MOTOROLA SEMICONDUCTOR ■ TECHNICAL DATA

MC68HC11L6

This document contains information on a new product. Specifications and information herein are subject to change without notice.

TABLE OF CONTENTS

Section		Page
1	Introduction	1
2	Features	1
3	Operating Modes and Memory Maps	6
4	Resets and Interrupts	12
5	Electrically Erasable Programmable Read-Only Memory (EEPROM)	16
6	Parallel Input/Output	19
7	Serial Communications Interface (SCI)	24
8	Serial Peripheral Interface (SPI)	30
9	Main Timer	33
10	Pulse Accumulator	40
11	A/D Converter	43

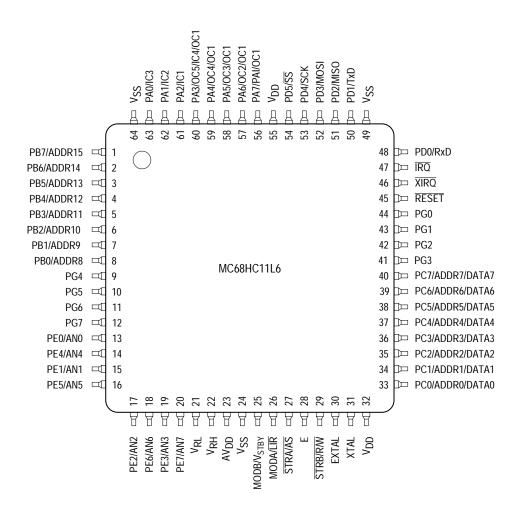


Figure 1 64-Pin Quad Flat Pack (QFP) Pin Assignments

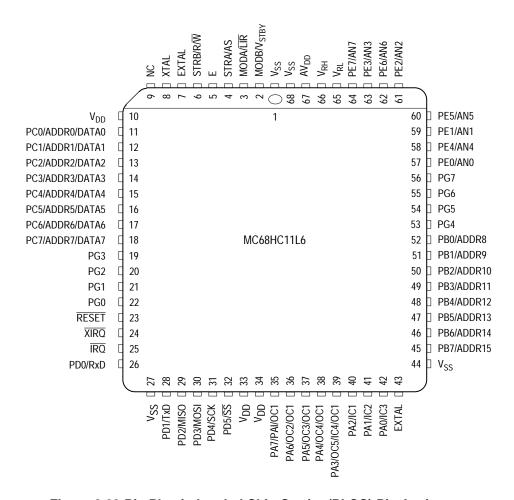


Figure 2 68-Pin Plastic-Leaded Chip Carrier (PLCC) Pin Assignments

Figure 3 Block Diagram

3 Operating Modes and Memory Maps

In single-chip operating mode, the MC68HC11L6 is a monolithic microcontroller without external address or data buses.

In expanded multiplexed operating mode, the MCU can access a 64 Kbyte address space. The space includes the same on-chip memory addresses used for single-chip mode, in addition to external peripheral and memory devices. The expansion bus is made up of ports B and C, and control signals AS and R/W. The address, R/W, and AS signals are active and valid for all bus cycles, including accesses to internal memory locations. The following figure demonstrates a recommended method of demultiplexing low-order addresses from data at port C.

Figure 4 Address/Data Demultiplexing

MOTOROLA MC68HC11L6 BR774/D

3.1 Memory Maps

Memory locations are the same for expanded multiplexed and single-chip modes. The 64-byte register block originates at \$1000 after reset and can be placed at any other 4K boundary (\$x000) after reset by writing an appropriate value to the INIT register. The on-board 512-byte RAM is located at \$0000 after reset and can be placed at any other 4K boundary (\$x000) by writing an appropriate value to the INIT register. The 512-byte EEPROM is located at \$B600 through \$B7FF after reset, if it is enabled. The 16 Kbyte ROM is located at \$C000 through \$FFFF, if it is enabled.

Hardware priority is built into the memory remapping. Registers have priority over RAM, and RAM has priority over ROM. The higher priority resource covers the lower, making the underlying locations inaccessible.

In special bootstrap mode, a bootloader ROM is enabled at locations \$BF40 through \$BFFF.

In special test mode and special bootstrap mode, reset and interrupt vectors are located at \$BFC0 through \$BFFF.

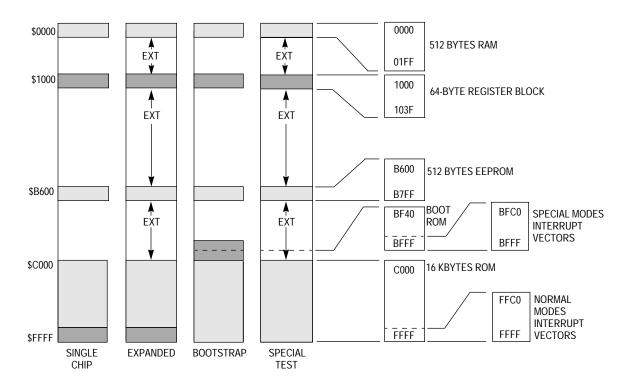


Figure 5 MC68HC11L6 Memory Map

Table 2 Registers(The register block can be remapped to an 4 Kbyte boundary.)

	Bit 7	6	5	4	3	2	1	Bit 0	_
\$1000	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	PORTA
\$1001									Reserved
\$1002	STAF	STAI	CWOM	HNDS	OIN	PLS	EGA	INVB	PIOC
\$1003	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0	PORTC
\$1004	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0	PORTB
\$1005	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0	PORTCL
\$1006									Reserved
\$1007	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	DDRC
\$1008	0	0	PD5	PD4	PD3	PD2	PD1	PD0	PORTD
\$1009	0	0	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	DDRD
\$100A	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0	PORTE
\$100B	FOC1	FOC2	FOC3	FOC4	FOC5	0	0	0	CFORC
\$100C	OC1M7	OC1M6	OC1M5	OC1M4	OC1M3	0	0	0	OC1M
\$100D	OC1D7	OC1D6	OC1D5	OC1D4	OC1D3	0	0	0	OC1D
\$100E	Bit 15	14	13	12	11	10	9	Bit 8	TCNT (High)
\$100F	Bit 7	6	5	4	3	2	1	Bit 0	TCNT (Low)
\$1010	Bit 15	14	13	12	11	10	9	Bit 8	TIC1 (High)
\$1011	Bit 7	6	5	4	3	2	1	Bit 0	TIC1 (Low)
\$1012	Bit 15	14	13	12	11	10	9	Bit 8	TIC2 (High)
\$1013	Bit 7	6	5	4	3	2	1	Bit 0	TIC2 (Low)
\$1014	Bit 15	14	13	12	11	10	9	Bit 8	TIC3 (High)
\$1015	Bit 7	6	5	4	3	2	1	Bit 0	TIC3 (Low)
\$1016	Bit 15	14	13	12	11	10	9	Bit 8	TOC1 (High)
\$1017	Bit 7	6	5	4	3	2	1	Bit 0	TOC1 (Low)
\$1018	Bit 15	14	13	12	11	10	9	Bit 8	TOC2 (High)
\$1019	Bit 7	6	5	4	3	2	1	Bit 0	TOC2 (Low)
\$101A	Bit 15	14	13	12	11	10	9	Bit 8	TOC3 (High)
\$101B	Bit 7	6	5	4	3	2	1	Bit 0	TOC3 (Low)
\$101C	Bit 15	14	13	12	11	10	9	Bit 8	TOC4 (High)
\$101D	Bit 7	6	5	4	3	2	1	Bit 0	TOC4 (Low)
\$101E	Bit 15	14	13	12	11	10	9	Bit 8	TI4/O5 (High)
\$101F	Bit 7	6	5	4	3	2	1	Bit 0	TI4/O5 (Low)
\$1020	OM2	OL2	ОМЗ	OL3	OM4	OL4	OM5	OL5	TCTL1
\$1021	EDG4B	EDG4A	EDG1B	EDG1A	EDG2B	EDG2A	EDG3B	EDG3A	TCTL2
\$1022	OC1I	OC2I	OC3I	OC4I	I4/O5I	IC1I	IC2I	IC3I	TMSK1
\$1023	OC1F	OC2F	OC3F	OC4F	I4/O5F	IC1F	IC2F	IC3F	TFLG1'
\$1024	TOI	RTII	PAOVI	PAII	0	0	PR1	PR0	TMSK2

MOTOROLA MC68HC11L6 8 BR774/D

Table 2 Registers (Continued)

(The register block can be remapped to an 4 Kbyte boundary.)

