
M U I U H U L A

• SEMICONDUCTOR
TECHNICAL DATA

by MC68HC916Y1TS/D

M C 6 8 H C 9 1 6 Y 1
Technical Summary
16-Bi t M o d u l a r M ic rocont ro l l e r
1 I n t r o d u c t i o n

The MC68HC916Y1 microcontroller (MCU) is a high-speed 16-bit device that is upwardly code
compatible with M68HC11 controllers. It is a member of the M68300/68HC16 Family of modular
microcontrollers.

M68HC16 controllers are built up from standard modules that interface via a common intermodule
bus (1MB). Standardization facilitates rapid development of devices tailored for specific
applications.

The MC68HC916Y1 incorporates a true 16-bit CPU (CPU16), a single-chip integration module
(SCIM), an 8/10-bit analog-to-digital converter (ADC), a multichannel communication interface
(MCCi), a general-purpose timer (GPT), a time processing unit (TPU), a 2-Kbyte standby RAM
module with TPU ROM emulation capability (TPURAM), a 2-Kbyte standby RAM module with no
TPU ROM emulation capability (STBRAM), and a 48-Kbyte flash EEPROM module (FLASH). The
MC68HC916Y1 has special features that facilitate emulation of the MC68HC16Y1.

M68HC16 devices can either synthesize an internal clock signal from an external reference, or
use an external clock input directly. Operation with a 4.194-MHz reference frequency is standard.
System hardware and software allow changes in clock rate during operation — register and
memory contents are not affected by clock rate changes.

High-density complementary metal-oxide semiconductor (HCMOS) architecture makes the basic
power consumption of M68HC16 devices low. Power consumption can be minimized by
stopping the system clock. The M68HC16 instruction set includes a low-power stop (LPSTOP)
command that efficiently implements this capability.

O r d e r i n g I n f o r m a t i o n

P a c k a g e T y p e F r e q u e n c y (MHz) T e m p e r a t u r e Order N u m b e r
Plastic Surface Mount 16.78 —40° to +125°C M68HC916Y1CFC

This document contains information about a new product. Specifications and information are subject to change without notice.

MOTOROLA ®
©MOTOROLA INC., 1993 M C 6 8 H C 9 1 6 Y 1 T S / D

T a b l e of C o n t e n t s
1 Introduction 1

1.1 Pin Description 7
1.2 Signal Description 10
1.3 Address Map 1 4

1.4 Intermodule Bus 1 4

1.5 Using the MC68HC916Y1 to Emulate the MC68HC16Y1 15
2 CPU16 1 6

2.1 Overview 1 6

2.2 M68HC11 Compatibility 16
2.3 Programmer's Model 1 7

2.4 Condition Code Register 18
2.5 Data Types 1 9

2.6 Addressing Modes 1 9

2.7 Instruction Set 2 0

2.8 Exceptions 38
3 Single-Chip Integration Module 4 1

3.1 Overview 4 1

3.2 System Configuration 4 3
3.3 Operating Modes 4 5
3.4 Emulation Support 5 0

3.5 System Protection 50
3.6 System Clock 53
3.7 External Bus Interface 5 8

3.8 Reset 62
3.9 Interrupts 65
3.10 General-Purpose Input/Output 68
3.11 Chip Selects 7 3
4 Time Processor Unit 83
4.1 Overview 8 3

4.2 Programmer's Model 8 4

4.3 TPU Components 84
4.4 TPU Operation 86
4.5 Emulation Support 87
4.6 Time Functions 8 7

4.7 TPU Registers 9 1

5 General-Purpose Timer Module 9 8

5.1 Overview 9 8

5.2 Capture/Compare Unit 9 9

5.3 Pulse-Width Modulator 102
5.4 GPT Registers 103
6 Analog-to-Digital Converter Module 111
6.1 Overview 111
6.2 Analog Subsystem 112
6.3 Digital Control Subsystem 113
6.4 Bus Interlace Subsystem 113
6.5 ADC Registers 113
7 Multichannel Communication Interlace 119
7.1 Overview 119
7.2 MCCI Registers 120
7.3 Serial Peripheral Interlace 124
7.4 Serial Communication Interlace 1 2 7

MOTOROLA M C 6 8 H C 9 1 6 Y 1
2 M C 6 8 H C 9 1 6 Y 1 T S / D

T a b l e of C o n t e n t s (C o n t i n u e d)
8 Standby RAM and TPU Emulation RAM 133
8.1 Overview 1 3 3
8.2 RAM Register Blocks 1 33
8.3 RAM Registers 1 3 4
8.4 RAM Operation 135
9 Flash EEPROM 136
9.1 Overview 136
9.2 Flash EEPROM Control Block 137
9.3 Flash EEPROM Array 1 37
9.4 Flash EEPROM Registers 1 37
9.5 Flash EEPROM Operation 1 4 1

)

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
3

F e a t u r e s
• Central Processing Unit (CPU16)

— 16-Bit Architecture
— Full Set of 16-Bit Instructions
— Three 16-Bit Index Registers
— Two 16-Bit Accumulators
— Control-Oriented Digital Signal Processing Capability
— 1 Megabyte of Program Memory and 1 Megabyte of Data Memory
— High-Level Language Support
— Fast Interrupt Response Time
— Background Debugging Mode

