at equilibrium)
for a known T A. Using this value of K the values of Pp and T can be obtained by solving equations (1) and (2) iteratively for any
value of TA. :

DC ELECTRICAL CHARACTERISTICS (Vcc=5.0V £5%, Vg5=0, TA=T{ to TH uniess otherwise noted.)

Characteristic Symbol Min Typ Max Unit
. Logic, Q, VIH Vsgs + 2.0 vee
Input High Voltage RESET VIHR Ves + 40| - Vée v
E VIHC Vec-075 | — Vec+0.3
Input Low Voltage Logic, Q, RESET ViL Vggs — 03] — [Vsg + 08 v
13 viLe Vgg-03 | — | Vsg+04
Input Leakage Current Logic, Q, RESET P - - 25 A

Vin = 0106.25 V, Vo = max) E in - - 100 s
DC Output High Voltage

ULoad = —205gA, VeC = min) Do-D7 . v Vgs + 24| - - v

{lLoad = - 146 gA, VcC = min) AO-A15, R/W OH lvgg + 24| — -

(ILoag = — 100 A, Ve = min} BA, BS, LIC, AVMA, BUSY Vgs + 24| - -

DC Output Low Voitage _ _

{lLoad = 2.0 mA, Voe = min) Vor Vss +05] V
Internal Power Dissipation (Measured at TA =Ty in Steady State Operation) PINT - - 1.0
Capacitance® Cin

Vin = 0, Ta = 25°C, f = 1.0 MH2) DO-D7, Logic Inputs, Q, RESET - 10 15 F

) E _ - 30 50 P
AO-A15, R/W, BA, BS
LIC, AVMA, BUSY Cout - 10 1 PF
Frequency of Operation MC6809E . 0.1 - 1.0
MC68A09E f 0.1 - 15 MHz

(E and Q Inputs} MCB8B0SE 0.1 - 2.0
Three-State (Off State) Input Current 00-D7 \ - 20 10 A

Vin = 0410 2.4V, Vcc = max) AQ-A15, R/W TSI - - 100 »

*Capacitances are periodically tested rather than 100% tested.

4-299

MC6809E*MC68A09E*MC68B09E

BUS TIMING CHARACTERISTICS (See Notes 1, 2, 3, and 4)

ident. - MC6809E | MCEBBAOSE | MCGBBOSE .
Number Characteristics Symbol m Min | Max | Min | Max Unit
| 1 Cycle Time teye 10] 10 |0.667] 10 | 05| 10 | ps
| 2 Pulse Width, E Low PWEL | 450 | 9500 295 | 9500 [210 | 9500 | ns
’ 3 Pulse Width, E High PWEp | 450 | 9500 280 | 9500 | 220 | 9500 ns
’ 4 Clock Rise and Fall Time tr, 4 - 25 - 26 - 20 ns
| 5 Pulse Width, Q High PWQH | 450 [9500| 280 | 9500 | 220 | 9500 | ns
i 7 Delay Time, £ to Q Rise teQt 200 — |30 - j1oo] - ns
7A Delay Time, Q High to E Rise tEQ2 200 - 130 - 100 - ns
78 Delay Time, E High to Q Fall tgQ3 | 200 | - 130 [- 100 - ns
: 7C |Delay Time, Q High to E Fal taa | 200 - | 1] - |10 - | ns
: 9 Address Hold Time tAH 20 - 20 - 20 - ns
: " Address Delay Time from E Low (BA, BS, R/W) tAD ~ [20} - [140} - 110} ns
? 17 Read Data Setup Time 1DSR 80 - 60 - 40 - ns
t 18 Read Data Hold Time tDHR 10 — 10 - 10 - ns
E 20 Data Delay Time from Q tDDQ - 20| - 140 | - 10| ns
21 Write Data Hold . Time tpHW | 30 - 30 - 30 - ns
1 29 Usable Access Time tacc [69| - | 40| -]330 -~ ns
Controt Delay Time (Figure 2} tco - 300 - 250 - 200 ns
Interrupts, HALT, RESET, and TSC Setup Time ' tpcs | 200 — | 140 - | 1O - ns

(Figures 7, 8, 9, 10, 13, and 14)
TSC Drive to Valid Logic Level {Figure 14) TSV - 210 - 150 - 120 ns
TSC Release MOS Butfers to High Impedance (Figure 14) TSR - 200 - 140 - 110 | ns
TSC Three-State Delay Time (Figure 14) 1TSC - | 120 - [8] -] 8| ns
Processor Control Rise and Falt Time {Figure 8) ‘(F;%'f' - 100 - 100 - 100{ ns

FIGURE 2 — READ/WRITE DATA TO MEMORY OR PERIPHERALS

VIHC
] E §=V|Lc
Q

o | OO0
8A, BS

Read Data
Non-Muxed -

Y

—_—
Wiite Data)4

4———» @ >

Busy, LIC,
AVMA

Not Valid
NOTES:

1. Voltage levels shown are V| 0.4 V, V|42 2.4 V, unless otherwise specified.'3. Hold time (@) for BA and BS is not specified.
2. Measurement points shown are 0.8 V and 2.0 V, unless otherwise specified. 4. Usable access time is computed by: 1—4-11 max—17.

4-300

MC6809E*MC68A09E* MC68BOSE

FIGURE 3 — MCB809€ EXPANDED BLOCK DIAGRAM

3 T D0-D7

A0-A15

PC
U
S
Y
X
A
R
bP cC
ALU

* +—VcC
4— Vgg
4
8
Instruction
Register
RESET

NMi
Interrupt I IRQ
Control jug—-TRQ

—3» LIC
————AVMA
—»R/W
TSC
4 {
Bus HALT

Control | —gmBA

Timing

* Internal Three-State Control

FIGURE 4 — BUS TIMING TEST LOAD

50V

MMD6150 R =22k

or Equiv.
Test Point

MMD7000
or Equiv.

C=30 pF for BA, BS, LIC, AVMA, BUSY
130 pF for DO-D7 —
90 pF for AQ-A15, R/W

R = 11.7 k2 for DO-D7
16.5 ki for AO-A15, R/W
24 k@ for BA, BS

LIC, AVMA, BUSY

Tig

PROGRAMMING MODEL

As‘shown in Figure 5, the MCB809E adds three registers to
the set available in the MC6800. The added registers include
a Direct Page Register, the User Stack pointer and a second
Index Register.

ACCUMULATORS (A, B, D)

The A and B registers are general purpose accumulators
which are used for arithmetic calculations and manipulation
of data.

Certain instructions concatenate the A and B registers to
form a single 16-bit accumulator. This is referred to as the D
Register, and is formed with the A Register as the most
significant byte.

DIRECT PAGE REGISTER (DP)

The Direct Page Register of the MCBB0SE serves to
enhance the Direct Addressing Mode. The content of this
register appears at the higher address outputs (A8-A15) dur-
ing direct addressing instruction execution. This allows the
direct mogde to be used at any place in memory, under pro-
gram control. To ensure M6800 compatibility, all bits of this
register are cleared during Processor Reset.

4-301

k
.
5

i

MC6809E*MC68A09E*MC68BOSE

FIGURE 56 — PROGRAMMING MODEL OF THE MICROPROCESSING UNIT

15 Y]
X — Index Register
Y — Index Register
- Pointer Registers
U — User Stack Pointer
S — Hardware Stack Pointer
PC Program Counter
A B Accumulators
/
D
7 0
[DP] Oirect Page Register

7 0
[e]eTul InTz]v]c] cc - condition Code Register

INDEX REGISTERS (X, Y)

The Index Registers are used in indexed mode of address-
ing. The 16-bit address .in this register takes part in the
calculation of effective addresses. This address may be used
to point to data directly or may be modifed. by an optional
constant or register offset. During some indexed modes, the
contents of the index register are incremented or
decremented to point to the next item of tabular type data.
All four pointer register (X, Y, U, S) may be used as index
registers.

STACK POINTER (U, S)

The Hardware Stack Pointer (S} is used automatically by
the processor during subroutine calls and interrupts. The
User Stack Pointer {(U) is controlled exclusively by the pro-
grammer thus allowing arguments to be passed to and from
subroutines with ease. The U-register is frequently used as a
stack marker. Both Stack Pointers have the same indexed
mode addressing capabilities as the X and Y registers, but
also support Push and Puil instructions. This allows the
MCBB0SE to be used efficiently as a stack processor, greatly
enhancing its ability to support higher level languages and
modular programming.

NOTE
The stack pointers of the MCB809E point to the top of
the stack, in contrast to the MC6800 stack pointer,
which pointed to the next free location on stack.

PROGRAM COUNTER

The Program Counter is used by the processor to point to
the address of the next instruction to be executed by the pro-
cessor. Relative Addressing is provided allowing the Pro-
gram Counter to be used like an index register in some situa-
tions.

CONDITION CODE REGISTER

The Condition Code Register defines the state of the pro-
cessor at any given time. See Figure 6.

4-302

FIGURE 6 — CONDITION CODE REGISTER FORMAT

[efelul i [n]zlv]c]

Carry
Overflow
'——— Zero
————— Negative
L IRQ Mask
Half Carry
FIRQ Mask
Entire Flag

CONDITION CODE REGISTER
/DESCRIPTION
BIT 0 (C) '

Bit 0 is the carry flag, and is usually the carry from the
binary ALU. C is also used to represent a ‘borrow’ from sub-
tract like instructions (CMP, NEG, SUB, SBC) and is the
complement of the carry from the binary ALU.

BIT 1 (V)

Bit 1 is the overflow flag, and is set to a one by an opera-
tion which causes a signed two's complement arithmetic
overflow. This overflow is detected in an operation in which
the carry from the MSB in the ALU does not match the carry
from the MSB-1.

BIT 21(2)

Bit 2 is the zero flag, and is set to a one if the result of the
previous operation was identically zero.

MC6809EeMC68A09E*MC68BOSE

BIT 3 (N)

Bit 3 is the negative flag, which contains exactly the value
of the MSB of the result of the preceding operation. Thus, a
negative two's-complement resuit will leave N set to a one.

BIT 4 (1)

Bit 4 is the TRQ mask bit. The processor will not recognize
interrupts from the TRQ line if this bit is set to a one. NMT,
FIRQ, IRQ, RESET, and SWI all set | to a one; SWI2 and
SWI3 do not affect I.

BIT 5 (H)

8it 5 is the half-carry bit, and is used to indicate a carry
from bit 3 in the ALU as a result of an 8-bit addition only
(ADC or ADD). This bit is used by the DAA instruction to
perform a BCD decimal add adjust operation. The state of
this flag is undefined in all subtract-like instructions.

BIT 6 {F)

Bit 6 is the FIRQ mask bit. The processor will not
recognize interrupts from the FIRQ line if this bit is a one.
NMI, FIRQ, SW!, and RESET all set F to a one. 1RQ, SWI2
and SWI3 do not affect F.

BIT 7 (E}

Bit 7 is the entire flag, and when set to a one indicates that
the complete machine state (all the registers) was stacked,
as opposed to the subset state {PC and CC). The E bit of the
stacked CC is used on a return from interrupt (RT1) to deter-
mine the extent of the unstacking. Therefore, the current E
left in the Condition Code Register represents past action.

PIN DESCRIPTIONS

POWER (Vgg, Vce)
Two pins are used to supply power to the part: Vgg is
ground or 0 volts, while Ve is +6.0V +56%.

ADDRESS BUS (A0-A15)}

Sixteen pins are used to output address information from
the MPU onto the Address Bus. When the processor does
not require the bus for a data transfer, it will output address
FFFF16, R/W = 1,and BS = 0; thisis a “dummy access” or
VMA cycle. All address bus drivers are made high-
impedance when output Bus Available {BA} is high or when
TSCis asserted. Each pin will drive one Schottky TTL load or
four LS TTL loads, and 90 pF.