	Bit 7	6	5	4	3	2	1	Bit 0	
\$1025	TOF	RTIF	PAOVF	PAIF	0	0	0	0	TFLG2
\$1026	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	I4/O5	RTR1	RTR0	PACTL
\$1027	Bit 7	6	5	4	3	2	1	Bit 0	PACNT
\$1028	SPIE	SPE	DWOM	MSTR	CPOL	СРНА	SPR1	SPR0	SPCR
\$1029	SPIF	WCOL	-	MODF	0	0	0	Bit 0	SPSR
\$102A	Bit 7	6	5	4	3	2	1	Bit 0	SPDR
\$102B	TCLR	0	SCP1	SCP0	RCKB	SCR2	SCR1	SCR0	BAUD
\$102C	R8	Т8	0	М	WAKE	0	0	0	SCCR1
\$102D	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK	SCCR2
\$102E	TDRE	TC	RDRF	IDLE	OR	NF	FE	0	SCSR
\$102F	R7/T7	R6/T6	R5/T5	R4/T4	R3/T3	R2/T2	R1/T1	R0/T0	SCDR
\$1030	CCF	0	SCAN	MULT	CD	CC	CV	CA	ADCTL
\$1031	Bit 7	6	5	4	3	2	1	Bit 0	ADR1
\$1032	Bit 7	6	5	4	3	2	1	Bit 0	ADR2
\$1033	Bit 7	6	5	4	3	2	1	Bit 0	ADR3
\$1034	Bit 7	6	5	4	3	2	1	Bit 0	ADR4
\$1035	0	0	0	PTCON	BPRT3	BPRT2	BPRT1	BPRT0	BPROT
\$1036	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0	PORTG
\$1037	DDG7	DDG6	DDG5	DDG4	DDG3	DDG2	DDG1	DDG0	DDRG
\$1038									Reserved
\$1039	ADPU	CSEL	IRQE	DLY	DME	0	CR1	CR0	OPTION
\$103A	Bit 7	6	5	4	3	2	1	Bit 0	COPRST
\$103B	ODD	EVEN	0	BYTE	ROW	ERASE	EELAT	EEPGM	PPROG
\$103C	RBOOT	SMOD	MDA	IRVNE	PSEL3	PSEL2	PSEL1	PSEL0	HPRIO
\$103D	RAM3	RAM2	RAM1	RAM0	REG3	REG2	REG1	REG0	INIT
\$103E	TILOP	0	OCCR	CBYP	DISR	FCM	FCOP	TCON	TEST1
\$103F	0	0	0	0	NOSEC	NOCOP	ROMON	EEON	CONFIG

HPRIO — Highest Priority I-Bit Interrupt and Miscellaneous

\$103C

Bit 7 6 5 4 3 2 Bit 0 1 PSEL2 **RBOOT SMOD** MDA **IRVNE** PSEL3 PSEL1 PSEL0 RESET: 0 1 0 1

RBOOT, SMOD, and MDA reset are dependent upon the state of the power-up initialization mode and can only be written in special modes.

RBOOT — Read Bootstrap ROM

Writable only when SMOD = 1

0 = Bootloader ROM disabled and not in map

1 = Bootloader ROM enabled and in map at \$BF40-\$BFFF

SMOD, MDA — Special Mode Select, Mode Select A

Inputs		Mode	Latched at Reset				
MODB	MODA		RBOOT	SMOD	MDA		
1	0	Single Chip	0	0	0		
1	1	Expanded Multiplexed	0	0	1		
0	0	Special Bootstrap	1	1	0		
0	1	Special Test	0	1	1		

IRVNE — Internal REad Visibility/Not E (IRVNE can be written once in any mode.)

In expanded modes, IRVNE determines whether IRV is on or off.

In special test mode, IRVNE is reset to one and in all other modes IRVNE is reset to zero.

0 = No internal read visibility on external bus

1 = Data from internal reads is driven out the external data bus

In single chip modes this bit determines whether the E clock drives out of the chip.

0 = E is driven out from the chip

1 = E pin is driven low

Mode	IRVNE Out of Reset	E Clock Out of Reset	IRV Out of Reset	IRVNE Affects Only
Single Chip	0	On	Off	Е
Expanded	0	On	Off	IRV
Boot	0	On	Off	Е
Special Test	1	On	On	IRV

PSEL[3:0] — Priority Select Bits 3 through 0 Refer to RESETS and INTERRUPTS

INIT — RAM and I/O Mapping

\$103D

	Bit 7	6	5	4	3	2	1	Bit 0
	RAM3	RAM2	RAM1	RAM0	REG3	REG2	REG1	REG0
RESET:	0	0	0	0	0	0	0	1

RAM[3:0] — Internal 512-Byte RAM Map Position

RAM[3:0] determine the upper four bits of the RAM address, positioning RAM at selected 4K boundary.

REG[3:0] — 64-Byte Register Block Map Position

REG[3:0] determine the upper four bits of the REG address, positioning REG at selected 4K boundary.

MOTOROLA MC68HC11L6
10 BR774/D

NOTE

Can be written only once in first 64 cycles out of reset in normal modes or at any time in special modes. For more information, refer to the text that accompanies the memory map.

TEST1 — Factory Test

\$103E

	Bit 7	6	5	4	3	2	1	Bit 0
	TILOP	0	OCCR	CBYP	DISR	FCM	FCOP	TCON
RESET:	0	0	0	0	_	0	0	0

TEST1 bits are writable in test and bootstrap modes only.

TILOP — Test Illegal Opcode (TEST)

OCCR — Output condition Code Register to Timer Port (TEST)

CBYP — Timer Divider Chain Bypass (TEST)

DISR — Disable Reset from COP and Clock Monitor (TEST)

DISR is forced to reset out of reset in special test and bootstrap modes.

FCM — Force Clock Monitor Failure (TEST)

FCOP — Force COP Watchdog failure (TEST)

TCON — Test Configuration Register (TEST)

CONFIG — **EEPROM**, **ROM**, **COP Enables**

\$103F

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	0	0	NOSEC	NOCOP	ROMON	EEON
RESET:	0	0	0	0	_	_	_	_

NOSEC — EEPROM Security Disable Refer to EEPROM section.

NOCOP — COP System Disable

Refer to RESETS and INTERRUPTS

ROMON — ROM Enable

In single chip mode ROMON is forced to one out or reset.

0 = 16K ROM removed from the memory map

1 = 16K ROM present in the memory map

EEON — EEPROM Enable

0 = EEPROM is removed from the memory map

1 = EEPROM is present in the memory map

4 Resets and Interrupts

The MC68HC11L6 has three reset vectors and 18 interrupt vectors. The reset vectors are:

- RESET, or Power-On
- COP Clock Monitor Fail
- COP Failure

The 18 interrupt vectors service 23 interrupt sources (three non-maskable, 20 maskable). The three non-maskable interrupt vectors are:

- Illegal Opcode Trap
- Software Interrupt
- XIRQ Pin (Pseudo Non-Maskable Interrupt)

The 20 interrupt sources are subject to masking by a global interrupt mask, the I Bit in the CCR. In addition to the global I bit, all of these sources, except the external interrupt (IRQ), are subject to local enable bits in control registers. Most interrupt sources in the M68HC11 have separate interrupt vectors, therefore there is usually no need for software to poll control registers to determine the cause of an interrupt. The maskable interrupt sources respond to a fixed-priority relationship, except that any one source can be dynamically elevated to the highest priority position of any maskable source. The following table contains a list of interrupt and reset vector assignments.

On-chip peripheral systems generate maskable interrupts, which are recognized only if the global interrupt mask bit (I) in the condition code register (CCR) is clear. Maskable interrupts are prioritized according to a default arrangement, but any one source can be elevated to the highest maskable priority position by the HPRIO register. The HPRIO register can be written at any time, provided the I bit in the CCR is set.

MC68HC11L6 BR774/D 12

Table 3 Interrupt and Reset Vector Assignments

Vector Address	Interrupt Source	CCR Mask	Local Mask
FFC0, C1-FFD4, D5	Reserved	_	_
FFD6, D7	SCI Serial System	I Bit	
	SCI Transmit Complete		TCIE
	SCI Transmit Data Register Empty		TIE
	SCI Idle Line Detect		ILIE
	SCI Receiver Overrun		RIE
	SCI Receive Data Register Full		RIE
FFD8, D9	SPI Serial Transfer Complete	I Bit	SPIE
FFDA, DB	Pulse Accumulator Input Edge	I Bit	PAII
FFDC, DD	Pulse Accumulator Overflow	I Bit	PAOVI
FFDE, DF	Timer Overflow	I Bit	TOI
FFE0, E1	Timer Input Capture 4/Output Compare 5	I Bit	I4/O5I
FFE3, E2	Timer Output Compare 4	I Bit	OC4I
FFE4, E5	Timer Output Compare 3	I Bit	OC3I
FFE6, E7	Timer Output Compare 2	I Bit	OC2I
FFE8, E9	Timer Output Compare 1	I Bit	OC1I
FFEA, EB	Timer Input Capture 3	I Bit	IC3
FFEC, ED	Timer Input Capture 2	I Bit	IC2I
FFEE, EF	Timer Input Capture 1	I Bit	IC1I
FFF0, F1	Real-Time Interrupt	I Bit	RTII
FFF2, F3	Parallel I/O Handshake	I Bit	STAI
	ĪRQ		None
FFF4, F5	XIRQ Pin	I Bit	None
FFF6, F7	Software Interrupt	None	None
FFF8, F9	Illegal Opcode Trap	None	None
FFFA, FB	COP Failure	None	NOCOP
FFFC, FD	COP Clock Monitor Fail	None	CME
FFFE, FF	RESET	None	None

For some interrupt sources, such as the parallel I/O interrupt and the SCI interrupts, the flags are automatically cleared during the normal course of responding to the interrupt requests. For example, the RDRF flag in the SCI system is cleared by an automatic clearing mechanism consisting of a read of the SCI status register while RDRF is set, followed by a read of the SCI data register. The usual response to an RDRF interrupt request is to read the SCI status register to check for receive errors, then to read the received data from the SCI data register. These two steps satisfy the automatic clearing mechanism without requiring any special instructions.

OPTION — System Configuration Options

\$1039

	Bit 7	6	5	4	3	2	1	Bit 0
	ADPU	CSEL	IRQE*	DLY*	CME	0	CR1*	CR0*
RESET:	0	0	0	1	0	0	0	0

^{*} Can be written only once in first 64 cycles out of reset in normal modes or at any time in special modes.