- Single-Chip Integration Module (SCIM)
— Single-Chip or Expanded Modes of Operation
— External Bus Support in Expanded Mode
— Nine Programmable Chip Select Outputs
— Emulation-Support Chip Select Output
— System Protection Logic
— Watchdog Timer, Clock Monitor, and Bus Monitor
— Parallel Ports Option on Address and Data Bus in Single-Chip Mode
— Phase-Locked Loop (PLL) Clock System

• Time Processor Unit (TPU)
— Dedicated Microengine Operating Independently of CPU 16
— 16 Independently Programmable Channels and Pins
— Two Timer Count Registers with Programmable Prescalers
— Selectable Channel Priority Levels

• General-Purpose Timer (GPT)
— Two 16-Bit Free-Running Counters with Prescaler
— Three Input Capture Channels
— Four Output Compare Channels
— One Input Capture/Output Compare Channel
— One Pulse Accumulator/Event Counter Input
— Two Pulse-Width Modulation Outputs
— Optional External Clock Input

• 8/10-Bit Analog-to-Digital Converter (ADC)
— Eight Channels, Eight Result Registers
— Eight Automated Modes
— Three Result-Alignment Modes

• Multichannel Communication Interface (MCCI)
— Dual Serial Communication Interface (SCI)
— Serial Peripheral Interface (SPI)

• TPU Emulation RAM Module (TPURAM)
— 2 Kbyte Static RAM Array, Mappable to any 2 Kbyte Boundary
— TPU Microcode Emulation

• Standby RAM Module (STBRAM)
— 2 Kbyte Static RAM Array, Mappable to any 2 Kbyte Boundary
— External Standby Voltage Supply Input and Power-Loss Flag

- Flash EEPROM Module (FLASH)
— 48 Kbyte, Bulk-Erasable 16-Bit Array
— Boot ROM Capability

M O T O R O L A
4

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

BKPTrtBCLK-

IPIPEl/DSJ-

IPtPEOTSO-*-

T2CLK

VST9Y-

P ADA 7/AN 7-
PADA&AN6-
PA0A&AN5-
PAMMNi-
PA0U/AN3-
PACA2/AN2-
PAQA1/AN1-
PADAOANO-

"RH-

VDDA-
VSSA"

PGP7/»C4/OC5«C1 -
PGP&0040C1-
PGP&OCWC1-
PGP4/OC2fOC1 -

PGP3/OC1 -
PGP2C3-
PGP1/1C2-

PWMA
PWMB
PCLK

PAJ

ADC

VSTBY

2 KBYTES
STBRAM

2 KBYTES
TPURAM

TPU

BKF*T
I PIPE 1
IPIPEQ
OSI
OSO
DSO.K

CPU16

1MB

GPT
IC40CS/0C1
OOVOC1
OCWX1
0020C1
OC1
IC3
IC2
ia

PWMA
PWMB
PCLK
PAI

PMC7/TXDA-*-
PMC6/RXM-*-
PMCSTXDB-*-
PMC*nXDg-<-

PMC3/SS~<-
PMCZ/SCK-*-

PMC1/MQ6I-*-
PMOO/MSO-̂ -

o _J O
t-

o z o CL o

MCCI

TXDA
RXDA
TXDB
5
SS
SCK
MOSI
Ml SO

48 KBYTES
FLASH

EEPROM

CHIP
SELECTS!

FC2
FC1
FCO

ADOR[23:0|

SIZ1
SCO

AS
Bs
m

DSACK1
OSACKO

EBI

DATA[15.0j

!RQ(7:1|

MODCIK

CLOCK

TEST
TSC

QUOT
FHEE2E

CSBO0T

['83!

• ADDR?3<CS10/ECLK

ADDR21/CSfrPC5
AD0R20/CS7/PC4
ADDR19/CS&PC3
FĈCSVPC!
FCt/PCi
FCO/CSl'PCO

ADDfi[1B:11)/PA|7:0|

ADOR(I0 3|/PB(7 0]

ADOfi|2:0)

SIZ1/PE7
SIZ&PE6

- > - AS/PE5
->- D&PE4

PE3_
AVEC/PE2

• DSACK1/PE1
DSACKtyPEO

• OATA|15:8|/pq7:0|

• DATA(7;0].<PH(7;0j

•HW
•RESET
• HALT
-BERR

• IRQ7/PF7
• IRQ6/PE6
• IRQ5/PF5

- > - 1RQ4/Pf4
- » - IRQ3/PF3

mQ2/PF2
-^•IROl/PFl

MODCLK/PFQ

• CLKOUT
- XT At
-EXTAL
- XFC
"VDDSYN

•TSC

• FREEZE/OUOT

M C 6 8 H C 9 1 6 Y 1 B l o c k D i a g r a m

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

MOTOROLA
5

A . O_

a. a. a. t \ o o

i s S S s i i l S i l l s l
1

V R H A I

P A D A S / A N S A ;

P A 0 A 4 / A N 4 O I

P A D A 3 / A N 3 0 I

P A D A 2 / A N 2 N C

PA0A1/AN1OI
P A D A C / A N O A :