DATA BUS (D0-D7)

These eight pins provide communication with the system
bi-directional data bus. Each pin will drive one Schottky TTL
load or four LS TTL loads, and 130 pF.

READ/WRITE (R/W)

This signal indicates the direction of data transfer on the
data bus. A low indicates that the MPU is writing data onto
the data bus. R/W is made high impedance when BA is high
or when TSC is asserted.

RESET
A low level on this Schmitt-trigger input for greater than
one bus cycle will reset the MPU, as shown in Figure 7. The

Reset vectors are fetched from locations FFFE1g and FFFF1g
(Table 1) when Interrupt Acknowledge is true,
{BA » BS=1). During initial power-on, the Reset line should
be held low until the clock input signals are fully operational.

Because the MCB809E Reset pin has a Schmitt-trigger in-
put with a threshold voltage higher than that of standard
peripherals, a simple R/C network may be used to reset the
entire system. This higher threshold voltage ensures that ali
peripherals are out of the reset state before the Processor.

HALT

A low level on this input pin will cause the MPU to stop
running at the end of the present instruction and remain
halted indefinitely without loss of data. When halted, the BA
output is driven high indicating the buses are high im-
pedance. BS is also high which indicates the processor is in
the Hait state. While halted, the MPU will not respond to ex-
ternal real-time requests (FIRQ, IRQ) although NMI or
RESET will be latched for later response. During the Hait
state Q and E should continue to run normally. A halted state
(BAeBS =1) can be achieved by pulling HALT low while
RESET is still low. See Figure 8.

BUS AVAILABLE, BUS STATUS (BA, BS)

The Bus Available output is an indication of an internal
control signal which makes the MOS buses of the MPU high
impedance. When BA goes low, a dead cycle will elapse
before the MPU acquites the bus. BA will not be asserted
when TSC is active, thus allowing dead cycle consistency.

The Bus Status output signal, when decoded with BA,
represents the MPU state (valid with leading edge of Q).

MPU State MPU State Definition
BA BS

0 0 Normal {Running}

0 1 Interrupt or RESET Acknowledge
1 0 SYNC Acknowledge

1 1 HALT Acknowledge

Interrupt Acknowledge is indicated during both cycles of a
hardware-vector-fetch (RESET, NMI, FIRQ, TRQ, SWI,
SWI2, SWI3). This signal, plus decoding of the lower four
address lines, can provide the user with an indication of
which interrupt level is being serviced and allow vectoring by
device. See Table 1.

TABLE 1 — MEMORY MAP FOR INTERRUPT VECTORS

v;‘:::y LGc::i::s' Imerrupf Yector
MS LS Description
FFFE FFFF RESET
FFFC FFFD NMI
FFFA FFFB SWI
FFF8 FFF9 RQ
FFF6 FFF7 FIRQ
FFF4 FFF5 swi2
FFF2 FFF3 SWI3
FFFO FFF1 Reserved

4-303

MC6809E*MC68A09E*MC68BO9E

‘PaIoU BSIMIBYIO SSBJUN ‘SIOA ('Z JO 9681j0A UBHY £ pue S1|0A g0 JO 8BEII0A MO| B WOI) PUE 0) PAOUBISRI BIe SluswaInsesw Burul] 3| ON

T/ | G G S S AR A T on
/ D S SR S A A T Asne

I\ G G G G /\ TN wwav
I W A (N WS
N T va

) S G G G SN ST v

8po2dQ 15| §40¢ MeN Hod mapn

..un_;mz:un;oz
—_ XX X X X X X

| D (VD D G S S NED GEED SN S\

Jd MEN Jddd$ u_u_un_w 3444¢ 34d44$ 3444$ IdJJ$ 3ddd$

y—+om MONd MBN 4444¢ d4d444¢ IJdd$ IJd44$ I4dd4%! wu_u_n_w wunﬁm

x x x X x x x x x X X X b X X X mmm.vu,q
mo&'A y wu&ﬂ Sody
- HHIp
3
o+:_m+c_m+c_m+:_o+:_m+:_v+c_m+:_u+=_ b+u | u [zvw] og+w|grw|prw|eg+w | z+w| j+w| w |

ONIWLL 13834 — £ 3UNDH

4-304

MC6809E*MC68A09E*MC68BOIE

-Pelou BSIMIBLIO SSBIUN ‘SIOA 0-Z 40 abBeljoA UBIL & pue SHOA g'(JO 9BE1[0A MO| B WOl PuB O} peoudsajar ale siuswainsesw Bulwil 310N

[\
\ _/

apoodQ
uondnNNsu|

—(X *
i \ N
_ \ N, w

on

J
, X x VINAY
X X X

T

sng
eleq

S8

— N —

X
81ndex3 yolag4
—(C X A D S G SV

1vH

poven apA) | einoexg yoie4 apAy | A | D | N
peeq |uouonnsujjuononasul| pesg | paleH \J J‘w_o\ru " asui | syl |

peag uaingd wsun)

jo 40 8j9AD

3)0A) 1se7 1se o) puz

5N83A WILSAS HOJ ONIWIL NOLLNI3X3 NOILONHLSNI I1DNIS ANV LIVH — 8 3UNOH

4-305

MC6809EeMC68A09E*MC68BOIE

Sync Acknowledge is indicated while the MPU is waiting
for external synchronization on an interrupt line.

Halt/ Acknowledge is indicated when the MCB809E is in a
Halt condition.

NON MASKABLE INTERRUPT (NMI)*

A negative transition on this input requests that a non-
maskable interrupt sequence be generated. A non-maskable
interrupt cannot be inhibited by the program, and also has a
higher priority than FIRQ, IRQ or software interrupts. During
recognition of an NMI, the entire machine state is saved on
the hardware stack. After reset, an NMI will not be recog-
nized until the first program load of the Hardware Stack
Pointer (S}. The pulse width of NMI low must be at least one
E cycle. If the NMI input does not meet the minimum set up
with respect to Q, the interrupt will not be recognized until
the next cycle. See Figure 8.

FAST-INTERRUPT REQUEST (FIRG)*

A low level on this input pin will initiate a fast interrupt se-
quence, provided its mask bit (F) in the CC is clear. This se-
quence has priority over the standard Interrupt Request
(1RQ), and is fast in the sense that it stacks only the contents
of the condition code register and the program counter. The
interrupt service routine should clear the source of the inter-
rupt before doing an RT!. See Figure 10.

INTERRUPT REQUEST (IRQ)*

A low level input on this pin will initiate an Interrupt Re-
quest sequence provided the mask bit (1} in the CC is clear.
Since IRQ stacks the entire machine state it provides a
slower response to_interrupts than FIRA. TRQ also has a
lower priority than FIRQ. Again, the interrupt service routine
should clear the source of the interrupt before doing an RTI.
See Figure 9.

CLOCK INPUTS E, Q

E and Q are the clock signals required by the MCB809E. Q
must lead E; that is, a transition on Q must be foliowed by a
similar transition on E after a minimum delay. Addresses will
be valid from the MPU, tAD after the falling edge of E, and
data will be latched from the bus by the falling edge of E.
While the Q input is fully TTL compatible, the E input directly
drives internal MOS circuitry and, thus, requires a high level
above normal TTL levels. This. approach minimizes clock
skew inherent with an internal buffer. Timing and waveforms
for E and Q are shown in Figure 2 while Figure 11 shows a
simple clock generator for the MC6809E.

BUSY

Busy will be high for the read and modify cycles of a read-
modify-write instruction and during the access of the first
byte of a double-byte operation (e.g., LDX, STD, ADDD).

Busy is also high during the first byte of any indirect or other -

vector fetch (e.g., jump extended, SWI indirect etc.).
In a muiti-processor system, busy indicates the need to

defer the rearbitration of the next bus cycle to insure the in-
tegrity of the above operations. This difference provides the
indivisible memory access required for a “‘test-and-set”
primitive, using any one of several read-modify-write instruc-
tions.

Busy does not become active during PSH or PUL opera-
tions. A typical read-modify-write instruction (ASL) is shown
in Figure 12. Timing information is given in Figure 13. Busy is
vilid tcp after the rising edge of Q.

AVMA

AVMA is the Advanced VMA signal and indicates that the
MPU will use the bus in the following bus cycle. The predic-
tive nature of the AVMA signal allows efficient shared-bus
muitiprocessor systems. AVMA is LOW when the MPU is in
either a HALT or SYNC state. AVMA is valid tcD after the
rising edge of Q.

LIC

LIC (Last Instruction Cycle) is HIGH during the last cycle
of every instruction, and its transition from HIGH to LOW
will indicate that the first byte of an opcode will be latched at
the end of the present bus cycle. LIC will be HIGH when the
MPU is Halted at the end of an instruction, (i.e., notin CWAI
or RESET) in SYNC state or while stacking during interrupts.
LIC is valid tCD after the rising edge of Q.

TSC

TSC (Three-State Control} will cause MOS address, data,
and R/W buffers to assume a high-impedance state. The
control signals (BA, BS, BUSY, AVMA and LIC} will not go
to the high-impedance state. TSC is intended to allow a
single bus to be shared with other bus masters (processors
or DMA controllers).

While E is low, TSC controls the address buffers and R/W
directly. The data bus buffers during a write operation are in
a high-impedance state until Q rises at which time, if TSC is
true, they will remain in a high-impedance state. if TSC is
held beyond the rising edge of E, then it will be internally lat-
ched, keeping the bus drivers in a high-impedance state for
the remainder of the bus cycle. See Figure 14,

MPU OPERATION

During normal operation, the MPU fetches an instruction
from memory and then: executes the requested function.
This sequence begins after RESET and is repeated indefinite-
ly uniess altered by a special instruction or hardware occur-
rence. Software instructions that alter normal MPU opera-
tion are: SWi, SWI2, SWi3, CWAI, RTl and SYNC. An in-
terrupt or HALT input can also alter the normal execution of
instructions. Figure 15 is the flow chart for the MC6809E.

*NMI, FIRQ, and IRQ requests are sampled on the falling edge of Q. One cycle is required for synchronization before these interrupts are recog-
nized. The pending interrupt(s) will not be serviced until completion of the current instruction unless 8 SYNC or CWAI condition is present. If RQ
and FIRQ do not remain low une completion of the current instruction they may not be recognized. However, NMI is latched and need only re-
main low for one cycle. No interrupts are recognized or latched between the falling edge of RESET and the rising edge of BS indicating
RESET acknowledge. See RESET sequence in the MPU flowchart in Figure 15.