ADPU — A/D Power-Up

Refer to 11 A/D Converter

CSEL — Clock Select

Refer to 11 A/D Converter, or 5 Electrically Erasable Programmable Read-Only Memory (EE-PROM)

IRQE — IRQ Select Edge Sensitive Only

0 = Low level recognition

1 = Falling edge recognition

DLY — Enable Oscillator Start-Up Delay on Exit from STOP

0 = No stabilization delay on exit from STOP

1 = Stabilization delay enabled on exit from STOP

CME — Clock Monitor Enable

0 = Clock monitor disabled; slow clocks can be used

1 = Slow or stopped clocks cause clock failure reset

CR1, CR0 — COP Timer Rate Select

CR	Divide E/2 ¹⁵ CR [1:0] By		XTAL = 4.0 MHz Time-Out – 0/+32.8 ms	XTAL = 8.0 MHz Time-Out - 0/+16.4 ms	XTAL = 12.0 MHz Time-Out – 0/+10.9 ms
0	0	1	32.768 ms	16.384 ms	10.923 ms
0	1	4	131.072 ms	65.536 ms	43.691 ms
1	0	16	524.288 ms	262.140 ms	174.76 ms
1	1	64	2.097 sec	1.049 sec	699.05 ms
		E =	1.0 MHz	2.0 MHz	3.0 MHz

COPRST — Arm/Reset COP Timer Circuitry

\$103A

	Bit 7	6	5	4	3	2	1	Bit 0
	7	6	5	4	3	2	1	0
RESET:	0	0	0	0	0	0	0	0

Write \$55 to COPRST to arm COP watchdog clearing mechanism.

Write \$AA to COPRST to reset COP watchdog.

HPRIO — Highest Priority I-Bit Interrupt and Miscellaneous

\$103C

	Bit /	6	5	4	3	2	1	Bit 0
	RBOOT	SMOD	MDA	IRVNE	PSEL3	PSEL2	PSEL1	PSEL0
RESET:	_	_	_	_	0	1	0	1

RBOOT, SMOD, and MDA reset depends on conditions at reset and can only be written in special modes (SMOD = 1).

RBOOT — Read Bootstrap ROM

0 = Bootloader ROM disabled and not in map

1 = Bootloader ROM enabled and in map at \$BF40-\$BFFF

SMOD, MDA — Special Mode Select, Mode Select A

(Refer to 3 Operating Modes and Memory Maps.)

IRVNE — Internal Read Visibility/Not E

(Refer to 3 Operating Modes and Memory Maps.)

PSEL[3:0] — Priority Select Bit 3 through Bit 0

Writable only while the I bit in the CCR is set (interrupts disabled). These bits select one interrupt source to be elevated above all other I-bit related sources.

	PSEL	[3:0))	Interrupt Source Promoted
0	0	0	0	Timer Overflow
0	0	0	1	Pulse Accumulator Overflow
0	0	1	0	Pulse Accumulator Input Edge
0	0	1	1	SPI Serial Transfer Complete
0	1	0	0	SCI Serial System
0	1	0	1	Reserved (Default to IRQ)
0	1	1	0	IRQ
0	1	1	1	Real-Time Interrupt
1	0	0	0	Timer Input Capture 1
1	0	0	1	Timer Input Capture 2
1	0	1	0	Timer Input Capture 3
1	0	1	1	Timer Output Compare 1
1	1	0	0	Timer Output Compare 2
1	1	0	1	Timer Output Compare 3
1	1	1	0	Timer Output Compare 4
1	1	1	1	Timer Output Compare 5/Input Capture 4

MC68HC11L6 **MOTOROLA** BR774/D

15

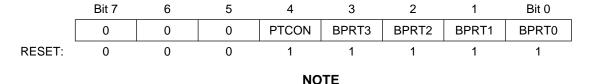
5 Electrically Erasable Programmable Read-Only Memory (EEPROM)

The 512 bytes of EEPROM in the MC68HC11L6 are located at \$B600 through \$B7FF. The EEON bit in CONFIG determines whether or not the EEPROM is in the memory map. When EEON = 1 (erased state), the EEPROM is enabled; when EEON = 0, the EEPROM is disabled and out of the memory map. EEON is reset to the value last programmed into CONFIG.

An on-chip charge pump develops the high voltage required for programming and erasing. When the frequency of the E clock is less than 1 MHz, select an internal clock to drive the EEPROM charge pump by writing one to the CSEL bit in the OPTION register.

Programming and erasing the EEPROM is controlled by the PPROG register and dependent upon the block protect (BPROT) register value.

To erase the EEPROM, ensure that the proper bits of the BPROT register are cleared, then complete the following steps using the PPROG register:


- 1. Write to PPROG with the ERASE, EELAT, and appropriate BYTE and ROW bits set.
- 2. Write to the appropriate EEPROM address with any data. Row erase only requires a write to any location in the row. Bulk erase is accomplished by writing to any location in the array.
- 3. Write to PPROG with ERASE, EELAT, EEPGM, and appropriate BYTE and ROW bits set.
- 4. Delay for 10 ms or more, as appropriate.
- 5. Clear the EEPGM bit in PPROG to turn off the high voltage.
- 6. Clear the PPROG register to reconfigure the EEPROM address and data buses for normal op-

To program the EEPROM, ensure the proper bits of the BPROT register are cleared, then complete the following steps with the PPROG register:

- 1. Write to PPROG with the EELAT bit set.
- 2. Write data to the desired address.
- 3. Write to PPROG with the EELAT and EEPGM bits set.
- 4. Delay for 10 ms or more, as appropriate.
- 5. Clear the EEPGM bit in PPROG to turn off the high voltage.
- 6. Clear the PPROG register to reconfigure the EEPROM address and data buses for normal operation.

BPROT — Block Protect

\$1035

Block protect register bits can be written to zero (protection disabled) within 64 cycles of a reset in normal modes, or any time in special modes. Block protect register bits can be written to one (protection enabled) at any time.

PTCON — Protect for CONFIG

0 = CONFIG register can be programmed or erased normally

1 = CONFIG register can not be programmed or erased

BPRT3-BPRT0 — Block Protect Bits for EEPROM

0 = Protection disabled for associated block

1 = Protection enabled for associated block

MOTOROLA MC68HC11L6 16 BR774/D

Bit Name	Block Protected	Block Size
BPRT0	\$B600-\$B61F	32 Bytes
BPRT1	\$B620-\$B65F	64 Bytes
BPRT2	\$B660-\$B6DF	128 Bytes
BPRT3	\$B6E0-\$B7FF	288 Bytes

OPTION — System Configuration Options

\$1039

	Bit 7	6	5	4	3	2	1	Bit 0
	ADPU	CSEL	IRQE*	DLY*	CME	0	CR1*	CR0*
RESET:	0	0	0	1	0	0	0	0

^{*}Can be written only once in first 64 cycles out of reset in normal modes or at any time in special modes.

ADPU — A/D Power-Up

(Refer to 11 A/D Converter.)

CSEL — Clock Select

0 = A/D and EEPROM use system E clock

1 = A/D and EEPROM use internal RC clock

IRQE, DLY, CME, CR1, and CR0 —

(Refer to 4 Resets and Interrupts.)

PPROG — EEPROM Programming Control

\$103B

	Bit 7	6	5	4	3	2	1	Bit 0
	ODD	EVEN	0	BYTE	ROW	ERASE	EELAT	EEPGM
RESET:	0	0	0	0	0	0	0	0

ODD — Program Odd Rows in Half of EEPROM (TEST)

EVEN — Program Even Rows in Half of EEPROM (TEST)

BYTE — Byte/Other EEPROM Erase Mode

ROW — Row/All EEPROM Erase Mode

BYTE	ROW	Action
0	0	Bulk Erase (All 512 Bytes)
0	1	Row Erase (16 Bytes)
1	0	Byte Erase
1	1	Byte Erase

ERASE — Erase/Normal Control for EEPROM

0 = Normal read or program mode

1 = Erase mode

EELAT — EEPROM Latch Control

0 = EEPROM address and data bus configured for normal reads

1 = EEPROM address and data bus configured for programming or erasing

MC68HC11L6 BR774/D

EEPGM — EEPROM Program Command

0 = Programming or erase voltage to EEPROM array switched off

1 = Programming or erase voltage to EEPROM array switched on

CONFIG — EEPROM, ROM, COP Enables

\$103F

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	0	0	NOSEC	NOCOP	ROMON	EEON
RESET:	0	0	0	0	_	_	_	

NOSEC — EEPROM Security Disable

NOSEC has no meaning unless the security mask option was specified at time of manufacture.

0 = Security enabled

1 = Security disabled

NOCOP — COP System Disable

0 = COP enabled (forces reset on time-out)

1 = COP disabled (does not force reset on time-out)

ROMON — ROM Enable

In single chip mode ROMON is forced to one out of reset.

0 = 16K ROM removed from the memory map

1 = 16K ROM present in the memory map

EEON — EEPROM Enable

0 = EEPROM removed from the memory map

1 = EEPROM present in the memory map

MOTOROLA MC68HC11L6
18 BR774/D

6 Parallel Input/Output

The MC68HC11L6 has up to 46 input/output lines, depending on the operating mode. Port A has three input-only pins, three output-only pins, and two bidirectional I/O pins. Port A shares functions with the timer system.

Port B is an eight-bit output-only port in single chip modes and is the high-order address in expanded modes.

Port C is an eight-bit bidirectional port in single chip modes and the multiplexed address and data bus in expanded modes.

Port D is an six-bit bidirectional port that shares functions with the serial systems.

Port E is an eight-bit input-only port that shares functions with the A/D Converter system.