VSSAĉ
V D D A A H

V D D E O :

V S S £ A ;

A D D R 1 U E

A D D R 2 0 :

A D D R 3 / P B 0 C C

A Q D R 4 / P B 1 N R

A P P R S / P B 2 A R I 1 6

UJ UJ _
g I l l l l 8

flRnRflflnRnRnRnnnRnnRMRn

A D D R 6 / P B 3 A E

A D D R 7 / P B 4 0 T

A D D R F I / P B S C H

A 0 D R 9 / P B 6 O T

vssim
APPR10/PB7m
ADDR11/PA0UT
ADDR12/PA10I
A D D R L 3 / P A 2 M

VDDEnc
VSSECT

A D D R 1 4 / P A 3 0 ;

A D D R L 5 F P A 4 A S

ADDR16/PA5a
ADDR17/PA60;
ADDRia/PA7at

SS/PMC3ctf
M0SI/PMC1 a t
MISG/PMCOa^
SCK/PMC2QI

TXDA/PMC7al
RXDA/PMCGaC
TXDarPMC5ai

VDOEcaj
4 0

o

M C 6 8 H C 9 1 6 Y 1

fS f= £
m r i w m w w w f w w F m f f m r w w M
CM W 111 111 IF) TO N . OF» A N ^ H I H I R\L MS ^ IFL / -I "W I ^ 1 — / S H I I . I I I . I I IL \.RV % *

120
L A V D D E

2 A P A T A 0 / P H 0

S 3 Q A T A V P H 1

3 N D A T A 2 / P H 2

M D A T A 3 / P H 3

L A 0 A T A 4 / P H 4

3 O D A T A 5 / P H 5

I N D A T A C / P H 6

J O D A T A 7 / P H 7

J U D A T A 8 / P G 0

3 Q D A T A 9 / P G 1

D A T A 1 C V P G 2

J N V D D E

I N V S S E

J A D A T A 1 1 / P G 3

3 N D A T A 1 2 / P G 4

J N D A T A 1 3 / P G 5

J Q 0 A T A 1 4 / P G 6

3 = I D A T A 1 5 / P G 7

M V S S I

A P P R O

D S A C K C V P E O

] N P S A C K 1 / P E 1

J N A V E C / P E 2

3 N P E 3

V D D E

] N V S S E

I N D S / P E 4

5 = I A S / P E 5

9 1 J M S I Z 0 / P E &

J N S I Z 1 / P E 7

Jo R/W
M M O D C L K / P F O

I N 1 R Q 1 / P F 1

J N I R Q 2 / P F 2

M I R Q 3 / P F 3

I N I R Q 4 / P F 4

3 N I R Q S / P F 5

J M I R Q 6 / P F 6

M I R Q 7 / P F 7

81

119
llfi
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101

100
99
98
97
96
95
94
93
92

90
89
88
87
86
85
84
83
62

A . A Q . Q .

[3 hi
o ^ »-
a dl
fsj LU
LU

fl¥1 ltd flH QFP

1 6 0 - P i n Q u a d F la t P a c k P i n A s s i g n m e n t s

M O T O R O L A
6

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

1,1 P i n D e s c r i p t i o n

The following table contains MCU pin characteristics. All inputs detect CMOS logic levels. All
outputs can be put in a high-impedance state, but the method of doing so differs depending
upon pin function. Refer to the D r i v e r T y p e s table for a description of output drivers. An entry
in the discrete I/O column of the P i n C h a r a c t e r i s t i c s table indicates that a pin has an alternate
I/O function. The port designation is given when it applies. Refer to the M C 6 8 H C 9 1 6 Y 1
B l o c k D i a g r a m for port organization

P i n C h a r a c t e r i s t i c s

P i n
M n e m o n i c

O u t p u t
D r i v e r

I n p u t
S y n c h r o n i z e d

I n p u t
H y s t e r e s i s

D i s c r e t e
I / O

P o r t
D e s i g n a t i o n

ADDR23/CS10/ECLK A Y N — —

ADDR[22:19]/CS[9:6] A Y N 0 C[6:3]

ADDR[18:11] A Y Y I/O A[7:0]
ADDR[10:3] A Y Y I/O B[7:0]
ADDR[2:0] A Y N — —

AN[7:0]1 — Y Y I ADA[7:0]

AS B Y Y I/O E5

AVEC B Y N I/O E2

BERR B Y N — —

BG B — — — —

BGACK/CSE B Y N — —

BKPT/DSCLK — Y Y —

BR/CSO B Y N — —

CLKOUT A — — - - —

CSBOOT B — — — —

DATA[15.8]1 Aw Y Y I/O G[7:01
DATA[7:0]1 Aw Y Y I/O H[7:0]

DS B Y Y I/O E4

DSACK1 B Y N I/O E1

DSACKO B Y N I/O EO

DSI/IPIPE1 A Y Y — —

DSO/IPIPEO A — — - — —

EXTAL2
— — — — __

FC2/CS5 A Y N O CO

FC1 A Y N O C1

FC0/CS3 A Y H 0 02

FREEZE/OUOT A — — — —

HALT Bo Y N — ~

IC4/OC5 A Y Y I/O GP7
IC[3:1] A Y Y I/O GP[2:0]