4-306

MC6809EeMC68A09E*MC68BOSE

“PaIoU BSIMIBLIO SSBHUN ‘SIOA ('Z O aBRIOA UBIY B pue SHOA §'() JO aBBIOA MO} B W) pUe 01 PBJUBIaJa3) aIe SluswaINsesw Bulun] 3] ON
*AJUO BOUBIB)RI SO} UMOYS D03 3,

3
T\ / on
I 7 __sne
D /T \ /7 \ AL X X vmnv
D Y | N X Xss
T X vs
I G G WY

_J

\
70d HOd :
Y MaN MaN YWAA HDD VOOV 800V dd HXI Xi HAI JAL HSN ISN HOd 104 YWA

* R x ﬁ x x % x x x x x vﬁ 5 x x * x x x XH eleqg

<

APE:E.F _4_>E.z
muu“_ u _opE
_+un_om :Ez.:_zz, wu&
;wzzwzwu_u.u_amu.u_umﬂuum&m-\mm:!mmo—lmwmlmwwlmmnlmmolawmxmmwlmwmln_wulmwwln_w&uﬁun_ Um sng
I G Gl G G G S AR G S Gl (D G D G A G D N AN G SHED GEE " $58IpPY
S T T Y T e s O Y A O O

S A 1 1 T e Y [e O e e S o

Ji+u | w [sL+w| i vwlgr+wigL+w|pl +w|gl+w|zi+w|ii+w|ol+w| grw | grw | 4w [grw | grw | prw et |zrw] Lrw] w 1-w]z-w]

_ T aouanbag yole4 i0108A pue Bunjoers 1dniieiu; L _
yole4 uononAsy|
uoNoNNSU| wsung §o
ajoAo 1se

ONIWIL LdNYYILNI AN ONV DYI — 6 3¥NOId

4-307

MC6809E* MCEBA09E*MC68BOSE

‘PBIOU BSIMIBYIO SSBJUN “SHOA (°Z 4O 3Be1(0A UBIY B PUB SIOA 8°0 4O aBe10A MO| B WOJ) PUE 01 PaOUBIaje) aie sluauiainseaws Buwiy ‘310N
“AJUO BDUBIBJB) JO} UMOYS %0010 I,

gV T e 1 e Y s s Y U 0 Iy O,
||||\/ \.\'lllo_._
— \— [ssns
—__\ S [\ VA G G G
-/ X s

G D
/ \ Y a D &'C

70d M8N HOd MaN 430 HOd 104

X X %ELA) . G G G § ﬁx'ga

Quld
SOds
L +0d M8N Od MoN 4344¢ JEEEL) 9444$ EEEEK £€-dS Z2-dS 1-d EEEE)

xxxxH%%xvﬁﬁxx%%pﬁawﬁz

I wu | ouvu |ogsw | ogew b ozsw bogew Tgrw | opww | ogvw | zew | osw | ow |o-w | ozow |
uononiisu|
_:o“ww”m_mc_T aousnbag yo1ad4 10108 pue Bupelg 1dnislul —»{ 1us1n) *o_
aAD 188

ONIWIL LdNYYILNI DYId— 0L 3¥NDId

4-308

MC6809E*MC68A09E*MC68B0IE

FIGURE 11 — MCBB09E CLOCK GENERATOR

r--"-""""""="\F""-"¥"—"—-"”""/"=—=-"—- —
| |
| +5V |
I I]
| 1 STRETCH |
2] CLR 15 Optional
| :7)4(_87(2 MRDY Circuit
i 741804 g[731 741810 U1
i 3 i
| [] |
PRE |
R SN LS
l ——{>>Q to System and Processor
3 A7
CLR PRE
4 5] L9 11
J Ql— J Q —{>E to System
o 741576 741576 +oV Y
z 1> w2 Sof> U3]
Osc. 6800
10 e 3
1 = 12 - 3 o
K__Q Q DO—‘ € to Processor
PRE | 14 " CLR
5 741504
) S |

NOTE: If optionai circuit is not included the CLR and PRE
inputs of U2 and U3 must be tied high.

MRDY

STRETCH

FIGURE 12 — READ-MODIFY-WRITE INSTRUCTION EXAMPLE (ASL EXTENDED INDIRECT)

Memory Memory
Location P4 Contents Contents Description
PC— $0200 $68 ASL Indexed Opcode
$0201 $OF Extended Indirect Postbyte
$0202 $63 Indirect Address Hi-Byte
$0203 $00 Indirect Address Lo-Byte
$0204 Next Main Instruction
/‘——\
$6300 $E3 Effective Address Hi-Byte
$6301 $D6 Effective Address Lo-Byte
$E3D6 $5C Target Data
/-\

4-309

MC6809E*MC68A03E*MCE8BOSE

‘PO BSIMIBYIO SSBLUN ‘SI[OA 07 JO 8BeIoA yBiy e pue SIoA g () 4O 8BE1OA MO| € WOJ) PUB 0) PBOUDIBIS) 8i8 SludUIRINSEsW Buiwiy
-Bulun JO $ased 1Sow 9AIG 01 UMOYS SI 8[oAd SNQ ausodwod
-yBiy S {D 4O 3) PUB MOJ S1 M /H SIIYM [BAISIUI BYY Buunp AjUO NdW 24s Aq pausasse aq {Im eleg 3LON

810N wmmln/

H

{ viVQ ndW
ASLi~>| All Maar= je—
| 4 HAav ‘M7
AS11»] —T usL | ASLY owtﬁﬁ o
_ i 777

$od _
K‘ /l 0
“
g ONIWIL OSL — ¥l 3UNDH
3
(YWAY
— /- ___ [/ on
X ASNg
—_— , { X
88$ YINA 258 YHA 9a$ €35 YWA 008 £9% 468 89%
X BE X X X X X X X X X X X eleq

90€3¢ 34448 90E3¢$ 3444$ 10£9% 00€9$ 4444¢ £020$ 20208 L020$ 00Z0$

0$
_X =) CE G G IR GERND GED GEN SR SN SR SE G

0
s e W e I e S s (N s BN

_ u _ oL +w _ 6+w _ g+w _ LW _ g+w _ G+w _ prw | ogrw _ Z+w _ prw | woo|-w _

‘Asuj WwaLn)

ONIWIL ASNS — €1 IHNOI 1O BI9AD 15E7

4-310

MC6809E® MC68A03E*MC68BOSE

'919AD Yo1ay 101034 1siy Buunp ybiy si ASNg -
“11eYd MOj) 8yl Ul wuiod Aue woly sousnbas

1888s ayl Buualua Ul nsal fIm 1353y Buniassy | :salon

o~

L i abpajmouoy ey
0 1 abpajmouxoy JuAg
i 0 abpajmoundy 19say 10 10N
0 0 Buiuuny
S8 | vea aelg sng
IWMD

A

$8=-0

2434 | BMS

$idd | ZIMS

w233 | ows [0 men]
9341 | oyl
vidd | 1ms
2444 | WN
Od — (101997}
z 310N

$8=1
ve=Q

<>
<G>
<>
<>

N
N
N
N
Nj

SNOILONYLSNI 360890 HOd LHYHOMOId — G1 JUNOI4

4-311

MC6809E*MC68A09E*MC68BOSE

ADDRESSING MODES

The basic instructions of any computer are greatly
enhanced by. the presence of powerful addressing modes.
The MCB809E has the most complete set of addressing
modes available on any microcomputer today. For example,
the MCBB09E has 59 basic instructions; however, it
recognizes 1464 different variations of instructions and ad-
dressing modes. The addressing modes support modern pro-
gramming techniques. The following addressing modes are
available on the MC680SE:

Inherent (Includes Accumulator)

Immediate

Extended

Extended Indirect

Direct

Register

Indexed

Zero-Offset
Constant Offset
Accumulator Offset
Auto Increment/Decrement
Indexed Indirect
Relative
Short/Long Relative Branching
Program Counter Relative Addressing

INHERENT (INCLUDES ACCUMULATOR)

In this addressing mode, the opcode of the instruction
contains all the address information necessary. Examples of
Inherent Addressing are: ABX, DAA, SWI, ASRA, and
CLRB.

IMMEDIATE ADDRESSING
In Immediate Addressing, the effective address of the data

is the location immediately following the opcode li.e., the
data to be used in the instruction immediately follows the op-
code of the instruction}. The MCE809E uses both 8 and
16-bit immediate values depending on the size of argument
specified by the opcode. Examples of instructions with Im-
mediate Addressing are:

LDA #$20

LDX #$F000

LDY #¥CAT
NOTE: # signifies Immediate addressing, $ signifies hexa-

decimal value to the MCB809 assembler.

EXTENDED ADDRESSING
In Extended Addressing, the contents of the two bytes im-

mediately following the opcode fully specify the 16-bit effec-
tive address used by the instruction. Note that the address
generated by an extended instruction defines an absolute ad-
dress and is not position independent. Examples of Extended
Addressing include:

LDA CAT

STX MOUSE

LDD $2000

EXTENDED INDIRECT
As a special case of indexed addressing (discussed

below), one level of indirection may be added to Extended
Addressing. In Extended Indirect, the two bytes following
the postbyte of an Indexed instruction contain the address of
the data.

LDA [CATI]

LDX [$FFFE]

STU [DOG]

DIRECT ADDRESSING
Direct addressing is similar to extended addressing except

that only one byte of address follows the opcode. This byte
specifies the lower 8 bits of the address to be used. The up-
per 8 bits of the address are supplied by the direct page
register. Since only one byte of address is required in direct
addressing, this mode requires less memory and executes
faster than extended addressing. Of course, only 256 loca-
tions (one page) can be accessed without redefining the con-
tents of the DP register. Since the DP register is set to $00 on
Reset, direct addressing on the MC6B09E is upward compati-
ble with direct addressing on the M6800. Indirection is not
allowed in direct addressing. Some examples of direct ad-
dressing are:

LDA where DP = $00

LDB where DP=$10

LDD < CAT
NOTE: < is an assembler directive which forces direct

addressing.

REGISTER ADDRESSING .

Some opcodes are followed by a byte that defines a
register or set of registers to be used by the instruction. This
is called a postbyte. Some examples of register addressing
are:

TFR XY Transfers X into Y

EXG A B Exchanges A with B

PSHS A, B, X,Y PushY, X, Band Aonto S
stack

PULU X,Y,D Pull D, X, and Y from U stack

INDEXED ADDRESSING

In all indexed addressing, one of the pointer registers (X,
Y,#,. S, and sometimes PC) is used in a calculation of the ef-
fective address of the operand to be used by the instruction.
Five basic types of indexing are available and are discussed
below. The postbyte of an indexed instruction specifies the
basic type and variation of the addressing mode as well as
the pointer register to be used. Figure 16 lists the legal for-
mats for the postbyte. Table 2 gives the assembler form and
the number of cycles and bytes added to the basic values for
indexed addressing for each variation.

4-312

MC6809E*MC68A09E*MC68BOSE

FIGURE 16 — INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS

Post-Byte Register Bit A In)daxe'dl
S§[4]3]2]1 Mods
d EA = ,R + 5 Bit Offset
0 R+
i R+ +
[¢] ,—R
i .- —-R

EA = ,R +0 Offset

EA =,R + ACCB Offset

EA = ,R + ACCA Offset

EA = ,R +8 Bit Offset

EA = ,R +16 Bit Offset

EA = ,R +D Offset

EA = ,PC +8 Bit Offset

EA = ,PC +16 Bit Offset

|l =] =f=]=]=]=j=i=|—=]|=l=lo]|
D|xIx|D|D|D|D|D|D|Z|W|D|D|D| ®
o[(x|x|o|o|o|2|2|D|{>0|D|2|D|D
=] == |—jolo|e]eolo|oje|a
==l =|olojo|=|=l-|o|ole|o|a
—lojo|=|olol-lole|—-|-|e|je|a
S|=lof-lolojo|=lo|—|o|=lela]| ©

EA = [,Address]
N I ——

{——————Addressing Mode Field
Indirect Field

(Sign bit when by = 0}

Register Field: RR

Zero-Offset Indexed — In this mode, the selected pointer
register contains the effective address of the data to be used
by the instruction. This is the fastest indexing mode.

Examples are:

LDD 0, X
LbA S

Constant Offset Indexed — In this mode, a
two's-complement offset and the contents of one of the
pointer registers are added to form the effective address of
the operand. The pointer register's initial content is un-
changed by the addition.

Three sizes of offsets are available:
5 -bit (— 16 t0 + 15}

8 -bit {(—128t0 +127)

16-bit {— 32768 to + 32767}

The two’'s complement 5-bit offset is included in the
postbyte and, therefore, is most efficient in use of bytes and
cycles. The two's complement 8-bit offset is contained in a
single byte following the postbyte. The two's complement
16-bit offset is in the two bytes following the postbyte. In ,
most cases the programmer need not be concerned with the
size of this offset since the assembler will select the optimal
size automatically.