Port G is an eight-bit bidirectional port in all modes.

6.1 Parallel I/O Handshake

Simple and full handshake input and output functions are available on ports B and C in single-chip modes. The following is a description of the handshake functions.

In simple strobed mode, port B is a strobed output port and port C is a latching input port. The two activities are available simultaneously.

The STRB output is pulsed for two E clock periods each time there is a write to the PORTB register. The INVB bit in the PIOC register controls the polarity of STRB pulses. Port C levels are latched into the alternate port C latch (PORTCL) register on each assertion of the STRA input. STRA edge select, flag and interrupt enable bits are located in the PIOC register. Any or all of the port C lines may still be used as general purpose I/O while in strobed input mode.

Full handshake modes involve port C pins and the STRA and STRB lines. Input and output handshake modes are supported, and output handshake mode has a three-stated variation. STRA is an edge detecting input, and STRB is a handshake output. Control and enable bits are located in the PIOC register.

In full input handshake mode, the MCU uses STRB as a "ready" line to an external system. Port C logic levels are latched into PORTCL when the STRA line is asserted by the external system. The MCU then negates STRB. The MCU reasserts STRB after the PORTCL register is read. A mix of latched inputs, static inputs, and static outputs is allowed on port C, differentiated by the data direction bits and use of the PORTC and PORTCL registers.

In full output handshake mode, the MCU writes data to PORTCL, which in turn asserts the STRB output to indicate that data is ready. The external system reads port C and asserts the STRA input to acknowledge that data has been received.

In the three-state variation of output handshake mode, lines intended as three-state handshake outputs are configured as inputs by clearing the corresponding DDRC bits. The MCU writes data to PORTCL and asserts STRB. The external system responds by activating the STRA input, which forces the MCU to drive the data in PORTCL out on all of the port C lines. The mode variation does not allow part of port C to be used for static inputs while other port C pins are being used for handshake outputs. (Refer also to PIOC register description.)

MC68HC11L6 MOTOROLA BR774/D 19

PORTA — Port A Data \$1000

	Bit 7	6	5	4	3	2	1	Bit 0
	PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0
RESET:	HiZ	0	0	0	HiZ	HiZ	HiZ	HiZ
Alt. Pin Func.:	PAI	OC2	OC3	OC4	OC5/IC4	IC1	IC2	IC3
And/or:	OC1	OC1	OC1	OC1	OC1	_	_	_

PIOC — Parallel I/O Control

RESET:

\$1002

Bit 7	6	5	4	3	2	1	Bit 0
STAF	STAI	CWOM	HNDS	OIN	PLS	EGA	INVB
0	0	0	0	0	U	1	1

STAF — Strobe A Interrupt Status Flag

Set when selected edge occurs on Strobe A. Cleared by PIOC read with STAF set followed by PORTCL read (simple strobed or full input handshake mode) or PORTCL write (output handshake mode).

STAI — Strobe A Interrupt Enable Mask

0 = STAF interrupts disabled

1 = STAF interrupts enabled

CWOM — Port C Wire-OR Mode (affects all eight port C pins)

0 = Port C outputs are normal CMOS outputs

1 = Port C outputs are open-drain outputs

HNDS — Handshake Mode

0 = Simple strobe mode

1 = Full input or output handshake mode

OIN — Output or Input Handshake Select

HNDS must be set to one for this bit to have meaning.

0 = Input handshake

1 = Output handshake

PLS — Pulse/Interlocked Handshake Operation

HNDS must be set to one for this bit to have meaning.

0 = Interlocked handshake

1 = Pulsed handshake (Strobe B pulses high for two E- clock cycles.)

EGA — Active Edge for Strobe A

0 = STRA falling edge selected

1 = STRA rising edge selected

INVB — Invert Strobe B

0 = Active level is logic zero

1 = Active level is logic one

MOTOROLA MC68HC11L6 20 BR774/D

Table 4 Parallel I/O Control

	STAF Clearing Sequence	HNDS	OIN	PLS	EGA	Port C	Port B
Simple strobed mode	Read PIOC with STAF =1 then read PORTCL	0	X	Х	1 1	Inputs latched into PORTCL on any active edge on STRA	STRB pulses on writes to port B
Full input handshake	Read PIOC with STAF =1 then read PORTCL	1	0	0 = STRB active level 1 = STRB active pulse	0	Inputs latched into PORTCL on any active edge on STRA	Normal output port, unaffected in hand-shake modes
Full output handshake	Read PIOC with STAF =1 then write to PORTCL	1	1	0 = STRB active level 1 = STRB active pulse	O Port C Driven STRA Follow Active Edge Follow DDRC	Driven as out- puts if STRA at active level, follows DDRC if STRA not at active level	Normal output port, unaffected in hand-shake modes

PORTC — Port C Data

\$1003

	Bit 7	6	5	4	3	2	1	Bit 0
	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
S. Chip or Boot:	PC7	PC6	PC5	PC4	PC3	PC2	PC1	PC0
RESET:	0	0	0	0	0	0	0	0
Expan. or Test:	ADDR7/ DATA7	ADDR6/ DATA6	ADDR5/ DATA5	ADDR4/ DATA4	ADDR3/ DATA3	ADDR2/ DATA2	ADDR1/ DATA1	ADDR0/ DATA0

NOTE

In single chip and boot modes, port C pins reset to high impedance inputs (DDRC registers are set to zero). In expanded and special test modes, port C pins become multiplexed address/data bus pins and the port C register address is treated as an external memory location.

PORTB — Port B Data

\$1004

	Bit 7	6	5	4	3	2	1	Bit 0
	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
S. Chip or Boot:	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
RESET:	0	0	0	0	0	0	0	0
Expan. or Test:	ADDR15	ADDR14	ADDR13	ADDR12	ADDR11	ADDR10	ADDR9	ADDR8

PORTCL — Port C Latched

\$1005

	Bit 7	6	5	4	3	2	1	Bit 0
	PCL7	PCL6	PCL5	PCL4	PCL3	PCL2	PCL1	PCL0
RESET:	U	U	U	U	U	U	U	U

Writes affect port C pins. PORTCL is used in the handshake clearing mechanism.

When an active edge occurs on the STRA pin, port C data is latched into the PORTCL register.

DDRC — Data Direction for Port C

\$1007

	Bit 7	6	5	4	3	2	1	Bit 0
	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0
RESET:	0	0	0	0	0	0	0	0

DDC7-DDC0 — Data Direction for Port C

0 = Input

1 = Output

PORTD — Port D Data

\$1008

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	PD5	PD4	PD3	PD2	PD1	PD0
RESET:	0	0	0	0	0	0	0	0
Alt. Pin Func.:	_	_	SS	SCK	MOSI	MISO	TxD	RxD

DDRD — Data Direction for Port D

\$1009

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0
RESET:	0	0	0	0	0	0	0	0
Alt. Pin Func.:	_	_	SS	SCK	MOSI	MISO	TxD	RxD

DDD5-DDD0 — Data Direction for Port D

When DDRD bit 5 is zero and MSTR = 1 in SPCR, PD5/SS is a general-purpose output, and mode fault logic is disabled.

0 = Input

1 = Output

PORTE — Port E Data

\$100A

	Bit 7	6	5	4	3	2	1	Bit 0
	PE7	PE6	PE5	PE4	PE3	PE2	PE1	PE0
RESET:	U	U	U	U	U	U	U	U
Alt. Pin Func.:	AN7	AN6	AN5	AN4	AN3	AN2	AN1	AN0

PACTL — Pulse Accumulator Control

\$1026

	Bit 7	6	5	4	3	2	1	Bit 0
	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	I4/O5	RTR1	RTR0
RESET:	0	0	0	0	0	0	0	0

DDRA7 — Data Direction for Port A Bit 7

0 = Input

1 = Output

PAEN — Pulse Accumulator System Enable

(Refer to 10 Pulse Accumulator.)

PAMOD — Pulse Accumulator Mode

(Refer to 10 Pulse Accumulator.)

PEDGE — Pulse Accumulator Edge Control

(Refer to 10 Pulse Accumulator.)

DDRA3 — Data Direction for Port A Bit 3

Overridden if an output compare function is configured to control the PA3 pin.

0 = Input

1 = Output

14/O5 — Input Capture Four/Output Compare 5

0 = OC5 enabled

1 = IC4 enabled

RTR1 and RT0 — Real-Time Interrupt (RTI) Rate

(Refer to 9 Main Timer.)

PORTG — Port G Data

\$1036

	Bit 7	6	5	4	3	2	1	Bit 0
	PG7	PG6	PG5	PG4	PG3	PG2	PG1	PG0
RESET:	0	0	0	0	0	0	0	0

DDRG — Data Direction for Port G

\$1037

	Bit 7	6	5	4	3	2	1	Bit 0
	DDG7	DDG6	DDG5	DDG4	DDG3	DDG2	DDG1	DDG0
RESET:	0	0	0	0	0	0	0	0

DDG7-DDG0 — Data Direction for Port G

0 = Input

1 = Output

7 Serial Communications Interface (SCI)

The SCI is a universal asynchronous receiver transmitter (UART) serial communications interface, one of two independent serial I/O subsystems in the MC68HC11L6. It has a standard NRZ format (one start, eight or nine data, and one stop bit) and several of baud rates available. The SCI transmitter and receiver are independent but use the same data format and bit rate.