(RQ[7:1] B Y Y I/O F(7:1]

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

MOTOROLA
7

P i n C h a r a c t e r i s t i c s (C o n t i n u e d)

P i n
M n e m o n i c

O u t p u t
D r i v e r

I n p u t
S y n c h r o n i z e d

I n p u t
H y s t e r e s i s

D i s c r e t e
I / O

P o r t
D e s i g n a t i o n

MISO Bo Y Y I/O MCO
MODCLK i B Y Y I/O FO

MOSI Bo Y Y I/O MC1
OC[4:1] A Y Y I/O GP[6:3]

PAI3 — Y Y I —

PCLK3
— Y Y I —

PE3 B Y Y I/O E3
PWMA, PWMB4 A Y Y o

R/W A Y N — —

RESET Bo Y Y —

RXDA Bo Y Y I/O MC6
RXDB Bo Y Y I/O MC4
SCK Bo Y* Y I/O MC2

SIZ[1:0] B Y N I/O E[7:6]

SS Bo Y Y I/O MC3

TSC __ Y Y — —

TPUCH[15:0] A Y Y — —

T2CLK — Y Y — —

TXDA Bo Y Y I/O MC7
TXDB Bo Y Y I/O MC5

VRH5 — — — — —

VRL5 — — — — —

XFC2
— — — — —

XTAL2
— — — — —

NOTES
1. DATA[15:0] are synchronized during reset only. MODCLK, MCCI and ADC pins are synchronized only

when used as input port pins.
2. EXTAL, XFC, and XTAL are clock reference connections.
3. PAI and PCLK can be used for discrete input, but are not part of an I/O port.
4. PWMA and PWMB can be used for discrete output, but are not pari of an I/O port.
5. Vrh a nd VRL a r e ADC reference voltage inputs.

MOTOROLA
8

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

D r i v e r T y p e s

T y p e I / O D e s c r i p t i o n
A o Output-only signals that are always driven. No external pull-up required.

Aw o Type A output with weak P-channel pull-up during reset.
Bl o Three-state output that includes circuitry to pull up output before high impedance is

established, to insure rapid rise time. An external holding resistor is required to
maintain logic level while in the high-impedance state.

Bo o Type B output that can be operated in an open-drain mode.
NOTES

1. Pins with this type of driver can only go into high-impedance state under certain conditions. The TSC
signal can put all pins with this type of driver in high-impedance state.

P o w e r C o n n e c t i o n s

VDDA^SSA A/D Converter Power

VDDSYN Clock Synthesizer Power

VSSE^DDE External Peripheral Power (Source and Drain)
VSTBY Standby RAM Power/Clock Synthesizer Power

Vpp EEPROM Array Program/Erase Power

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

MOTOROLA
9

1 . 2 S i g n a l D e s c r i p t i o n

The following tables indicate MCU signal type and function.

S i g n a l C h a r a c t e r i s t i c s

S i g n a l
N a m e

M C U
M o d u l o

S i g n a l
T y p o

A c t i v e
S t a t e

ADA[7:0] ADC Input —

ADDR[23:0] SCIM Bus —

AS SCIM Output 0

AVEC SCIM Input 0

BERR SCIM Input 0

BG SCIM Output 0

BGACK SCIM Input 0

BKPT CPU 16 Input 0

BR SCIM Input 0
CLKOUT SCIM Output —

CS[10:5], CS3, CSO SCIM Output 0

CSBOOT SCIM Output 0

CSE SCIM Output 0

DATA[15:0] SCIM Bus —

DS SCIM Output 0

DSACK[1 ;0] SCIM Input 0

DSCLK CPU16 Input Serial Clock
DSI CPU 16 Input (Serial Data)
DSO CPU16 Output (Serial Data)
ECLK CPU 16 Output —

EXTAL SCIM Input —

FC[2:0] SCIM Output —

FREEZE SCIM Output 1

HALT SCIM Input/Output 0

IC[4:1] GPT Input —

IPIPEO CPU16 Output —

IPIPE1 CPU 16 Output —

IRQ[7:1] SCIM Input 0

MISO MCCf Input/Output —

MODCLK SCIM Input —

MOSI MCCI Input/Output —

OC[5:1] GPT Output —

PAI GPT Input —

MOTOROLA
10

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

S i g n a l C h a r a c t e r i s t i c s (C o n t i n u e d)

S i g n a l M C U S i g n a l A c t i v e
N a m e M o d u l e T y p e S t a t e
PCLK GPT Input —

PWMA, PWMB GPT Output —

QUOT SCIM Output —

R/W SCIM Output —

RESET SCIM Input/Output 0
RXDA MCCI Input —

RXDB MCCI Input —

SCK MCCI Input/Output —

SIZ0/SIZ1 SCIM Output —

SS MCCI Input 0

TSC SCIM Input 1
TPUCH[15:0] TPU Input/Output —

T2CLK TPU Input —

TXDA MCCI Output —

TXDB MCCI Output —

XFC SCIM Input —

XTAL SCIM Output —

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

MOTOROLA
11

S i g n a l F u n c t i o n

S i g n a l N a m e M n e m o n i c F u n c t i o n
ADC Analog Input ADA[7:0] Inputs to ADC MUX
Address Bus ADDR[19:0} 20-bit address bus used by CPU16
Address Bus ADDR[23:20] 4 MSB on 1MB, outputs follow ADDR19
Address Strobe AS Indicates that a valid address is on the address bus