8(1) = ¢ Examples of constant-offset indexing are:
10=U LDA 23X
=5 LDX -28
x = Don't Care LDY 300,X
d=0Offset Bit
l=0= Not Indirect LbuU CATY
1= Indirect
TABLE 2 — INDEXED ADDRESSING MODE
Non Indirect Indirect
Type Forms Assembler Postbyte +|+ | Assembler Postbyte +1+
Form OP Code | ~i# Form OPCode | ~|#
Constant Offset From R No Offset R 1RR00100 010 [.R] 1RR10100 310
{2's Complement Offsets) 5 Bit Offset n, R ORRnnnnn 110 defaults to 8-bit
8 Bit Offset n, R 1RRO1000 11 [n, R} 1RR11000 411
16 Bit Offset n, R 1RR0O1001 412 [n, R] 1RR11001 712
Accumutator Offset From R A Register Offset A, R 1RR00110 110 [A, R) 1RR10110 410
{2's Complement Offsets} B Register Offset B. R 1RR00101 110 (B, RI 1RR10101 410
D Register Offset D, R 1RR0O1011 4(0 D, R] 1RR11011 710
Auto Increment/Decrement R Increment By 1 R+ 1RR00000 2|0 not allowed
Increment By 2 R+ + TRR0000T | 3|0 | LR++1 | 1RR10001 | 6]0
Decremer?t By 1 ,—R 1RR0O0010 | 2|0 not atlowed
Decrement By 2 ,——-R 1RR0O0011 3]0 [,—-R] 1RR10011 6|0
Constant Offset From PC 8 Bit Offset n, PCR 1xx01100 i [n, PCR] 1xx11100 411
{2's Complement Offsets) 16 Bit Offset n, PCR 1xx01101 5|2 in, PCRI] 1xx11101 8{2
Extended Indirect 16 Bit Address — — —|- in} 10011111 5]2

R
X

X, Y, Uor$S
Don't Care

= RR:
= 00=X
1=Y

1=5

+ + . ; ; ;
~and + indicate the number of additional cycles and bytes respectively for the particular indexing variation.

4-313

MC6809E*MC68A09E*MCE8BOIE

Accumulator-Offset Indexed — This mode is similar to

constant offset indexed. except that the two’s-complement

value in one of the accumulators (A, B or D) and the con-
tents of one of the pointer registers are added to form the ef-
fective address of the operand. The contents of both the ac-
cumulator and the pointer register are unchanged by the ad-
dition. The postbyte specifies which accumulator to use as
an offset and no additional bytes are required. The advan-
tage of an accumulator offset is that the value of the offset
can be calculated by a program at run-time.
Some examples are:

LDA B.Y
LDX DY
LEAX B,X

Auto Increment/ Decrement Indexed — In the auto incre-
ment addressing mode, the pointer register contains the ad-
dress of the operand. Then, after the pointer register is used
it is incremented by one or two. This addressing mode is
useful in stepping through tables, moving data, or for the
creation of software stacks. In auto decrement, the pointer
register is decremented prior to use as the address of the
data. The use of auto decrement is similar to that of auto in-
crement; but the tables, etc., are scanned from the high to
low addresses. The size of the increment/decrement can be
either one or two to allow for tables of either 8- or 16-bit data
to be accessed and is selectable by the programmer. The
pre-decrement, post-increment nature of these modes allow
them to be used to create additional software stacks that
behave identically to the U and S stacks.

Some examples of the auto increment/decrement ad-
dressing modes are:

LDA X+
STD Y+ +
LDB Y
LDX ,—-S

Care should be taken in performing operations on 16-bit
pointer registers (X, Y, U, S) where the same register is used
to calculate the effective address.

Consider the following instruction:

) STX 0.X+ + (X initialized to O}
The desired result is to store a 0 in locations $0000 and $0001
then increment X to point to $0002. In reality, the following
ocCurs:

O—temp calculate the EA; temp is a holding register
X+2-X perform autoincrement
X--{temp) do store operation

INDEXED INDIRECT
" All of the indexing modes with the exception of auto in-
crement/decrement by one, or a + 5-bit offset may have an
additional level of indirection specified. In indirect address-
ing, the effective address is contained at the location
specified by the contents of the Index Register plus any off-
set. In the example below, the A accumulator is loaded in-
directly using an effective address calculated from the Index
Register and an offset.
Before Execution
A=XX {don't
care)
X =$F000

4-314

$0100 LDA. [$10,X] EA is now $F010
$FO10 - $F1 $F150 is now the
$FO11 450 new EA

$F150 SAA

After Execution
A=$AA (Actual Data Loaded}
X = $F000

All modes of indexed indirect are included except those
which are meaningless (e.g., auto increment/decrement by
1 indirect). Some examples of indexed indirect are:

LDA [X]
LDD [10,S]
LDA {B,Y]
LDD LX++1

RELATIVE ADDRESSING

The bytels) following the branch opcode is {are) treated as
a signed offset which may be added to the program counter.
If the branch condition is true then the calculated address
(PC + signed offset} is loaded into the program counter.
Program execution continues at the new location as in-
dicated by the PC; short (1 byte offset) and long (2 bytes off-
set) relative addressing modes are available. All of memory
can be reached in long relative addressing as an effective ad-
dress interpreted modulo 216. Some examples of refative ad-
dressing are:

BEQ CAT (short)
BGT DOG (short}
CAT LBEQ RAT (tong}
DOG LBGT RABBIT f{long)
L]
.
L]
RAT NOP
RABBIT NOP

PROGRAM COUNTER RELATIVE
The PC can be used as the pointer register with 8 or 16-bit
signed offsets. As in relative addressing, the offset is added
to the current PC to create the effective address. The effec-
tive address is then used as the address of the operand or
data. Program Counter Relative Addressing is used for
writing position independent programs. Tables related to a
particular routine will maintain the same relationship after
the routine is moved, if referenced relative to the Program
Counter. Exampiles are:
LDA CAT, PCR
LEAX TABLE, PCR
Since program counter relative is a type of indexing, an
additional level of indirection is available.
LDA {CAT, PCR]
LOU [DOG, PCRI

MC6809E*MC68A09E*MC68BOSE

MC6809E INSTRUCTION SET

The instruction set of the MCB809E is similar to that of the
MC6800 and is upward compatible at the source code level.
The number of opcodes has been reduced from 72 to 59, but
because of the expanded architecture and additional ad-
dressing modes, the number of available opcodes (with dif-
ferent addressing modes} has risen from 197 to 1464.

Some of the new instructions are described in detail
below:

PSHU/PSHS

The push instructions have the capability of pushing onto
either the hardware stack (S) or user stack (U) any single
register, or set of registers with a single instruction.

PULU/PULS

The pull instructions have the same capability of the push
instruction, in reverse order. The byte immediately following
the push or puli opcode determines which register or
registers are to be pushed or pulled. The actual PUSH/PULL
sequence is fixed; each bit defines a unique register to push
or pull, as shown below.

PUSH/PULL POST BYTE STACKING ORDER

‘—l—l—[—vTT‘]—i PULL ORDER
[\J

L__cer ce
A A
B B
_DPR bP
X XH
Y Xlo
S/u Y Ho
PC YLlo
U/SH
U/Sto
PCH
PC Lo
[}
PUSH ORDER
INCREASING
MEMORY

|

TFR/EXG

Within the MCB80SE, any register may be transferred to or
exchanged with another of like-size; i.e., 8-bit to 8-bit or
16-bit to 16-bit. Bits 4-7 of postbyte define the source
register, while bits 0-3 represent the destination register.
These are denoted as follows:

TRANSFER/EXCHANGE POST BYTE

—_
SOURCE DESTINATION

REGISTER FIELD

0000 DtAB) 1000 A

0001 X 1001 B

0010 Y 1010 CCR

0611 U 1011 DPR

0100 S

0101 PC
NOTE: Ali other combinations are undefined and INVALID.
LEAX/LEAY/LEAU/LEAS .

The LEA (Load Effective Address) works by calculating
the effective address used in an indexed instruction and
stores that address value, rather than. the data at that ad-
dress, in a pointer register. This makes all the features of the
internal addressing hardware available to the programmer.
Some of the implications of this instruction are illustrated in
Table 3. .

The LEA instruction also allows the user to access data
and tables in a position independent manner. For example:
LEAX MSG1, PCR

LBSR PDATA (Print message routine)
T e
L]
MSG1 FCC ‘MESSAGE'

This sample program prints: ‘MESSAGE’. By writing
MSG1, PCR, the assembler computes the distance between
the present address and MSG1. This result is placed as a
constant into the LEAX instruction which will be indexed
from the PC value at the time of execution. No matter where
the code is located, when it is executed, the computed offset
from the PC will put the absolute address of MSG1 into the X
pointer register. This code is totally position independent.

The LEA instructions are very powerful and use an internal
holding register {temp). Care must be exercised when using
the LEA instructions with the autoincrement and autodecre-
ment addressing modes due to the sequence of internal
operations. The LEA internal sequence is outlined as follows:
LEAa b+ {any of the 16-bit pointer registers X, Y, U-

or S may be substituted for a and b.}

1. b—temp (calculate the EA)
2.b+1=-b (modify b, postincrement)
3. temp—a {load a)

LEAa ,-b

1. b—1—~temp (calculate EA with predecrement)
2.b-1-b (modify b, predecrement)
3. temp—a (load a)

TABLE 3 — LEA EXAMPLES

q s O)

Ci

LEAX 10,X | X +10 =X
LEAX 8500, X | X + 500 — X
LEAY A Y |Y+A =Y
LEAY D,Y|Y+D =Y
LEAU-10,U [U-10 —U
LEAS -10,S | §-10 =S
LEAS 10,9"[S+10 —-S
LEAX 5,S|S+5 ~X

Adds 5-bit constant 10 to X
Adds 16-bit constant 500 to X
Adds 8-bit A accumulator to Y
Adds 16-bit D accumulator to Y
Subtracts 10 from U

Used to reserve area on stack
Used to ‘clean up’ stack
Transfers as well as adds

4-315

MC6809E*MC68A09E*MC68BOSE

Autoincrement-by-two and autodecrement-by-two instruc-
tions work similarly. Note that LEAX ,X + does not change
X, however LEAX , — X does decrement X. LEAX 1,X should
be used to increment X by one.

MUL

Multiplies the unsigned binary numbers in the A and B ac-
cumulator and places the unsigned result into the 16-bit D
accumulator. This unsigned multiply also allows multiple-
precision multiplications.

Long And Short Relative Branches

The MC6809E has the capability of program counter
relative branching throughout the entire memory map. In
this mode, if the branch is to be taken, the 8 or 16-bit signed
offset is added to the value of the program counter to be us-
ed as the effective address. This allows the program to
branch anywhere in the 64K memory map. Position indepen-
dent code can be easily generated through the use of relative
branching. Both short (8-bit) and long {16-bit) branches are
available. -

SYNC

After encountering a Sync instruction, the MPU enters a
Sync state, stops processing instructions and waits for an in-
terrupt. If the pending interrupt is non-maskable (NMI) or
maskable (FIRQ, IRQ) with its mask bit (F or I} clear, the pro-
cessor will clear the Sync state and perform the normal inter-
rupt stacking and service routine. Since FIRQ and IRQ are
not edge-triggered, a low level with a minimum duration of
three bus cycles is required to assure that the interrupt will
be taken. If the pending interrupt is maskable (FIRQ, |IRQ)
with its mask bit (F or |) set, the processor will clear the Sync
state and continue processing by executing the next inline
instruction. Figure 17 depicts Sync timing.