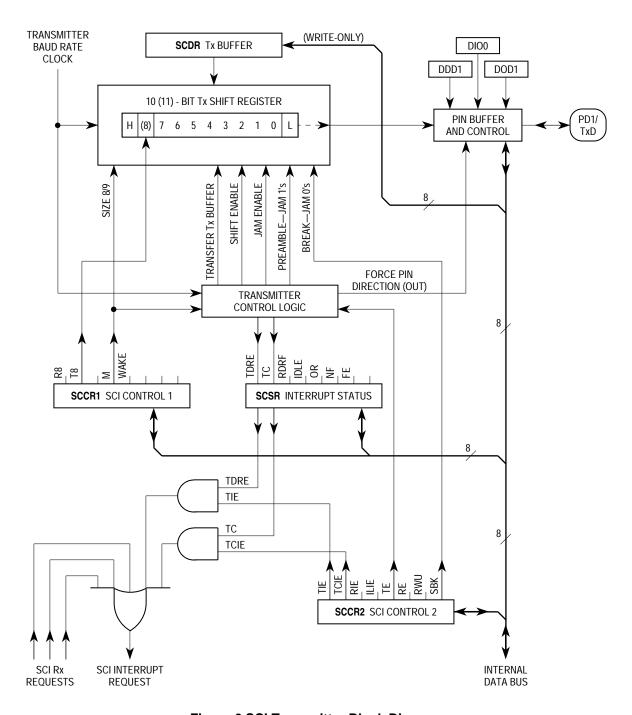


Figure 6 SCI Transmitter Block Diagram

MOTOROLA MC68HC11L6 24 BR774/D

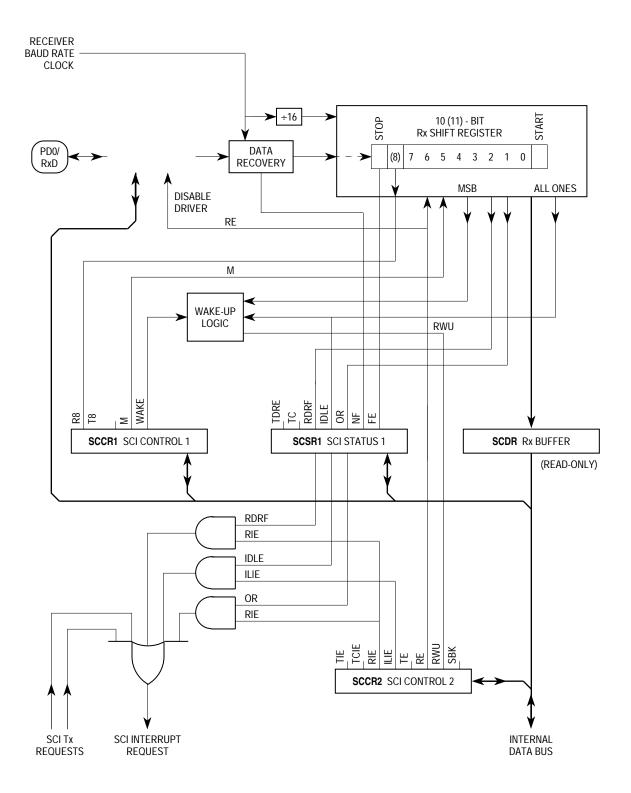


Figure 7 SCI Receiver Block Diagram

SPCR — Serial Peripheral Control

\$1028

	Bit 7	6	5	4	3	2	1	Bit 0
	SPIE	SPE	DWOM	MSTR	CPOL	CPHA	SPR1	SPR0
RESET:	0	0	0	0	0	1	U	U

DWOM — Port D Wired-OR Mode (affects all six port D pins)

0 = Normal CMOS outputs

1 = Open-drain outputs

Refer to **SPI** section for all other bits.

BAUD — Baud Rate

\$102B

	Bit 7	6	5	4	3	2	1	Bit 0
	TCLR	0	SCP1	SCP0	RCKB	SCR2	SCR1	SCR0
RESET:	0	0	0	0	0	U	U	U

TCLR — Clear Baud Rate Counters (TEST)

RCKB — SCI Baud Rate Clock Check (TEST)

SCP1, SCP0 — SCI Baud Rate Prescaler Selects

SCP	[1:0]	Divide	Crystal Frequency in MHz					
1	0	Internal Clock By	4.0 MHz (Baud)	8.0 MHz (Baud)	10.0 MHz (Baud)	12.0 MHz (Baud)		
0	0	1	62.50K	125.0K	156.25K	187.5K		
0	1	3	20.83K	41.67K	52.08K	62.5K		
1	0	4	15.625K	31.25K	38.4K	46.88K		
1	1	13	4800	9600	12.02K	14.42K		

SCR2, SCR1, and SCR0 — SCI Baud Rate Selects

Selects receiver and transmitter bit rate based on output from baud rate prescaler stage

:	SCR Bit [2:0]			Highest Baud Rate (Prescaler Output from Previous Table			
			Ву	4800	9600	38.4K	
0	0	0	1	4800	9600	38.4K	
0	0	1	2	2400	4800	19.2K	
0	1	0	4	1200	2400	9600	
0	1	1	8	600	1200	4800	
1	0	0	16	300	600	2400	
1	0	1	32	150	300	1200	
1	1	0	64	_	150	600	
1	1	1	128	_	_	300	

MOTOROLA MC68HC11L6 26 BR774/D

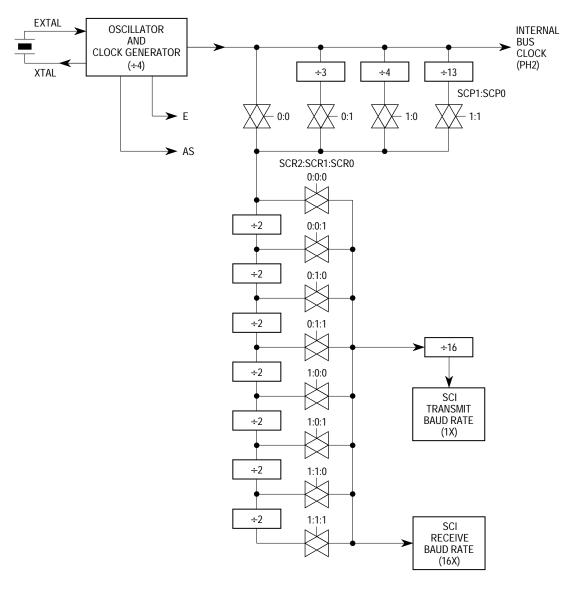


Figure 8 SCI Baud Rate

SCCR1 — SCI Control 1 \$102C

	Bit 7	6	5	4	3	2	1	Bit 0
	R8	Т8	0	М	WAKE	0	0	0
RESET:	U	U	0	0	0	0	0	0

R8 — Receive Data Bit 8

If M bit is set, R8 stores ninth bit in receive data character.

T8 — Transmit Data bit 8

If M bit is set, T8 stores ninth bit in transmit data character.

M — Mode (Select Character Format)

0 = Start, 8 data bits, 1 stop bit

1 = Start, 9 data bits, 1 stop bit

WAKE — Wake-Up by Address Mark/Idle

0 = Wake up by IDLE line recognition

1 = Wake up by address mark (most significant data bit set)

SCCR2 — SCI Control 2

\$102D

	Bit 7	6	5	4	3	2	1	Bit 0
	TIE	TCIE	RIE	ILIE	TE	RE	RWU	SBK
RESET:	0	0	0	0	0	0	0	0

TIE — Transmit Interrupt Enable

0 = TDRE interrupts disabled

1 = SCI interrupt requested when TDRE status flag is set

TCIE — Transmit Complete Interrupt Enable

0 = TC interrupts disabled

1 = SCI interrupt requested when TC status flag is set

RIE — Receiver Interrupt Enable

0 = RDRF and OR interrupts disabled

1 = SCI interrupt requested when RDRF flag or the OR status flag is set

ILIE — Idle Line Interrupt Enable

0 = IDLE interrupts disabled

1 = SCI interrupt requested when IDLE status flag is set

TE — Transmitter Enable

When TE goes form zero to one, one unit of idle character time (logic one) is queued as a preamble.

0 = Transmitter disabled

1 = Transmitter enabled

RE — Receiver Enable

0 = Receiver disabled

1 = Receiver enabled

RWU — Receiver Wake-Up Control

0 = Normal SCI receiver

1 = Wake-up enabled and receiver interrupts inhibited

SBK — Send Break

0 = Break generator off

1 = Break codes generated as long as SBK = 1

SCSR — SCI Status

\$102E

	Bit /	ь	5	4	3	2	1	BILO
	TDRE	TC	RDRF	IDLE	OR	NF	FE	0
RESET:	1	1	0	0	0	0	0	0

TDRE — Transmit Data Register Empty Flag

Set if transmit data can be written to SCDR; if TDRE = 0, transmit data register is busy. Cleared by SCSR read with TDRE set, followed by SCDR write.

TC — Transmit Complete Flag

Set if transmitter is idle (no data, preamble, or break transmission in progress). Cleared by SCSR read with TC set, followed by SCDR write.

MOTOROLA MC68HC11L6 28 BR774/D

RDRF — Receive Data Register Full Flag

Set if a received character is ready to be read from SCDR.

Cleared by SCSR read with RDRF set, followed by SCDR read.

IDLE — Idle Line Detected Flag

Set if the RxD line is idle. IDLE flag is inhibited when RWU = 1.

Cleared by SCSR read with IDLE set, followed by SCDR read.

Once cleared, IDLE is not be set again until the RxD line has been active and becomes idle again.

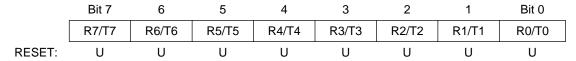
OR — Overrun Error Flag

Set if a new character is received before a previously received character is read from SCDR.