Autovector AVEC Requests an automatic vector during interrupt acknowledge

Bus Grant BG Indicates that the MCU has relinquished the bus

Bus Grant
Acknowledge

BGACK Indicates that an external device has assumed bus mastership

Bus Error BERR Indicates that a bus error has occurred

Breakpoint BKPT Signals a hardware breakpoint to the CPU

Bus Request BR Indicates that an external device requires bus mastership

System Clockout CLKOUT System clock output
Emulation Mode
Chip Select

CSE CSE selects external emulation devices at internally-mapped
addresses and is used to emulate I/O ports.

General-Purpose
Chip Selects

CS[10:5],
CS3, CSO

Select external devices at programmed addresses

Boot Chip Select CSBOOT Chip select for external boot startup ROM

Data Bus DATA[15.0] 16-bit data bus

Data Strobe DS During a read cycle, indicates when it is possible for an external
device to place data on the data bus. During a write cycle,
indicates that valid data is on the data bus.

Data and Size
Acknowledge

DSACK[1;0] Asserted by external devices during asynchronous transfers to
indicate receipt of data and width of receiving port.

Development Serial In,
Out, Clock

DSI, DSO,
DSCLK

Serial I/O and clock for background debug mode

External Clock ECLK M6800 bus clock output.

Crystal Oscillator EXTAL, XTAL Connections for clock synthesizer circuit reference;
a crystal or an external oscillator can be used

Function Codes FC[2:0] Identify processor state and current address space
Freeze FREEZE Indicates that the CPU has entered background mode
Halt HALT Suspend external bus activity

Instruction Pipeline IPIPEO
IPIPE1

Indicate instruction pipeline activity

Interrupt Request IRQ[7:1] Request interrupt service from CPU 16
Master In Slave Out MISO Serial input to SPI in master mode;

serial output from SPI in slave mode

Clock Mode Select MODCLK Selects the source and type of system clock

Master Out Slave In MOSI Serial output from SPI in master mode;
serial input to SPI in slave mode

MOTOROLA
12

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

S i g n a l F u n c t i o n (C o n t i n u e d)

S i g n a l N a m e M n e m o n i c F u n c t i o n

Port A PA[0:7] SCIM digital I/O port signals
Port ADA PADA[7:0] ADC digital input port signals

Port B PB[0:7] SCIM digital I/O port signals
Port C PC[6:0] SCIM digital output port signals

Port E PE[7:0] SCIM digital I/O port signals

Port F PF[7:0] SCIM digital I/O port signals

Port G PG[7:0] SCIM digital I/O port signals
Port GP PGP[7:0] GPT digital I/O port signals

PortH PH[7:0] SCIM digital I/O port signals
Port MC PMC[7:0] MCCI digital I/O port signals

Quotient Out QUOT Provides the quotient bit of the polynomial divider

Read/Write R/W Indicates the direction of data transfer on the bus

Reset RESET System reset

SCI A Receive Data RXDA Serial input to SCI A

SCI B Receive Data RXDB Serial input to SCI B

SPI Serial Clock SCK Clock output from SPI in master mode;
clock input to SPI in slave mode

Size SIZ[1:0] Indicate the size of an external bus transfer

Slave Select SS Selects SPI slave devices; assertion while a device is in master
mode causes mode fault

Three-State Control TSC Places all output drivers in a high-impedance state

TPU Channels TPU CH[15:0] Independently programmable timer channels

TPU Clock T2CLK External TPU clock input

SCI A Transmit Data TXDA Serial output from SCI A

SCI B Transmit Data TXDB Serial output from SCI B
External Filter

| Capacitor
XFC Connection for external phase-locked loop filter capacitor

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
13

1 . 3 A d d r e s s M a p

The following figure illustrates the internal address map of the MCU. Although there are 24
intermodule bus (1MB) address lines, the CPU 16 uses only ADDR[19:0]. ADDR[23:20] are driven
to the same logic state as ADDR19. Addresses $080000 to $F7FFFF are not accessible. The
RAM array is positioned by the base address register in the RAM CTRL block. Reset disables the
RAM array. Unimplemented blocks are mapped externally.

JYFF700
JYFF73F

$YFF820
$YFF83F

JYFF900
JYFF93F

JYFFAQQ

$YFFA7F

SYFFB00
$YFFB3F

$YFFC00
SYFFC3F

JYFFD00
JYFFD3F

$YFFEOO

JYFFFFF

ADC
64 BYTES

i FLASH EEPROM CTRL' : xmtt
GPT

.64 BYTES

SCIM
; : 128 BYTES •

•V STBRAM CTRL ;:''
64 BYTES

: MCCt .••':.
V:P;-64 BYTES x i ^ V f ^

TPURAM CTRL : ; ;

' 84 BYTES

TPU 'I'
512 BYTES : iv. f ;

2K STBRAM ARRAY
(MAPPED TO 2K BOUNDARY)

2K TPURAM ARRAY
.?: (MAPPED TO 2K BOUNDARY)

4&K FLASH EEPROM ARRAY
(MAPPED TO ANY 64K BOUNDARY)

AN ACOAESS MAP

S y s t e m A d d r e s s M a p

In the address map, V = M111, where M represents the state of the MODMAP (MM) bit in the
single-chip integration module configuration register (SCIMCR). In M68HC16 devices, Y must
equal $F. If MM is cleared, 1MB modules are inaccessible until a reset occurs. MM can be written
only once after reset.