Software interrupts

A Software Interrupt is an instruction which will cause an
interrupt, and its associated vector fetch. These Software In-
terrupts are useful in operating system calls, software
debugging, trace operations, memory mapping, and soft-
ware development systems. Three levels of SWi are available
on this MCB809E, and are prioritized in the following order:
SWI, SWi2, SWI3.

16-Bit Operation

The MCB809E has the capability of processing 16-bit data.
These instructions include loads, stores, compares, adds,
subtracts, transfers, exchanges, pushes and pulls.

CYCLE-BY-CYCLE OPERATION

The address bus cycle-by-cycle performance chart il-
lustrates the memory-access sequence corresponding to
each possible instruction and addressing mode in the
MCBB03E. Each instruction begins with an opcode fetch.
While that opcode is being internally decoded, the next pro-
gram byte is always fetched. (Most instructions will use the
next byte, so this technigue considerably speeds
throughput.) Next, the operation of each opcode will follow
the flow chart. VMA is an indication of FFFFqg on the ad-

4-316

dress bus, R/W = 1and BS = 0. The following examples il-
lustrate the use of the chart; see Figure 18.

Example 1: LBSR (Branch Taken}
Before Execution SP = F000

L)
$8000 LBSR CAT

$A000 CAT

CYCLE-BY-CYCLE FLOW
Cycle # Address Data R/W Description

1 8000 17 1 Opcode Fetch

2 8001 20 1 Offset High Byte

3 8002 [0.4] 1 Offset Low Byte

4 FFFF * 1 VMA Cycle

5 FFFF * 1 VMA Cycle

6 AQ00 * 1 Computed Branch Address
7 FFFF . t VMA Cycle

8 EFFF 80 0 Stack High Order Byte of

Return Address
9 EFFE 03 0 Stack Low Order Byte of
Return Address

Example 2: DEC (Extended)

$8000 DEC $A000
$A000 FCB $80

CYCLE-BY-CYCLE FLOW
Cycle # Address Data R/W Description

1 8000 7A 1 Opcode Fetch

2 8001 AQ 1 Operand Address, High Byte
3 8002 00 1 Operand Address, Low Byte
4 FFFF . 1 VMA Cycle

5 A00O 80 1 Read the Data

6 FFFF ° 1 VMA Cycle

7 A0OC 7F 0 Store the Decremented Data

*The data bus has the data at that particular address.

MC6809E INSTRUCTION SET TABLES

The instructions of the MCB809E have been broken down
into five different categories. They are as follows:
8-Bit operation (Table 4)
16-Bit operation {Table 5)
Index register/stack pointer instructions (Table 6)
Relative branches {long or short) (Tabie 7)
Miscellaneous instructions (Table 8)

Hexadecimal values for the instructions are given in
Table 8.

PROGRAMMING AID

Figure 18 contains a compilation of data that will assist
you in programming the MC6809E.

MC6809E® MC68A09E* MC68BO9E

"PBlou BSIMIBLIO SSBIUN ‘SIIOA (' 4O 86eYOA UBIY B pue SHOA g'(JO 3BEIOA MO| B UIOI) PUB O} PEOUBIS}B) BIE SIUBWAINSEaW Bull] 310N

"ONAS 40 N0 Jossadoid ay) Buug 0] Asessadau sy
21942 3U0 Ajuo yBnoyije ‘usel aq |1 1dnuselul 1ey) 33lUBIEND 01 SB{OAD 821y} 10} MO} PlaY &g 1SNW DH I PUR DHI '189(0 Je SHq XSew §| ‘Z
“(Buiwi | dnuseiul) gL pue g sainBiy UO (W) SB BOAD SIYI YlIM LIRS [iM
Buisseooid 1dnusiur pue ybiy Uiewss Jim D[] (DY] 10 DYl paysewun ue 1O |NN) paldadde s 1dniaiul 8y} 41 JBASMOH “{ +Dd UoNed0|
SSBIPPE WL YOI} UOIIONASUI U 8q |IM 8|2A0 SIY) pue mo| 0f |im DT ‘patsanbai st 1dnuslul 8yl UBYM 138 Si 1 ¥SBW PBIBIDOSSE Byl J| | :SBION

S0di—n] fa—

N XX X Yo

Z 910N-985 | 1A N
63_.' T\ M
| sloN 295)N | N / \ / on
] N
\ “ A r X x YINAY
A\
| Y X s8
/ _ .,4 : \ ‘ va
3
/ __ »4 A\ A x M/H
_
|
|

yA J\ L +0d x Od Xr [X’ SS8IPPY

[uononnsulpe A ol

k \ »| ainoex3 | yoley - |uononnsul|
JUAg jo aBPaMOUNOY DUAS 8pood(snoiAald JO
81947 15B7] JUAG 90AY 158

ONIWIL ONAS — LI 3HNDIS

4317

MC6809E*MC68A09E*MCE8BOJE

"810A0 YA € 81046q 8{OAD BY) UO PBLIBSSE St YWAY 'V

*§88008 811IM-AJIPOLI-PEBI JO BOAD 1SIly BYl PUB SSBODR 81AQ-8IQNOP € JO $810A0 OMI 1sJl Buunp | =Asng "uononiisui 8101s Buunp uonesedo alup €
-yoney apoodo ey 1eye peloubi aq jiim se1Aqaid ¢ ebed pue z ebed luenbesqns v Z

'peo| eleipawwl 81AQ a|QNOP J0 81AQ 1SJiy JO ssaooe Buunp | =Asng |

| :S310N
YINA
C wey)
c-:gﬂ_oﬂw
YN 1
_> [TV ol T
0—Asng ‘(1) waupul N 1
t —ASNg ‘(H) 1081pYy {Q) Jo (e)6l YINA
seinBiy seg |
uonesedQ VWA
X ‘ puesadg JO SSBIPPY —IPPY
ﬁ YWA % ﬁ 9 e e N (€ 210N
WA OVMA YRR YAA A X NGy
1 |
YA K_E YWA
1 T
L4IpPY L +IPPY L +IPPY | +IpPY —_.ﬂwmﬁu% YA
—ppY —IpPY —JPPY —IPPY vg g+y N
€30V
voov
19840 KN_KD
18810 waipy] sug 9| a+y *m—_m g+y A 1 Aq | +1pPY — IpPY WA | +1pRY —IPpY
ON papusixy + - d98Q/ou| d8Q/out YWA
od ?63“ ppY Y oy
paxapu)
v
pepuaixy veNQq juaayuj youesg youeig

pue aieipawiul uoys 6uo
(T 810N}

1 +4PPY —PPY

{u9184) 8p0OAQ 4O SS3IPPY ~HAQY

SNE S$SIUAAY 4O ILVLS =HAOQV

JONVWHOIYId 310AD-A8-FT1IAD SNA SSIHAAY — 8L IUNOIL

4-318

MC6809E*MC68A09E*MC68B0OSE

*§IN000 Jdnuawu ue flUn JN300 | m®_0>0 YWA bV
paAes mw«>n 40 Jaquinu 8y} o1 mC_“:OUUm Asen 1M $3SS200€ NORIS JO Jaquinu ay] ‘g
{1 2|qe| 93s) I0103A 19s3al Pl uQDZWuC_ UR jO SSaJppe 3yl O} Si9j3l JOIBA 'Z
(S=dS va: Js1uiod ¥oels alempliey ay) asn gNd ,WIWL pue (N=dg ?&.: isyod NOBIS SN 3yl asn suondnuIsuUl NNd ~DIm&
| +dS—dS usy ‘—HB\E Yyim 4s—-4Haagy ;aouanbas wC_;O__Oh ayl 01 s1343) (H) Roes
0=M/H Ut dS—HaaV Usyl ‘| — dS—dS :80uanbas BUIMOIO} BUL OL S18J81 (M) RIS 'L
‘S31ON
gl @inbly o)
A
P ; |
YA <__,_>
ol\,m_:m 0—-ASNS
(1) 4OLI3A (1) HOLDIA
dS—ippv L—ASNg L=ASNg
“(H1 YO123A (H) HOLD3IA
v JION | |
o ZWA} YA
(4) YOV1S x3s
dS—¥aav
{4) WOV1S 840H
() NIVLS (MINOVLS (MINOVLS vHoH
(4) YOV 1S (MINJVLS (MINOVLS 810y
(8] OVLS (H) ¥OVLS (MIXOVLS (MINOVLS YA v10y
(H) YOV1S {H) NDV1S IMIYOVLS (MINDVLS YA oo
(4) WOV1S IMINOVLS (MINOVILS ST
() WOV1S IMINOVLS (MINDVLS o 310N TAA A voIN
(4} WOV1S (MINOVLS (MINDV LS) woms) N ST 84S
(®) XIV1S (MINOVLS (MINDVLS 0 EON AR vaa Mumﬂ
H) ¥OVLS (MINOVLS (MINDOVLS NF:>>. »oels YA YWA YA Ve
(MINOVLS (MINOVLS | YWA YWA 8190V 1S BonI
(MINOVLS IMINOVLS dS—HaAv VWA YWA (M) XDV1S VAN
(MINDYLS iMINDVLS -
8930
v23a
YA vva
YWA YWA YWA [Tee]
| | YA YINOD
YIANA TINA WA YWA YAA YWA 8410
T vH10
(4) AIVLS waav ausy
vHSY
g5y
visy
Ly %) CIMS $I1Nd SHSd bW oxa W4l Siy Xav
ZIMS ANd - NHSd
IMS gl ainbi4 woiy abeq wasayul

IINYWHOIHId 31DAD-A8-310AD SNE SSIHAQV ‘SNOILVHILO — (816l IHNDIA

4-319

MC6809E*MC68A09E*MC68B0SE

*§JN900 1dNIIBIUI UR [N JNDJO ||IM SBIDAD YINA b
‘panes $alAq JO Jaquinu 8y 0) Buip1odoe AJBA {[IM S3SSBI0E YORIS JO 1IBQUINU 8Y) '€
‘(| 9|qe | 88S) J0108A 1858) 10 10NLIBILI UB JO SSBIPPE BYL O} $18481 JOIDBA T
(S =dS *'9'1) 181uI0d YOI BIEMPIRY BYl 3SN SN 'SHSd PUB (1 =4S ''8'l) J81uI0d 3Oels 188N 8yl asn SUORONNSUL NN ‘NHSd
L +dS—dS UBYl ‘| =M/H YIM 4S—~HAQY ‘ouanbas Buimolo) syl 01 S18)81 (4) A0B1S
0=M/H um dS—~HAAY Usyl ‘| —dS —dS :90uanbas BUIMO}[0} 3U) O} S18}81 (M) XIS L

gl anbiy o)
A
A 3
(M) | +80av—Haav YA 1 + 4aav —4aav
YA YAA
0—ASNg
L +40QY—~Haav | ‘L+HQQV-—-H4AaQv
L—=ASNE 'YWA
(M) MOVLS
(M) XDVLS HoH
YNA 1oy
wwn_ 2240
aans 181 990NY
AJWD ONI
AlLS XdWD 730 AQT
X1§ NdWI W02 xal
nis SJND 410 nal
S1s QdND HSY s
aits 4sr aaav 1sl sy aal

A

g1 anbiy woiy

SIUBIBYU|-UON

a1st
visl
aans
veans
a1s
V1S
808s
vods
ado
vHO
aaam
val
8403
VHO3
adNO
YdWO
al1ig
viig
gaNvy
VANY
8aav
vaav
80Qv
voav

JONVIWHO4HId 310AD-A8-3T1OAD SNE SSIHAAV :SNOLLYHIJO — ()6l IUNDi4

‘S3LON

4-320

TABLE 4 — 8-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

MC6809E*MC68A09E*MC68BOSE

Mnemonicl(s) Operation
ADCA, ADCB Add memory to accumulator with carry
ADDA, ADDB Add memory to accumulator
ANDA, ANDB And memory with accumulator