Cleared by SCSR read with OR set, followed by SCDR read.

NF — Noise Error Flag

Set if majority sample logic detects anything other than a unanimous decision.


Cleared by SCSR read with NF set, followed by SCDR read.

FE — Framing Error

Set if a 0 is detected where a stop bit was expected.

Cleared by SCSR read with FE set, followed by SCDR read.

SCDR — SCI Data \$102F

Receive and transmit are double buffered. Reads access the receive data buffer, and writes access the transmit data buffer.

MC68HC11L6 MOTOROLA BR774/D 29

8 Serial Peripheral Interface (SPI)

The SPI, an independent serial communications subsystem, allows the MCU to communicate synchronously with peripheral devices and other microprocessors. Data rates can be as high as one-half of the E-clock rate when configured as a master and as fast as the E clock when configured as a slave.

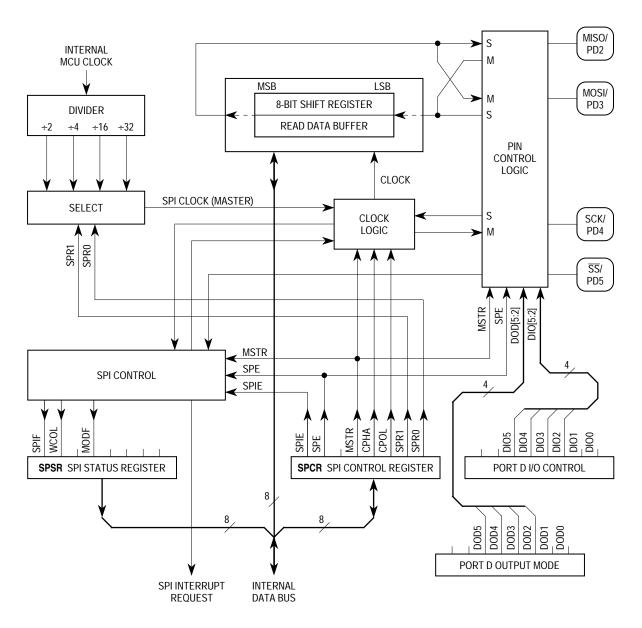


Figure 9 SPI Block Diagram

DDRD — Data Direction for Port D

\$1009

	Bit 7	6	5	4	3	2	1	Bit 0
	0	0	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0
RESET:	0	0	0	0	0	0	0	0
Alt. Pin Func.:	_	_	SS	SCK	MOSI	MISO	TxD	RxD

MOTOROLA MC68HC11L6 30 BR774/D

DDD5-DDD0 — Data Direction for Port D

When DDRD bit 5 is zero and MSTR = 1 in SPCR, PD5/SS is a general-purpose output and mode fault logic is disabled.

0 = Input

1 = Output

SPCR — Serial Peripheral Control

\$1028

	Bit 7	6	5	4	3	2	1	Bit 0
	SPIE	SPE	DWOM	MSTR	CPOL	СРНА	SPR1	SPR0
RESET:	0	0	0	0	0	1	U	U

SPIE — Serial Peripheral Interrupt Enable

0 = SPI interrupts disabled

1 = SPI interrupts enabled

SPE — Serial Peripheral System Enable

0 = SPI off

1 = SPI on

DWOM — Port D Wired-OR Mode

DWOM affects all six port D pins

0 = Normal CMOS outputs

1 = Open-drain outputs

MSTR — Master Mode Select

0 = Slave mode

1 = Master mode

CPOL, CPHA — Clock Polarity, Clock Phase (Refer to Figure 10.)

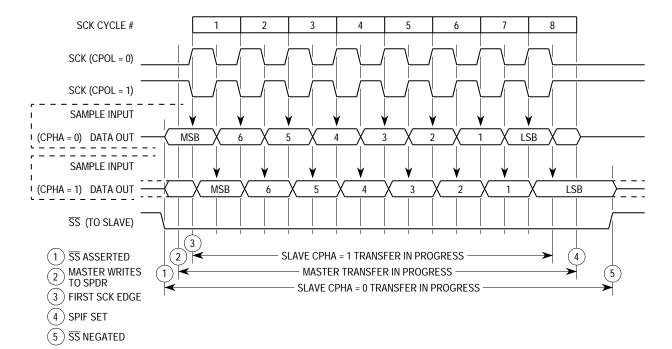


Figure 10 SPI Transfer Format

MC68HC11L6 BR774/D

SPR	[1:0]	E Clock Divide By	Frequency at E = 2 MHz (Baud)
0	0	2	1.0 MHz
0	1	4	500 kHz
1	0	16	125 kHz
1	1	32	62.5 kHz

SPSR — Serial Peripheral Status

\$1029

Bit 7	6	5	4	3	2	1	Bit 0	
SPIF	WCOL	0	MODF	0	0	0	0]
0	0	0	0	0	0	0	0	-

SPIF — SPI Transfer Complete Flag

Set when an SPI transfer is complete.

Cleared by reading SPSR with SPIF set, followed by SPDR access.

WCOL — Write Collision

RESET:

Set when SPDR is written while transfer is in progress.

Cleared by SPSR with WCOL set, followed by SPDR access.

MODF — Mode Fault (A Mode Fault Terminates SPI Operation)

Set when \overline{SS} is pulled low while MSTR = 1.

Cleared by SPSR read with MODF set, followed by SPCR write.

SPDR — SPI Data \$102A

Bit 7	6	5	4	3	2	1	Bit 0
Bit 7	6	5	4	3	2	1	Bit 0

NOTE

SPI is double buffered in, single buffered out.

MOTOROLA MC68HC11L6 32 BR774/D

9 Main Timer

The main timer is based on a free-running 16-bit counter with a four-stage programmable prescaler. A timer overflow function allows software to extend the system's timing capability beyond the counter's 16-bit range.

The timer has three channels of input capture, four channels of output compare, and one channel that can be configured as a fourth input capture or a fifth output compare.

The following table summarizes crystal-related frequencies and periods.

Table 5 Timer Summary

		XTAL Frequencies		
	4.0 MHz	8.0 MHz	12.0 MHz	Other Rates
Control	1.0 MHz	2.0 MHz	3.0 MHz	(E)
Bits	1000 ns	500 ns	333 ns	(1/E)
PR [1:0]		Main Timer C	ount Rates	
0 0				
1 count	1.0 μs	500 ns	333 ns	(E/1)
overflow	65.536 ms	32.768 ms	21.845 ms	(E/2 ¹⁶)
0 1				
1 count	4.0 μs	2.0 μs	1.333 μs	(E/4)
overflow	262.14 ms	131.07 ms	87.381 ms	(E/2 ¹⁸)
10				
1 count	8.0 µs	4.0 μs	2.667 μs	(E/8)
overflow	524.29 ms	262.14 ms	174.76 ms	(E/2 ¹⁹)
1 1				
1 count	16.0 μs	8.0 μs	5.333 μs	(E/16)
overflow	1.049 s	524.29 ms	349.52 ms	(E/2 ²⁰)
RTR [1:0]		Periodic (RTI) Ir	nterrupt Rates	
0 0	8.192 ms	4.096 ms	2.731 ms	(E/2 ¹³)
0 1	16.384 ms	8.192 ms	5.461 ms	(E/2 ¹⁴)
1 0	32.768 ms	16.384 ms	10.923 ms	, , ,
1 1	65.536 ms	32.768 ms	21.845 ms	(E/2 ¹⁵)
				(E/2 ¹⁶)
CR [1:0]		COP Watchdog 1	Time-Out Rates	
0 0	32.768 ms	16.384 ms	10.923 ms	(E/2 ¹⁵)
0 1	131.07 ms	65.536 ms	43.691 ms	(E/2 ¹⁷)
1 0	524.29 ms	262.14 ms	174.76 ms	(E/2 ¹⁹)
11	2.097 s	1.049 s	699.05 ms	, ,
				(E/2 ²¹)
Time-Out Tolerance	00.700	40.4	40.0	45
(- 0 ms/+)	32.768 ms	16.4 ms	10.9 ms	(E/2 ¹⁵)

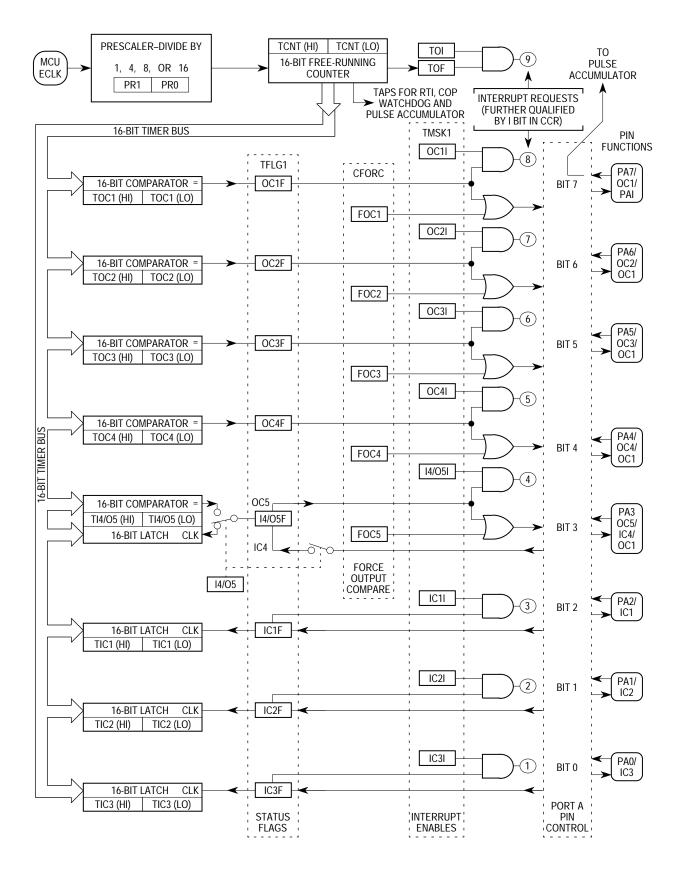


Figure 11 Main Timer

MOTOROLA MC68HC11L6 34 BR774/D

CFORC — Timer Compare Force

\$100B

	Bit 7	6	5	4	3	2	1	Bit 0
	FOC1	FOC2	FOC3	FOC4	FOC5	0	0	0
RESET:	0	0	0	0	0	0	0	0

FOC5-FOC1 — Write ones to Force Compare(s)