1 .4 I n t e r m o d u l e B u s

The intermodule bus (1MB) is a standardized bus developed to facilitate design of modular
microcontrollers. It contains circuitry that supports exception processing, address space
partitioning, multiple interrupt levels, and vectored interrupts. The standardized modules in the
MCU communicate with one another and with external components via the 1MB. Although the full
1MB supports 24 address and 16 data lines, the MCU uses only 16 data lines and 20 address lines.
Because the CPU16 uses only 20 address lines, ADDR[23:20] are driven to the same logic state
as ADDR19. ADDR[23:20] are brought out to pins for test purposes.

M O T O R O L A
14

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

1.5 U s i n g t h e M C 6 8 H C 9 1 6 Y 1 t o E m u l a t e t h e M C 6 8 H C 1 6 Y 1
The MC68HC916Y1 is designed to provide MC68HC16Y1 emulation capabilities. All common
functions in the two devices operate identically. However, there are ditferences that must be
taken into account.

1 .5 .1 F l a s h E E P R O M a n d M a s k e d R O M
The control registers of the flash EEPROM module in the MC68HC916Y1 occupy the same
addresses as the control registers of the MC68HC16Y1 masked ROM module, and the FLASH
provides boot ROM capability. However, care must be taken to correctly program the FLASH
shadow registers to the same values as the emulated masked ROM registers.

In the MC68HC16Y1, external ROM emulation is enabled by holding DATA10 and DATA13 low
during reset (DATA14 must be held high during reset to enable the ROM module). While ROM
emulation mode is enabled, memory chip select signal CSM is asserted whenever a valid access
to an address assigned to the masked ROM array is made. Because the MC68HC916Y1 has no
ROM, the CSM function is not used — the CSM pin is driven high whenever the function is
selected.

The user must supply flash EEPROM programming voltage to the MC68HC916Y1. The VP P

connection is provided on a pin that is not used on the MC68HC16Y1. VPP > (VDD - 0.3 V) must
be applied at all times or damage to the FLASH module can occur.

1 . 5 . 2 S T B R A M a n d T P U R A M
The MC68HC916Y1 has one more 2-Kbyte RAM module than the MC68HC16Y1. The two
2-Kbyte RAM modules in the MC68HC916Y1 are structurally similar, but functionally different.
The TPURAM module has no external standby voltage (VsTBY) connection or power-loss flag
(PDS), but supports the use of custom TPU microcode. The STBRAM module, on the other
hand, has a VSTBY connection and provides a power-loss flag and automatic switching to standby
power when VDD drops below a specified level, but does not support TPU microcode emulation.

MC68HC916Y1 TPURAM control registers are located at addresses $YFFD00-YFFD3F, while
STBRAM module control registers are located from $YFFB00-YFFB3F. MC68HC916Y1
STBRAM control registers occupy the same addresses as MC68HC16Y1 TPURAM control
registers. MC68HC916Y1 TPURAM control register addresses are in different locations from the
MC68HC16Y1 TPURAM control registers.

The TPURAM array can be mapped to form a contiguous extension of the STBRAM array. While it
is possible to map STBRAM over TPURAM while TPURAM is used for microcode emulation, this is
not recommended, as this effectively makes a wired-AND connection between the module data
bus lines, and can affect accesses to STBRAM.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
15

2 C P U 1 6
The CPU 16 is a true 16-bit high-speed device. It was designed to give M68HC11 users a way of
gaining higher performance while maintaining maximum compatibility with existing systems.

2 .1 O v e r v i e w

Ease of programming is an important consideration in using a microcontroller. The CPU16
instruction set is optimized for high performance. There are two 16-bit general-purpose
accumulators and three 16-bit index registers. The CPU16 supports 8-bit (byte), 16-bit (word),
and 32-bit (long-word) load and store operations, as well as 16- and 32-bit signed fractional
operations. Program diagnosis is simplified by the use of the available background debugging
mode.

CPU16 memory space includes a 1-Mbyte data space and a 1-Mbyte program space. Twenty-bit
addressing and transparent bank switching are used to implement extended memory. In addition,
most instructions automatically handle bank boundaries.

The CPU16 includes instructions and hardware for implementing control-oriented digital signal
processing functions with minimum interfacing. A multiply and accumulate (MAC) unit provides
the capability to multiply signed 16-bit fractional numbers and store the resulting 32-bit fixed point
product in a 36-bit accumulator. Modulo addressing supports finite impulse response fitters.

The CPU 16 instruction set supports high-level languages, the use of which is increasing as
controller applications become more complex and control programs become larger. These high-
level languages aid the rapid and reduced-error development of readily portable software.