ASL, ASLA, ASLB

Arithmetic shift of accumulator or memory left

ASR, ASRA, ASRB

Arithmetic shift of accumulator or memory right

BITA, BITB Bit test memory with accumulator

CLR, CLRA, CLRB Clear accumulator or memory location

CMPA, CMPB Compare memory from accumulator

COM, COMA, COMB Complement accumulator or memory location
DAA Decimal adjust A accumulator

DEC, DECA, DECB Decrement accumulator or memory location
EORA, EORB Exclusive or memory with accumuiator

EXG R1, R2 Exchange R1 with R2 (R1, R2 = A, B, CC, DP)
INC, INCA, INCB Increment accumulator or memory location
LDA, LDB l.oad accumulator from memory

LSL, LSLA, LSLB

Logical shift left accumuiator or memory location

LSR, LSRA, LSRB

Logical shift right accumulator or memory focation

MUL Unsigned multiply (A x B — D}
NEG, NEGA, NEGB Negate accumuiator or memory
ORA, ORB Or memory with accumulator

ROL, ROLA, ROLB

Rotate accumulator or memory left

ROR, RORA, RORB

Rotate accumulator or memory right

SBCA, SBCB Subtract memory from accumulator with borrow
STA, STB Store accumulator 1o memory

SUBA, SUBB Subtract memory from accumulator

TST, TSTA, TSTB Test accumulator or memory location

TFR R1, R2 Transfer Rt 10 R2 (R1, R2 = A, 8, CC, DP)

NOTE: A, B, CC or DP may be pushed to (pulled from) either stack with PSHS, PSHU (PULS,

PULU) instructions

TABLE S5 — 16-BIT ACCUMULATOR AND MEMORY INSTRUCTIONS

Mnemonic{s} Operation
ADDD Add memory to D accumuiator
CMPD Compare memory from D accumulator
EXG D, R Exchange D with X, Y, S, U or PC
LDD Load D accumutator from memory
SEX Sign Extend B accumulator into' A accumulator
STD Store D accumulator to memory
SUBD Subtract memory from D accumulator
TFR D, R Transfer D to X, Y, 5, U or PC
TFR R, D Transfer X, ¥, S, Uor PCto D

NOTE: D may be pushed (pulied) to either stack with PSHS, PSHU {PULS,

PULU) instructions.

4-321

MC6809E*MC68A09E* MC68B09E

TABLE 6 — INDEX REGISTER/STACK POINTER INSTRUCTIONS

Instruction Description
CMPS, CMPU Compare memory from stack pointer
CMPX, CMPY Compare memory from index register
EXG R1, R2 Exchange D, X, Y, S, Uor PCwith D, X, Y, §, Uor PC
LEAS, LEAU Load effactive address into stack pointer
LEAX, LEAY Load effective address into index register
LDS, Lbu Load stack pointer from memory
LDX, LDY Load index register from memory
PSHS Push A, B, CC, DP, D, X, Y, U, or PC onto hardware stack
PSHU Push A, B, CC, DP, D, X, Y, S. or PC onto user stack
PULS Pull A, B, CC, DP, D, X, Y, U or PC from hardware stack
PULU Pull A, B, CC, DP, D, X, Y, S or PC from hardware stack
STS, STU Store stack pointer to memory
STX, STY Store index register 10 memory
TFR R1, R2 Transfer D, X, Y, S, UorPCto D, X, Y, S, Uor PC
ABX Add B accumulator to X (unsigned)
TABLE 7 — BRANCH INSTRUCTIONS
Instruction I Description
SIMPLE BRANCHES
BEQ, LBEQ Branch if equal
BNE, LBNE Branch it not equal
BMI, LBMI Branch if minus
BPL, LBPL Branch if plus
BCS, LBCS Branch if carry set
8CC, LBCC Branch if carry clear
BVS, LBVS Branch if overfiow set
BVC, LBVC Branch if overflow clear
SIGNED BRANCHES
8GT, LBGT Branch if greater {signed}
BVS, LBVS Branch if invalid 2's complement result
BGE, LBGE Branch if greater than or equal {signed)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLE, LBLE Branch if less than or equal (signed)
BVC, LBVC Branch if valid 2's complement result
BLT, LBLT Branch if less than (signed}
UNSIGNED BRANCHES
BHI, LBHI Branch if higher {unsigned)
B8CC, LBCC Branch if higher or same {unsigned}
BHS, LBHS Branch if higher or same {unsigned)
BEQ, LBEQ Branch if equal
BNE, LBNE Branch if not equal
BLS, LBLS Branch if lower or same {unsigned)
BCS, LBCS Branch if lower (unsigned}
BLO, LBLO Branch if lower (unsigned)
OTHER BRANCHES
BSR, LBSR Branch to subroutine
BRA, LBRA Branch always
BAN, LBRN Branch never
TABLE 8 — MISCELLANEOUS INSTRUCTIONS
Instruction Description
ANDCC AND condition code register
CWAI AND condition code register, then wait for interrupt
NOP No operation
ORCC OR condition code register
JMP Jump
JSR Jump 1o subroutine
RTI Return from interrupt &
RTS Return from subroutine
SWI, SWI2, SwWi3 Software interrupt (absolute indirect)
SYNC Synchronize with interrupt line

4-322

MC6809E* MC68A09E*MC68BO9E

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES

OP Mnem © Mode ~ # OP Mnem Mode ~ t. OF Mnem Mode ~ t

00 NEG Direct 6 2 30 LEAX Indexed 4+ 2+ 60 NEG Indexed 6+ 2+
o A 31 LEAY 4+ 2+ 61 -t A

02 M 32 LEAS 4+ 2+ 62 M

03 COM 6 2 33 LEAU indexed 4+ 2+ 63 COM 6+ 2+
04 LSR 6 2 34 PSHS inherent 5+ 2 64 LSR 6+ 2+
05 3% PULS A 5+ 2 6

06 ROR 6 2 36 PSHU 5+ 2 66 ROR 6+ 2+
07 ASR 6 2 37 PULU 5+ 2 67 ASR 6+ 2+
08 ASL, LSL 6 2 38 * 68 ASL, LSL 6+ 2+
09 ROL 6 2 39 RTS 5 1 69 ROL 6+ 2+
0A DEC 6 2 3A ABX 3 1 6A DEC 6+ 2+
08 * 3B RTi 6/15 1 68 .

ocC INC 6 2 3C CWAI 220 2 6C INC 6+ 2+
0D TST 6 2 3D MUL R " 1 6D TST 6+ 2+
0E JMP y 3 2 3E ° \ 6E JMP \] 3+ 2+
OF CLR Direct 6 2 3F Swi Inherent 19 1 6F CLR Indexed 6+ 2+
10 Page 2 - - - 40 NEGA Inherent 2 1 70 NEG Extended 7 3
11 Page3 - - - 47 A FAREN A

12 NOP Inherent 2 1 42 * 72 *

13 SYNC Inherent =4 1 43 COMA 2 1 73 COM 7 3
14 ¢ 44 LSRA 2 1 74 LSR 7 3
15 * 45 * 75 N

16 LBRA Relative 5 3 46 RORA 2 1 76 ROR 7 3
17 LBSR Relative 9 3 47 ASRA 2 1 77 ASR 7 3
18 * 48 ASLA, LSLA 2 1 78 ASL, LSL 7 3
19 DAA Inherent 2 1 49 ROLA 2 1 79 ROL 7 3
1A ORCC Immed 3 2 4A DECA 2 1 7A DEC 7 3
1B M - 4B M 78 *

1c ANDCC Immed 3 2 4ac INCA 2 1 7C INC 7 3
10 SEX inherent 2 1 4D TSTA 2 1 70 TST 7 3
1E EXG 8 2 4E * ¥ 7E JMP] 4 3
1F TFR Inherent 6 2 4F CLRA Inherent 2 1 7F CLR Extended 7 3
20 BRA Relative 3 2 50 NEGB Inherent 2 1 80 SUBA Immed 2 2
21 BRN A} 3 2 51 * lr 81 CMPA A 2 2
22 BHI 3 2 52 * 82 SBCA 2 2
23 BLS 3 2 53 COMB 2 1 83 SuBD 4 3
24 BHS, BCC 3 2 54 LSRB 2 1 84 ANDA 2 2
25 BLO, BCS 3 2 55 * 85 BITA 2 2
26 BNE 3 2 RORB 2 1 86 LDA 2 2
27 BEQ 3 2 57 ASRB 2 1 87 M

28 BvVC 3 2 58 ASLB, LSLB 2 1 88 EORA 2 2
29 BvVS 3 2 59 ROLB 2 1 89 ADCA 2 2
2A BPL 3 2 S5A DECB 2 1 8A ORA 2 2
2B BMI 3 2 5B " 88 ADDA Y 2 2
2C BGE 3 2 5C INCB 2 1 8C CMPX immed 4 3
20 BLT 3 2 50 TSTB 2 1 8D BSR Relative 7 2
2E BGT Y 3 2 5E * ¥ 8E LDX immed 3 3
2F BLE Relative 3 2 5F CLRB Inherent 2 1 8F ¢

LEGEND:

~Number of MPU cycles (less possibie push pull or indexed-mode cycles)
Number of program bytes
* Denotes unused opcode

4-323

MC6809E*MC68A09E* MCG8BOSE

NOTE:

TABLE 9 — HEXADECIMAL VALUES OF MACHINE CODES (CONTINUED)

Mnem Mode
SUBA Direct
\

w
3
>
DONOREBEEASEDRORDA,
NNRRORNRNRORNRRNRNRNNRNNRN

STX Direct

SUBA Indexed 4+ 2+

STX Indexed 5+ 2+

SUBA Extended
A

ANDA
BITA

EORA
ADCA
ORA
ADDA
CMPX
JSR
LDX A
STX Extended

5
5
5
7
5
5
5
STA 5
5
5
5
5
7
8
6
6

WWWWWwWoWwWwwwww wwww

All unused opcodes are both undefined
and illegal

oP
co
(9]

Cc2
c3
c4
(o]
(¢
Cc7

cs
co
CA
cB
cc
cD
CE
CF

DO
D1

D2
D3
D4
D5
D6
D7
08
D9
DA
DB
DC
DD
DE
DF

E0
E1l
E2
E3
E4
EB
£6
E7

. Mnem

suee
CMP8
SBCB
ADDD
ANDB
BITB
LDB

EORB
ADCB
ORB
ADDB
LbD

LbU

suge
CMPB
SBCB
ADDD
ANDB
BITB
LDB
STB
ECRB
ADCB
ORB
ADDB
LDD
STD
LDU
STU

SsuBB
CMPB
SBCB
ADDD
ANDB
BITB
LD8
STB
EORB
ADCB
ORB
ADDB
LDD
STD
LbU
STU

sugs
CMPB
SBCB
ADDD
ANDB
BITB
LDB
sT8
EORB
ADCB
ORB
ADDB
LDD
STD
LDU
STU

Mpde
Immed

Immed
Immed

Immed

Direct

Direct

Indexed
A

v

Indexed

Extended
3

\J
Extended
Extended

Extended

4-324

#

RN WND NN

[XENN SRR

w

NMNRNNRRNRNNRNRNNRRNDD NN

W WWWWWwwwwowwowwww

oP

1021

1022
1023
1024
1025
1026
1027
1028
1029
102A
1028
102C
102D
102
102F
103F

108C
108E
1003
100C
109€
109F
10A3
10AC
10AE
10AF
1083
10BC
10BE
108F
10CE
10DE
100F
10EE
10EF
10FE
10FF
13F
1183
118C
1193
119C
11A3
11AC
1183
11BC