0 = Not affected

1 = Output x action occurs

OC1M — Output Compare 1 Mask

\$100C

	Bit 7	6	5	4	3	2	1	Bit 0	
	OC1M7	OC1M6	OC1M5	OC1M4	OC1M3	0	0	0	
RESET:	0	0	0	0	0	0	0	0	

Set bit(s) to enable OC1 to control corresponding pin(s) of port A

OC1D — Output Compare 1 Data

\$100D

	Bit 7	6	5	4	3	2	1	Bit 0
	OC1D7	OC1D6	OC1D5	OC1D4	OC1D3	0	0	0
RESET:	0	0	0	0	0	0	0	0

If OC1Mx is set, data in OC1Dx is output to port A bit x on successful OC1 compares

TCNT — Timer Counter

\$100E, \$100F

\$100E	Bit 15	14	13	12	11	10	9	Bit 8	TCNT (High)
\$100F	Bit 7	6	5	4	3	2	1	Bit 0	TCNT (Low)

TCNT resets to \$0000.

In normal modes, TCNT is read-only.

TIC1-TIC3 — Timer Input Capture

\$1010-\$1015

\$1010	Bit 15	14	13	12	11	10	9	Bit 8	TIC1 (High)
\$1011	Bit 7	6	5	4	3	2	1	Bit 0	TIC1 (Low)
\$1012	Bit 15	14	13	12	11	10	9	Bit 8	TIC2 (High)
\$1013	Bit 7	6	5	4	3	2	1	Bit 0	TIC2 (Low)
\$1014	Bit 15	14	13	12	11	10	9	Bit 8	TIC3 (High)
\$1015	Bit 7	6	5	4	3	2	1	Bit 0	TIC3 (Low)

TICx is not affected by reset.

TOC1-TOC4 — Timer Output Compare

\$1016-\$101D

\$1016	Bit 15	14	13	12	11	10	9	Bit 8	TOC1 (High)
\$1017	Bit 7	6	5	4	3	2	1	Bit 0	TOC1 (Low)
\$1018	Bit 15	14	13	12	11	10	9	Bit 8	TOC2 (High)
\$1019	Bit 7	6	5	4	3	2	1	Bit 0	TOC2 (Low)
\$101A	Bit 15	14	13	12	11	10	9	Bit 8	TOC3 (High)
\$101B	Bit 7	6	5	4	3	2	1	Bit 0	TOC3 (Low)
\$101C	Bit 15	14	13	12	11	10	9	Bit 8	TOC4 (High)
\$101D	Bit 7	6	5	4	3	2	1	Bit 0	TOC4 (Low)

All TOCx register pairs reset to ones (\$FFFF).

TI4/O5 — Timer Input Capture 4/Output Compare 5

\$101E, \$101F

\$101E	Bit 15	14	13	12	11	10	9	Bit 8	TI4/O5 (High)
\$101F	Bit 7	6	5	4	3	2	1	Bit 0	TI4/O5 (Low)

All TI4/O5 register pairs reset to ones (\$FFFF).

TCTL1 — Timer Control 1

\$1020

	Bit 7	6	5	4	3	2	1	Bit 0	
	OM2	OL2	ОМЗ	OL3	OM4	OL4	OM5	OL5	
RESET:	0	0	0	0	0	0	0	0	

OM2-OM5 — Output Mode

OL2-OL5 — Output Level

OMx	OLx	Action Taken on Successful Compare
0	0	Timer disconnected from output pin logic.
0	1	Toggle OCx output line.
1	0	Clear OCx output line to zero.
1	1	Set OCx output line to one.

TCTL2 — Timer Control 2

\$1021

	Bit 7	6	5	4	3	2	1	Bit 0
	EDG4B	EDG4A	EDG1B	EDG1A	EDG2B	EDG2A	EDG3B	EDG3A
RESET:	0	0	0	0	0	0	0	0

Table 6 Timer Control Configuration

EDGxB	EDGxA	Configuration				
0	0	Capture disabled				
0	1	Capture on rising edges only				
1	0	Capture on falling edges only				
1	1	Capture on any edge				

TMSK1 — Timer Interrupt Mask 1

\$1022

	Bit 7	6	5	4	3	2	1	Bit 0
	OC1I	OC2I	OC3I	OC4I	I4/O5I	IC1I	IC2I	IC3I
RESET:	0	0	0	0	0	0	0	0

OC1I-OC4I — Output Compare x Interrupt Enable

14/O5I — Input Capture 4 or Output Compare 5 Interrupt Enable

IC1I–IC3I — Input Capture x Interrupt Enable

NOTE

Bits in TMSK1 correspond bit for bit with flag bits in TFLG1. Ones in TMSK1 enable the corresponding interrupt sources.

TFLG1 — Timer Interrupt Flag 1

RESET:

\$1023

Bit 7	6	5	4	3	2	1	Bit 0
OC1F	OC2F	OC3F	OC4F	14/O5F	IC1F	IC2F	IC3F
0	0	0	0	0	0	0	0

Clear flags by writing a one to the corresponding bit position(s).

OC1F-OC4F — Output Compare x Flag

Set each time the counter matches output compare x value

14/O5F — Input Capture 4/Output Compare 5 Flag

Set by IC4 or OC5, depending on which function was enabled by I4/O5 in PACTL

IC1F-IC3F — Input Capture x Flag

Set each time a selected active edge is detected on the ICx input line

TMSK2 — Timer Interrupt Mask 2

\$1024

	Bit 7	6	5	4	3	2	1	Bit 0
	TOI	RTII	PAOVI	PAII	0	0	PR1	PR0
RESET:	0	0	0	0	0	0	0	0

TOI — Timer Overflow Interrupt Enable

RTII — Real-time Interrupt Enable

PAOVI — Pulse Accumulator Overflow Interrupt Enable (Refer to Pulse Accumulator.)

PAII — Pulse Accumulator Input Edge Interrupt Enable (Refer to Pulse Accumulator.)

NOTE

Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Ones in TMSK2 enable the corresponding interrupt sources.

PR1 and PR0 — Timer Prescaler Select

In normal modes, PR1 and PR0 may only be written once, and the write must be within 64 cycles after reset. (Refer to the timer summary for specific timing values.)

PR [1:0]	Prescaler
0 0	1
0 1	4
1 0	8
1 1	16

TFLG2 — Timer Interrupt Flag 2

\$1025

	Bit 7	6	5	4	3	2	1	Bit 0
	TOF	RTIF	PAOVF	PAIF	0	0	0	0
RESET:	0	0	0	0	0	0	0	0

Clear flags by writing a one to the corresponding bit position(s).

TOF — Timer Overflow Flag

Set when TCNT changes from \$FFFF to \$0000.

RTIF — Real-Time (Periodic) Interrupt Flag

Set periodically (Refer to RTR1:0 bits in PACTL register).

PAOVF — Pulse Accumulator Overflow Flag (Refer to **10 Pulse Accumulator**.)

PAIF — Pulse Accumulator Input Edge Flag (Refer to **10 Pulse Accumulator**.)

PACTL — Pulse Accumulator Control

\$1026

MC68HC11L6

BR774/D

	Bit 7	6	5	4	3	2	1	Bit 0
	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	I4/O5	RTR1	RTR0
RESET:	0	0	0	0	0	0	0	0

DDRA7 — Data Direction for Port A Bit 7 (Refer to 6 Parallel Input/Output.)

PAEN — Pulse Accumulator System Enable (Refer to **10 Pulse Accumulator**.)

PAMOD — Pulse Accumulator Mode (Refer to **10 Pulse Accumulator**.)

PEDGE — Pulse Accumulator Edge Control (Refer to **10 Pulse Accumulator**.)

DDRA3 — Data Direction for Port A Bit 3 (Refer to 6 Parallel Input/Output.)

RTR1 and RTR0 — Real-Time Interrupt (RTI) Rate

Table 7 Real-Time Interrupt Rates

RTR	[1:0]	Divide E By	XTAL = 4.0 MHz	XTAL = 8.0 MHz	XTAL = 12.0 MHz
0	0	2 ¹³	8.19 ms	4.096 ms	2.731 ms
0	1	2 ¹⁴	16.38 ms	8.192 ms	5.461 ms
1	0	2 ¹⁵	32.77 ms	16.384 ms	10.923 ms
1	1	2 ¹⁶	65.54 ms	32.768 ms	21.845 ms
		E =	1.0 MHz	2.0 MHz	3.0 MHz

10 Pulse Accumulator

The MC68HC11L6 has an 8-bit counter that can be configured to operate as a simple event counter or for gated time accumulation, depending on the PAMOD bit in the PACTL register. The pulse accumulator counter can be read or written at any time.