2 . 2 M 6 8 H C 1 1 C o m p a t i b i l i t y

CPU16 architecture is a superset of M68HC11 architecture. All M68HC11 resources are available
in the CPU16. M68HC11 instructions are either directly implemented in the CPU16, or have been
replaced by instructions with an equivalent form. The instruction sets are source code
compatible. Some instructions are executed differently in the CPU16. These instructions are
mainly related to interrupt and exception processing — M68HC11 code that processes interrupts,
handles stack frames, or manipulates the condition code register must be rewritten.

Execution times and number of cycles for all instructions are different, so that cycle-related delays
and timed control routines may be affected.

The CPU16 also has several new or enhanced addressing modes. M68HC11 direct mode
addressing has been replaced by a special form of indexed addressing that uses the new IZ
register and a reset vector to provide greater flexibility.

M O T O R O L A
16

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

2 . 3 P r o g r a m m e r ' s M o d e l

20 16 15 8 7 0

A B

D

CCR PK

XK IX

YK IY

ZK IZ

(SK SP

PK PC

EK XK YK ZK

SK

ACCUMULATORS A AND B

ACCUMULATOR D (A : B)

ACCUMULATOR E

INDEX REGISTER X

INDEX REGISTER Y

INDEX REGISTER Z

STACK POINTER

PROGRAM COUNTER

CONDITION CODE REGISTER

ADDRESS EXTENSION <K) REGISTER

STACK EXTENSION REGISTER

HR MAC MULTIPLIER REGISTER

35
IR

16

AM (MSB)

AM (LSB)

XMSK YMSK

MAC MULTIPLICAND REGISTER

ACCUMULATOR M [35:16]

ACCUMULATOR M [15:0]

MAC XY MASK REGISTER

Accumulator A — 8-bit general-purpose register
Accumulator B — 8-bit general-purpose register
Accumulator D — 16-bit register formed by concatenating accumulators A and B
Accumulator E — 16-bit general-purpose register
Accumulator M — 36-bit MAC result register
Index Register X — 16-bit indexing register, addressing extended by XK field in K register
Index Register Y — 16-bit indexing register, addressing extended by YK field in K register
Index Register Z — 16-bit indexing register, addressing extended by ZK field in K register
Stack Pointer — 16-bit dedicated register, addressing extended by the SK register
Program Counter — 18-bit dedicated register, addressing extended by PK field in CCR
Condition Code Register — 16-bit register containing condition flags, interrupt priority mask, and

the program counter address extension field
K Register — 16-bit register made up of four 4-bit address extension fields
SK Register — 4-bit register containing the stack pointer address extension field
H Register — 16-bit multiply and accumulate input (multiplier) register
I Register— 16-bit multiply and accumulate input (multiplicand) register
XMSK, YMSK — Determine which bits change when an offset is added

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
17

2 . 4
15

C o n d i t i o n
14 13

C o d e
12

R e g i s t e r
11 10 9 8 7 5 4 3 0

S | m | H EV N 1 z V [C INT SM FK

The condition code register (CCR) can be considered as two functional blocks. The most
significant bit (MSB), which corresponds to the CCR in the M68HC11, contains the low-power
stop control bit and processor status tlags. The least significant bit (LSB) contains the interrupt
priority field, the digital signal processing (DSP) saturation mode control bit, and the program
counter address extension field.

S — STOP Enable
0 = Stop clock when LPSTOP instruction is executed.
1 = Perform NOP when LPSTOP instruction is executed.

MV — Accumulator M overflow flag
Set when overflow into the accumulator M sign bit (AM35) has occurred.

H — Half Carry Flag
Set when a carry from bit 3 in accumulators A or B occurs during BCD addition.

EV — Extension Bit Overflow Flag
Set when an overflow into bit 31 of accumulator M has occurred.

N — Negative Flag
Set when the MSB of a result register is set.

Z — Zero Flag
Set when all bits of a result register are zero.

V — Overflow Flag
Set when two's complement overflow occurs as the result of an operation.

C — Carry Rag
Set when a carry or borrow occurs during arithmetic operation. Also used during shift and rotate
operations to facilitate multiple word operations.

INT[2:0] — Interrupt Priority Mask
The value of this field ($0 to $7) specifies the CPU 16 interrupt priority level.

SM — Saturate Mode Bit
When SM is set, if either EV or MV is set, data read from accumulator M using TMRT or TMET will be
given maximum positive or negative value, depending on the state of the AM sign bit before overflow.

PK[3:0] — Program Counter Address Extension Field
This field is concatenated with the program counter to form a 20-bit pseudolinear address.

M O T O R O L A
18

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

2 . 5 D a t a T y p e s
The CPU16 supports the following data types:

Bit data
8-bit (byte) and 16-bit (word) integers
32-bit long integers
16-bit and 32-bit signed fractions (MAC operations only)
20-bit effective address consisting of 16-bit page address plus 4-bit extension

A byte is 8 bits wide and can be accessed at any byte location. A word is composed of two
consecutive bytes and is addressed at the lower byte. Instruction fetches are always accessed on
word boundaries. Word operands are normally accessed on word boundaries as well, but can be
accessed on odd byte boundaries, with a substantial performance penalty.