Mnem

Page 2 and 3 Machine

LBRN
LBHI
LBLS
LBHS, LBCC
LBCS, LBLO
LBNE
LBEQ
LBVC
LBVS
LBPL
LBMI
LBGE
LBLT
LBGT
LBLE
Swi2
CMPD
CMPY
LDY
CMPD
CMPY
LDY
STY
CMPD
CMPY
LDY
STY
CMPD
CMPY
LDY
STY
LDS
LDS
STS
LDS
STS
LDS
STS
Swi3
CMPU
CMPS
CMPU
CMPS
CMPU
CMPS
CMPU
CMPS

Mode

Codes

Relative

v

Relative
Inherent
immed

\mmed
Direct

Direct
Indexed

Indexed
Extended

Extended
Immed
Direct
Direct
Indexed
Indexed
Extended
Extended
Inherent
Immed
Immed
Direct
Direct
Indexed
Indexed
Extended
Extended

5
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
5(6)
(6}
5(6)
20

+ o+

~

7+
7+
8
8

wwwwbbbmbb#bbbbkbbh&bbb

ey

+

b»wwwwbbmbbwwwm»&bb»
+

MC6809E*MC68A09E*MC68BOIE

FIGURE 20 — PROGRAMMING AID

Addressing Modes
Direct Indexed Extended Inherent 6]3(2]1]90
Instruction] Forms [Op | ~| #| Op |~] #[Op] ~| #}Op[~| #10p} ~| # D H[N[Z|VIC
ABX 3A] 3 1|8+ X=X (Unsigned) sjojee]e
ADC ADCA 8o |2 2] 9@ 4] 2] A9j4+|2+| B9 B | 3 A+M+C—A BERARIE
ADCB co|2| 2094 2| E9|4+|2+]F3]| 5| 3 B+M+C-B IR RERIR]
ADD apDA |88l 2 2]l 98 {a]| 2| ABj4a+]2+|8BB| B 3 A+M=A BEAERRI R
ADDB cB| 2| 2|DB|4| 2]€EBla+|2+|FB| 5| 3 B8+M—B HEIRIRAR
ADDD c3|4| 3| D36 | 2] €3|6+|2+[F3; 7} 3 D+MM+1-D L ARERERIR
AND ANDA 8 | 2] 2| 94 |4 2] Aafa+]2+fB41 5] 3 AAM=A DEBDLEE
ANDB ca|2j 2| Dafa| 2| Baj4+|2+]|F4| 5] 3 BAM-—B elt|1])Ofe
ANDCC {1Cj3 | 2 CC A IMM=CC 7
ASL ASLA 48| 21 1 A A v glr|t]|tft
asis @ 2|1)OI [o]t]s]1]
ASL o8 |6 | 2| 68{6+j2+|78| 7| 3 M7 by) gt
ASR ASRA a7 211 A > gltft|eft
asB 57| 2| 1 B}E.—E[D]]ID-Q glifife]
ASR 07 |6l 2| 67|62+l 7]| 3 M 7 0 8t
817 BITA 85|21 2| 9514 | 2} A5j4+|2+|B5| 51 3 Bit Test A M A A) el1|1]0fe
BITB 52| 2] D54 5|4+ 2+{F5| 5| 3 8it Test B {M A B) s[1{1]|0]
CLR CLRA AR | 2 t{0—=A e|lof1|0]O
CLRB 6F | 2 1]10-B ¢l0[110(0
CLR oF | 6] 2| 6Fi6+|2+]7F] 71 3 0—-M e|0]|1]0f0
CMP CMPA gstl2f 279 4| 2)Ar]|4+|2+|B1] 5|3 Compare M from A ARERERAR
CMPB Ciy 2 21 D14 2| EV|4+[2+] FV]| B 3 Compare M from B sttt}
CMPD 1015 4 10 |7 3] 10|7+83+| 101 8 4 Compare MM+ 1 from D [RN REEE N
83 93 A3 B3
CMPS sl al v 783y {743+ 11| 8] 4 Compare M:M+ 1 from S ehtfr]r]
8C . 19c AC 8C
CMPU n 5 4 " 7 3 N7+ 3+[11] 8 4 Compare MM + 1 from U [ARERERER!
83 €RB A3 83
CMPX 8C |4 3| 9C |61t 2] ACI6+[2+}BC| 7|3 Compare M:M+ 1 trom X elt|t]sl1
CMPY 0[5 41 10 17 3| 1wj7+[3+] 10| 8 4 Compare M:M + 1 from Y sttt
8C 9C AC BC
COM COMA a3l 2] 1[A-A eli]1]o]n
coMB 53| 2{ 1|B-8 eltttio]
COM 03 (6| 2|63]6+}2+[73]7]3 M—M eftft]o]n
CWA| 3C [=2Q0 2 CC A IMM—=CC Want for Interrupt 7
DAA 191 2 1 [Decimal Adjust A eltjr]|O]
DEC DECA aal 2] 1[A-1=-A eftft]t]e
DECB 5a| 2 1{B-1-8B eltjrit]e
DEC OA |6 | 2| 6A|6+[2+]7A| 7| 3 M-1-M oft]t]t]e
EOR EORA g8 [2] 2l 98 {4} 2] a8|4+[2+| B8} 5| 3 A¥M=A e|1]|1]|0fe
EORB cgf2| 2| 084 2| EBj4+|2+|FB| B3 B¥M-—B ol 1f1]O]s
EXG RY, R2 1] 8] 2[m-R2? ofefo]e]e
INC INCA Acl 2| 1{A+1—-A eft]t]1]e
INCB s5c| 2| 1[B+1-B eitftft]e
INC oc |6 | 2]|6C|6+j2+[7C| 7] 3 M+1-M elt)t]|1]e
IMP OE [3| 2} 6E[3+j2+]76] 4| 3 EA3-PC o ofo]efe
JSR SD | 7 2| AD{7+|2+([8D] 8 3 Jump to Subroutine sje|o]e]e
Lo LDA 8 | 2| 2] 9% |4]| 2| A6|d4+j2+|B6| 5| 3 M—~A e|t]t]|0]"
LDB c6l24 2| 06[4] 2] E6|4+]2+|F6) 5| 3 M-8 °|1|1}0]e
LDOD cc|3] 3[DCi{B| 2| EC|{b+|2+{FC] 6} 3 M:M+1-D si{tjt|Ofe
LDS w014 4l 0[6] 3] 10]|6+{3+[10| 7] 4 M:M+1=-S elt1ftlo}e
CE DE EE FE
Lou CE| 3| 3| DE| 5| 2] EE|B+|2+| FE| 6| 3 MM+1-U o|[t]t|0fe
LDX 8E | 3| 3} 9E |5 | 2| AE|B5+|2+|BE| B | 3 MM+ 1-X el1]|1]0fe
LDy 04| 41 10|63 10[6+[3+]10[7] 4 M:M+1=Y .t Ojf
8E 9E AE BE
LEA LEAS 32[a4] 2+ £Ad-s ofefofo]e
LEAU 3|4+ 2+ £A3-y ojafe]afe
LEAX 0|a+| 2+ eA3-x eloft]e]e
LEAY 3t a4} 2+ EAS~Y ofe]i]ele
Legend: M Complement of M t Testand set if true, cleared otherwise
OP Operation Code (Hexadecimal) -~ Transfer Into * Not Affected
~ Number of MPU Cycles H Half-carry (from bit 3} CC Condition Code Register
Number of Program Bytes N Negative (sign bit) : Concatenation
+ Arithmetic Plus Z Zero result V Logical or
— Arithmetic Minus V Overflow, 2's complement A Logical and
* Multiply C Carry from ALU ¥ Logical Exclusive or

4-325

MC6809E*MC68A09E*MC68B0O9E

FIGURE 20 — PROGRAMMING AID (CONTINUED)

Addressing Modes

immediate Direct Indexed! E ded I N 5([3]2]1]¢0
Instruction| Forms [Op| ~ [#F[Op| ~T #[Op] ~T #1Op| ~7 #]Op] ~T # Description HINJZ[V[C
LSL LSLA 8 2|1 A - v
LS8 8| 2] 8= 4 RN ERE]
LSL o8| 6| 2| esje+| 2+| 78| 7| 3 MIT &) vl |
LSR LSRA al 211 fg ofife]|t
LSR8 s 2| 1| Spo>{IIIIITH [+fofif-]s
LSR 04| 6] 2] 64(6+|2+f 74| 7] 3 b7 bp ¢ 01l
MUL 3D| 11| 1 |AxB—D (Unsignedi eleft|sig
NEG NEGA 401 2 1A+ 1=A gpotrfriy
NEGB 50 2 1|B+1~B gl
NEG 00| 6] 2] 60i6+|2+] 70} 7] 3 M+1-M 8l t]t{
NOP 12| 2 | 1 [No Operation oo o foie
OR ORA 8A|l 2 | 2] 9A} 4] 2{ AA|4+| 2+| BA| 5| 3 AVM=-A 1|10
ORB CA|l 2 | 2| DA| 4| 2| EA]a+| 2+| FA[B]| 3 BVM-B t{1]0]e

: ORCC 1Al 3]2 CC VIMM=CC 7
PSH PSHS | 34 [5+9] 2 Push Registers on S Stack ofe]ofe]e
PSHU 36]5+4] 2 Push Regrsters on U Stack ol ol
PUL PULS | 35]5+3] 2 Pull Registers from S Stack ofele]e]e
PULU 37(5+4] 2 Pull Regrsters from U Stack o |ele|e
ROL ROLA a2 1A R E
ROL 09| 6| 2] 6afe+|2+]79] 7] 3 M T 5 b0 TR
ROR RORA a2 1]A et yrfes
RORB s| 2] 1|8 ols fifeln
ROR 06| 6| 2| 66|6+t2+| 76| 7] 3 c b7 . bo o1 rle]
RTI 3B |6/1Y 1 |Return From interrupt 7
RTS 39] 5 1 |Return from Subroutine s|efafo]le
SBC SBCA 821 2 [2792] 4] 2] A2]4a+[2+1B2| 5} 3 A-M-C—4a 8t itit|t
SBCB C2| 2 y2§D2| 44 2] E2{4+}2+| F2| 5| 3 B-M-C-8B EIRNERERE
SEX 1D 2 [t]Sign Extend B into A e 1110]e
ST STA 97| 4 2{ A7|4+|2+| B7[5] 3 A—-M ® |11 |0O]e
STB D7| 4| 2| E7!14+| 241 F7| B 3 8—-M e |1 {1 [O]s
STD DD| 5| 2| ED[B5+] 2+| FD|[6| 3 D-M:M=+1 st jti0ye
STS 106 3] 106+/3+] 0] 7] 4 S—MM+1 et 10

DF EF FF

STU OF| 5f 2| EF|{5+| 2+ | FF| 86| 3 U=-M:M+1 elr|rio]e

STX 9F | 5] 2| AF|5+] 2+| BF| 6 X=MM=+1 tl]o
STY 10]6{ 3|10 101714 Y—=MM+1 ef1|t]0ofe

9F AF|6+| 3+ BF
suB SUBA 80| 2 12194 2|A0|4+(2+|BO} S| 3 A-M—A 8t]ttt
SuBs Col 2 [2|D0}j 4| 2| EO|4+;2+|FO) S| 3 B-M-B By v 1|t
SUBD 83| 4 1319316 2] A3]|6+/2+|B3} 7] 3 D-MM+1-D ottt
sSwi Swib 3F | 18] 1 [Software Interrupt 1 oo jole|e
swib 10| 20| 2 [Software Interrupt 2 o fe foie]e
3F
swib 11| 20| t |Software Interrupt 3 oo jele e
3F
SYNC 13 | 4] 1 |Synchronize to Interrupt oo jo (e]e
TFR R1, R2 1r] 6] 2[rR1-R2Z oo fo]o]e
TST TSTA 4D | 2 1 [Test A o111 [0 fe
TSTB 60| 2 1 [Test B ot [t [O]e
ST oDl6|2|6D|6+|2+]|7D} 7] 3 Test M ® 11 (1 {0
Notes:
1. This column gives a base cycle and byte count. To obtain total count, add the values obtained from the INDEXED ADDRESSING MODE table,
Table 2.