The port A bit 7 I/O pin can be configured as a clock in event counting mode or as a gate signal to enable a free-running clock (E divided by 64) in gated accumulation mode.

Figure 12 Pulse Accumulator System Block Diagram

Table 8 Pulse Accumulator Timing

		Common XTAL Frequencies				
	Selected Crystal	4.0 MHz	8.0 MHz	12.0 MHz		
CPU Clock	(E)	1.0 MHz	2.0 MHz	3.0 MHz		
Cycle Time	(1/E)	1000 ns	500 ns	333 ns		
Pulse Accumulator	(in Gated Mode)					
(E/2 ⁶) (E/2 ¹⁴)	1 count overflow	64.0 μs 16.384 ms	32.0 μs 8.192 ms	21.33 μs 5.461 ms		

MOTOROLA MC68HC11L6 40 BR774/D

TMSK2 — Timer Interrupt Mask 2

\$1024

	Bit 7	6	5	4	3	2	1	Bit 0
	TOI	RTII	PAOVI	PAII	0	0	PR1	PR0
RESET:	0	0	0	0	0	0	0	0

TOI — Timer Overflow Interrupt Enable

(Refer to 9 Main Timer.)

RTII — Real-time Interrupt Enable

(Refer to 9 Main Timer.)

PAOVI — Pulse Accumulator Overflow Interrupt Enable

Set when pulse accumulator count rolls over from \$FF to \$00.

Cleared by writing to TFLG2 with a one in bit 4.

PAII — Pulse Accumulator Input Edge Interrupt Enable

Set each time a selected edge is detected at PA7/PAI/OC1.

Cleared by writing to TFLG2 with a one in bit 5.

NOTE

Bits in TMSK2 correspond bit for bit with flag bits in TFLG2. Ones in TMSK2 enable the corresponding interrupt sources.

PR1 and PR0 — Timer Prescaler Select

(Refer to 9 Main Timer.)

TFLG2 — Timer Interrupt Flag 2

\$1025

	Bit 7	6	5	4	3	2	1	Bit 0
	TOF	RTIF	PAOVF	PAIF	0	0	0	0
RESET:	0	0	0	0	0	0	0	0

Clear flags by writing a one to the corresponding bit position(s).

TOF — Timer Overflow Flag (Refer to **9 Main Timer**.)

RTIF — Real-Time (Periodic) Interrupt Flag

(Refer to 9 Main Timer.)

PAOVF — Pulse Accumulator Overflow Flag

Set when PACNT changes from \$FF to \$00.

PAIF — Pulse Accumulator Input Edge Flag

Set each time a selected active edge is detected on the PAI input line.

PACTL — Pulse Accumulator Control

\$1026

	Bit 7	6	5	4	3	2	1	Bit 0
	DDRA7	PAEN	PAMOD	PEDGE	DDRA3	I4/O5	RTR1	RTR0
RESET:	0	0	0	0	0	0	0	0

DDRA7 — Data Direction for Port A Bit 7

(Refer to 6 Parallel Input/Output.)

PAEN — Pulse Accumulator System Enable

0 = Pulse Accumulator disabled

1 = Pulse Accumulator enabled

PAMOD — Pulse Accumulator Mode

0 = Event counter

1 = Gated time accumulation

PEDGE — Pulse Accumulator Edge Control

PAMOD	PEDGE	Action on Clock
0	0	PAI falling edge increments the counter
0	1	PAI rising edge increments the counter
1	0	A zero on PAI inhibits counting
1	1	A one on PAI inhibits counting

DDRA3 — Data Direction for Port A Bit 3 (Refer to 6 Parallel Input/Output)

I4/O5 — Input Capture 4/Output Compare 5 (Refer to 6 Parallel Input/Output)

RTR1 and RTR0 — (Refer to **9 Main Timer**.)

PACNT — Pulse Accumulator Counter

\$1027

Bit 7	6	5	4	3	2	1	Bit 0
Bit 7	6	5	4	3	2	1	Bit 0

Can be read and written.

MOTOROLA MC68HC11L6 42 BR774/D

11 A/D Converter

The A/D converter system uses an all-capacitive charge-redistribution technique to convert analog signals to digital values. The MC68HC11L6 A/D system, an 8-channel, 8-bit, multiplexed-input, successive-approximation converter, is accurate to ± 1 least significant bit (LSB). It does not require external sample and hold circuits because of the type of charge-redistribution technique used.

Dedicated lines V_{RH} and V_{RL} provide the reference supply voltage inputs.

A multiplexer allows the single A/D converter to select one of 16 analog signals.

Figure 13 A/D Converter Block Diagram

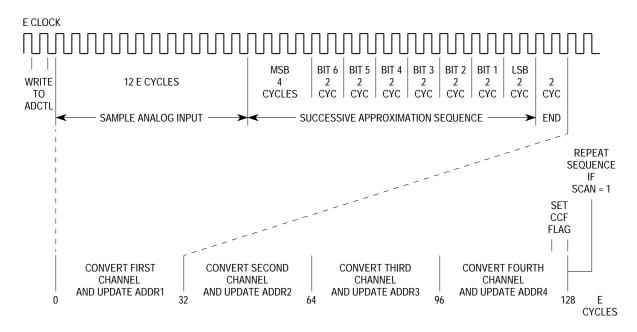
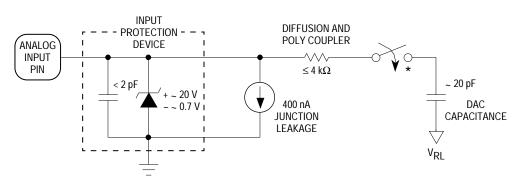
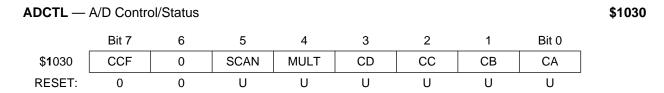




Figure 14 A/D Conversion Sequence

^{*} This analog switch is closed only during the 12-cycle sample time.

Figure 15 Electrical Model of an Analog Input Pin (Sample Mode)

CCF — Conversions Complete Flag

Set after the fourth conversion in an A/D conversion cycle, cleared when ADCTL is written

SCAN — Continuous Scan Control

0 = Do four conversions and stop

1 = Convert four channels in selected group continuously

MOTOROLA MC68HC11L6 44 BR774/D MULT — Multiple Channel/Single Channel Control

0 = Convert single channel selected

1 = Convert four channels in selected group

CD-CA — Channel Select D through A

Table 9 A/D Converter Channel Assignments

	Channel Selec	ct Control Bits	Channel	Result in ADRx if		
CD	CC	СВ	CA	Signal	MULT = 1	
0	0	0	0	AN0	ADR1	
0	0	0	1	AN1	ADR2	
0	0	1	0	AN2	ADR3	
0	0	1	1	AN3	ADR4	
0	1	0	0	AN4	ADR1	
0	1	0	1	AN5	ADR2	
0	1	1	0	AN6	ADR3	
0	1	1	1	AN7	ADR4	
1	0	Х	Х	Reserved	_	
1	1	0	0	V _{RH*}	ADR1	
1	1	0	1	V _{RL*}	ADR2	
1	1	1	0	(V _{RH})/2∗	ADR3	
1	1	1	1	Reserved∗	ADR4	

^{*}Used for factory testing

ADR1-ADR4 — A/D Results

\$1031-\$1034

\$1031	Bit 7	6	5	4	3	2	1	Bit 0	ADR1
\$1032	Bit 7	6	5	4	3	2	1	Bit 0	ADR2
\$1033	Bit 7	6	5	4	3	2	1	Bit 0	ADR3
\$1034	Bit 7	6	5	4	3	2	1	Bit 0	ADR4

Table 10 Analog Input to 8-Bit Result Translation Table

		Bit 7	6	5	4	3	2	1	Bit 0
	% ⁽¹⁾	50%	25%	12.5%	6.25%	3.12%	1.56%	0.78%	0.39%
Ī	Volts (2)	2.500	1.250	0.625	0.3125	0.1562	0.0781	0.0391	0.0195

 $^{^{(1)}}$ % of V_{RH} – V_{RL}

OPTION — System Configuration Options

\$1039

	Bit 7	6	5	4	3	2	1	Bit 0	
	ADPU	CSEL	IRQE*	DLY*	CME	0	CR1*	CR0*	
RESET:	0	0	0	1	0	0	0	0	

^{*}Can be written only once in first 64 cycles out of reset in normal modes, or at any time in special modes.

ADPU — A/D Power Up

0 = A/D Powered down

1 = A/D Powered up

 $^{^{(2)}}$ Volts for $V_{RL} = 0$; $V_{RH} = 5.0 \text{ V}$

CSEL — Clock Select

0 = A/D and EEPROM use system E clock

1 = A/D and EEPROM use internal RC clock

IRQE — IRQ Select Edge Sensitive Only

(Refer to 4 Resets and Interrupts.)

DLY — Enable Oscillator Start-Up Delay on Exit from STOP

(Refer to 4 Resets and Interrupts.)

CME — Clock Monitor Enable

(Refer to 4 Resets and Interrupts.)

CR1, CR0 — COP Timer Rate Select

(Refer to 4 Resets and Interrupts.)

MOTOROLA MC68HC11L6 46 BR774/D

MC68HC11L6 MOTOROLA BR774/D 47

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and Mare registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution;

P.O. Box 20912; Phoenix, Arizona 85036. 1-800-441-2447

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609

INTERNET: http://Design-NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, Toshikatsu Otsuki, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 03-3521-8315

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