2. Rt and R2 may be any pair of 8 bit or any pair of 16 bit registers.
The 8 bit registers are: A, B, CC, DP
The 16 bit registers are: X, Y, U, S, D, PC
EA is the effective address.
The PSH and PUL instructions require 6 cycles plus 1 cycle for each byte pushed or pulled.
5(6) means: 5 cycles if branch not taken, 6 cycles if taken (Branch instructions).
SWiI sets | and F bits. SWI2 and SWI3 do not affect | and F.
Conditions Codes set as a direct result of the instruction,
. Vaue of half-carry flag is undefined.
Special Case — Carry set if b7 is SET.

©®NOO s W

4-326

MC6809E*MC68A09E*MC68BOSE

FIGURE 20 — PROGRAMMING AID (CONTINUED}

Branch instructions

Addressing Addressing
Mode Mode
Relative | 513l211]0 tiv! 513121110
Instruction| Forms | OP[- 5] # D HINIZ}V|C Instruction| Forms |OP |- 5] # Description HIN|Z]V|C
BCC BCC 24| 3] 2 |BranchC=0 ejejefele BLS 8Ls 23] 3 | 2 |Branch Lower elefoleie
LBCC 10 {6(61] 4 |Long Branch ole[o]|e|e of Same
24 C=0 LBLS 10 |5(6)| 4 |Long Branch Lower {e]eje|e e
8Cs BCS 26| 3 | 2 |Branch C=1 ofe]eiofe 23 or Same
L8CS 10 {561} 4 [Long Branch e|oinjele BLY BLT 20{ 3 | 2 |Branch<Zero [EEER ENRS
25 C=1 LBLT 10 |6i6)| 4 |Long Branch<Zero {e(eis|e e
8EQ BEQ 271 3 | 2 {Branch Z=1 elefe]e]e 0
LBEQ 10 | 5i6}f 4 [Long Branch s|ejelo|e BMI BMI 281 3 | 2 |Branch Minus eloje|e|e
27 Z=0 LBMI 10 {5(6)] 4 |Long Branch Minus [eje[e|s e
8GE BGE 2C{ 3 | 2 |BranchzZero elofeiefs 28
LBGE 10{5(6)| 4 {Long Branch2Zero je|efe|e|e BNE BNE 26} 3 | 2 [Branch Z=0 ej{ofolojse
20 LBNE 10 }5i6)| 4 |Long Branch sjejelsle
BGT BGT 26| 3 | 2 [Branch>Zero o s|ofe]s i Z#0
LBGT 10 | 6(6}] 4 [Long Branch>2ero | e(efe|e]e BPL 8PL 2A} 3 | 2 |Branch Plus LR RN K
2E LBPL 10 |616)] 4 |Long Branch Plus slofejele
BHI BHI 22| 3 | 2 |Branch Higher oflof[efe]e 2A
LBHI 10 | 5(6!1 4 |Long Branch Higher | e[e el e]e BRA BRA 20t 3 { 2 [Branch Always ejlefejete
22 LBRA 16| 5 | 3 |Long Branch Always [e!e®je|e e
BHS BHS 24| 3 | 2 |Branch Higher oo ofa]e BRN 8RN 21| 3 | 2 |Branch Never slejo|e]|e
or Same LBRN 105 | 4 |Long Branch Never [e|ejele (e
LBHS 10| 5¢6!| 4 |Long Branch Higher | | et ef e/ e 21
24 or Same BSH BSR 80| 7 | 2 |Branch to Subroutine|e|e]{e|e|e
BLE BLE 2F| 3 | 2 {BranchsZero elefofofe LBSR 17| 9 | 3 |Long Branch to elefeole
LBLE 10|5i6}| 4 lLong BranchsZero |e|®fe{e| e Subroutine
2 BVC BVC 28] 3 | 2 [Branch V=0 lelele]
BLO 8LO 251 3 | 2 {Branch lower ejofofale LBVC 10 |56 | 4 {Long Branch sjiofelefa
LBLO 10§56 4 {Long Branch tower {e{e|ele]e 28 V=0
% BVS BVS 23] 3 | 2 [Branchv=1 o|efelefe
LBVS 10 {5161 | 4 [Long Branch o(ojefe|e
29 V=1

SIMPLE BRANCHES

oP -] SIMPLE CONDITIONAL BRANCHES (Notes 1-4)
BRA 0 3 2 Test True oP Faise OP
LBRA 6 5 3 N=1 BMI 28 BPL 2A
BRN 21 3 2 Z=1 BEQ 27 BNE 26
LBRN 1021 5 4 V=1 BVS 29 BVC 28
BSR 8D 7 2 c=1 BCS 25 BCC 24
LBSR 17 9 3
SIGNED CONDITIONAL BRANCHES (Notes 1-4} UNSIGNED CONDITIONAL BRANCHES (Notes 1-4)
Test True oP Faise OP Test True OoP Faise oP
>m BGT 26 BLE 2F r>m BHI 22 BLS 23
rzm BGE 2C BLT 2D rzm BHS 24 BLO 25
r=m BEQ 27 BNE 26 r=m BEQ 27 BNE 26
rsm BLE 2F BGT 2E rsm BLS 23 BHI 22
r<m BLT 20 BGE 2C r<m BLO 2% BHS 24

Notes:
1. All conditional branches have both short and long variations.
All short branches are 2 bytes and require 3 cycles.
All conditional long branches are tormed by prefixing the short branch opcode with $10 and using a 16-bit destination offset.
All conditional long branches require 4 bytes and 6 cycles if the branch is taken or 5 cycles if the branch is not taken.
5(8) means: 5 cycles if branch not taken, & cycles if taken.

S

4-327

MC6809E*MC68A09E*MC68BOIE

INDEXED ADDRESSING MODES

NON INDIRECT INDIRECT
Assembler| Post-Byte |+ |+ | Assembler| Post-Byte [+ +
ITYPE FORMS Form QP Code # Form OP Code #
CONSTANT OFFSET FROM R NO OFFSET .R 1RR00100|0| 0 {.R} PRR10100|3
§ BIT OFFSET n,R JORRnnnnn|1|0 defaults to 8-bit
8 BIT OFFSET n R 1RR01000 1|t [n,R] |[1RR11000 4|1
16 BIT OFFSET n R 1RR01001|4 |2 [n.R] [TRR11001[7]|2
ACCUMULATOR OFFSET FROMR A—REGISTEROFFSET[A R [1RR00110(1|0 [A.R} [1RR10110(4|0
B—REGISTER OFFSET B.R 1RR0O0101([1]|0 [B,R]. |1RR10101}4|0
D—REGISTER OFFSET| O,R [1RRO1011(4|0} |D,R] [1RR11011|7|0
AUTO INCREMENT/DECREMENT R INCREMENT BY 1 R+ [1RR00000(2|0 not allowed
INCREMENT BY 2 .R++ |1RR00001(3|0| [.R++] |TRR10001|6(0
DECREMENT BY 1 -A 11ARR00010(2(0 not allowed
DECREMENT BY 2 --R [1RR00011(3|0| (. ~-R] |1RR10011}6]|0
ICONSTANT OFFSET FROM PC 8 BIT OFFSET n, PCR {1XX01100|1]{1 | {n, PCR] [1XX11100{4 {1
16 BIT OFFSET n, PCR |1xx01101|5]|2 | {n. PCR) |tXX11101{8|2
EXTENDED INDIRECT 16 BIT ADDRESS — — -i- in} 10011111 [5]2
R=X,Y UorS RR: 00=X U
X = DON'T CARE 01=Y 1=8
INDEXED ADDRESSING POSTBYTE
REGISTER BIT ASSIGNMENTS 6809 PROGRAMMING MODEL
INDEXED X — Index Re:
POST BYTE REGISTER BI [j
TTol 5] ¢ j:g-é2 1T ADDRESSING ?
MOOE Y — Index Reg
OJR| A x| x}x| x| x EA = A + 5 Bit Offset ONTER REGISTER
IN I S
TR T oo TS s u UserSlac;‘
'JRIRjOJOJO[1]0 - R S — Hardware Stackj
1tjRIR]1[O]Oo} 1|1 .- - R ‘
T{R|[R]1]0]1]0]0 EA = R + 0 Offset T pC "w*j PAOGRAM COUNTER
1TR{R[1[o]1]ofn EA = A + ACCB Offset -
1IR[R[o]t 1]o €A = R + ACCA Offset A B ACCUMULATORS
T[rRIR[1 olo]o €A = R + 8 Bit Offset N v
T[R[R[{1]o]al EA = R + 16 Bit Offset D
T[RRI {V]O]]| EA = A + D Otiser ——
T x{x[1 {][1]o]o EA = PC + 8 Bit Offset LL DIRECT PAGE REGISTER
TIx[x| 1] 7]1]0] 1] EA=_PC+ i6Bit Offset CC - CONDITION CODE
1TR|A Ty] EA = [,Address] H CARRY-BORROW
1] v] ! QVERFLOW
L_\ 1 ! L zERO
Vandn el e NEGATIVE
| L addressing Mode Fiela IR0 NTEAAUPT Ak
indirect Field L FAST INTERRUPT MASK
lSlgn bit when b7 =0 e - ENTIRE STATE ON STACK
Register Field: RR
00 =
=Y
x = Don't Care w=u
n=s
PUSH/PULL POST BYTE 6809 STACKING ORDER
l I l l l J J PULL ORDER
L cer cvc
A A
8 8
OPR oP 6809 VECTORS
X X Hi FFFE Restanl
Y X Lo FFFC NMI
S/u YH FFFA SWI
PC Yio FFF8 (RQ
U/SHi FFF6 FIRQ
TRANSFER/EXCHANGE POST BYTE U/S Lo FFF4 SWI2
— —— PCH FFF2 SWi3
I SOURCE lDE‘STIV:lATI‘ON PC Lo FFFO Reserved
REGISTER FIELD PUSH ORDER
0000 D (AB) 1000 A INCREASING
0001 X 1001 B MEMORY
0010 Y 1010 CCR i
0011 U 1011 DPR
0100 S
0101 PC

4.328

MC6809E*MC68A09E*MCE8BO9E

ORDERING INFORMATION

MC68AQ9ECP

grated Circuit
ME800 Family

Blanks = 1.0 MHz
A=15MHz

B=2.0 MH2

Device Designati

in MEBOO Family

Temp Range

Blank =0°= +70°C

Cm= ~40°— +85°C
Package
P = Plastic
S = Cerdip
L= Ceramic

BETTER PROGRAM

Better program processing is available on all types listed. Add
suffix letters to part number.

Level 1 add ‘S Level 2add "D Levet 3 add 'DS~
Level 1 “S” =10 Temp Cycies — (- 25 10 150°C),
Hi Temp tesung at T max.
Level 2 D' = 168 Hour Burn-in at 125°C
Level 3 “DS" = Combination of Leve! 1 and 2.

Speed Device Temperature Range
1.0 MHz MCB809EP,L,S 0 10 70°C

1.5 MHz MCBBAQ9EP,L,S 010 +70°C
2.0 MHz MCE8BO9EP,L,S 0to +70°C

4-329