To be compatible with the M68HC11, misaligned word transfers and misaligned stack accesses
are allowed. Transferring a misaligned word requires two successive byte operations.

2 . 6 A d d r e s s i n g M o d e s
The CPU16 provides immediate, extended, indexed, inherent, accumulator offset, relative, and
post-modified indexed addressing. Each type encompasses one or more addressing modes. Six
CPU16 addressing types are identical to the M68HC11 addressing types. In addition, certain
CPU16 capabilities can be used to replace or extend M68HC11 direct addressing mode.

All addressing modes generate ADDR[15:0], This address is combined with ADDR[19:16] from
an extension field to form a 20-bit effective address. Extension fields are part of a bank switching
scheme that provides the CPU16 with a 1 Mbyte address space. Bank switching is transparent to
most instructions. ADDR[19:161 of the effective address change when an access crosses a bank
boundary. However, it is important to note that the value of the associated extension field is
dependent on the type of instruction, and usually does not change when an access crosses a
bank boundary.

In Immediate modes, the instruction argument is contained in bytes or words immediately
following the instruction. The effective address is the address of the byte following the
instruction. The AIS, AIX/Y/Z, ADDD and ADDE instructions have an extended 8-bit mode where
the immediate value is an 8-bit signed number that is sign-extended to 16 bits, then added to the
appropriate register, which decreases execution time.

Extended mode instructions contain ADDR[15:0] in the word following the opcode. The effective
address is formed by concatenating EK and the 16-bit extension.

In indexed modes, registers IX, IY, and IZ, together with their associated extension fields, are used
to calculate the effective address. Signed 16-bit mode and signed 20-bit mode are extensions to
the M68HC11 indexed addressing mode.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
19

For 8-bit indexed mode, an 8-bit unsigned offset contained in the instruction is added to the
vaiue contained in the index register and its associated extension field.

For 16-bit mode, a 16-bit signed offset contained in the instruction is added to the value
contained in the index register and its associated extension field.

For 20-bit mode, a 20-bit signed offset is added to the value contained in the index register.
This mode is used for JMP and JSR instructions.

Inherent mode instructions use information available to the processor to determine the effective
address. Operands, if any, are system resources and therefore are not fetched from memory.

Accumulator offset mode adds the contents of 16-bit accumulator E to one of the index registers
and its associated extension field to form the effective address. This mode allows the use of
index registers and an accumulator within loops without corrupting accumulator D.

Relative modes are used for branch and long branch instructions. A byte or word signed two's
complement offset is added to the program counter if the branch condition is satisfied. The new
PC value, concatenated with the PK field, is the effective address.

Post-modified index mode is used with the MOVB and MOVW instructions. A signed 8-bit offset
is added to index register X after the effective address formed by XK and IX is used.

In M68HC11 systems, direct mode can be used to perform rapid accesses to RAM or I/O mapped
into page 0 ($0000 to $00FF), but the CPU16 uses the first 512 bytes of page 0 for exception
vectors. To compensate for the loss of direct mode, the ZK field and index register Z have been
assigned reset initialization vectors. By resetting the ZK field to a chosen page and using 8-bit
unsigned index mode with IZ, a programmer can access useful data structures anywhere in the
address map.

2 . 7 I n s t r u c t i o n Set

The CPU 16 has an 8-bit instruction set. It uses a prebyte to support a multipage opcode map.
This arrangement makes it possible to fetch an 8-bit operand simultaneously with a page 0
opcode. If a program makes maximum use of 8-bit offset indexed addressing mode, it has a
significantly smaller instruction space.

The instruction set is based upon that of the M68HC11, but the opcode map has been
rearranged to maximize performance with a 16-bit data bus. All M68HC11 instructions are
supported by the CPU16, although they may be executed differently. Most M68HC11 code runs
on the CPU16 following reassembly. The user must take into account changed instruction times,
a different arbitration scheme, and a new interrupt stack frame.

The CPU16 has a full range of 16-bit arithmetic and logic instructions, including signed and
unsigned multiplication and division. New instructions have been added to support extended
addressing and digital signal processing.

The following table is a summary of the CPU16 instruction set. Because it is only affected by a few
instructions, the LSB of the condition code register is not shown in the table. Instructions that
affect the interrupt mask and PK field are noted.

M O T O R O L A
20

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n S e t S u m m a r y
Mnemonic Operation Description Address

Mod*
Instruction Condition Codas Mnemonic Operation Description Address

Mod* Opcode Operand Cycles S |MV| H]EV N | Z | V j C
ABA Add B 10 A (A) + (B) A IMH 370B — 2 — — A — A A A A
ABX Add B to X (XK : IX) + (000 : B) => XK :

IX
INH 374F — 2 — — — —

ABY Add B lo Y (YK : IY) + (000 : B) => YK '
IY

1NH 375F — 2

ABZ Add B to Z (ZK : IZ) + (000 : B) =» ZK :
IZ

INH 376F — 2

2 ACE Add E to AM[31:15J (AM(31:15|) + (E) => AM INH 3722 —

2

2 — A — A — — — - -

ACED Add concatenated
E and D to AM

(E ; D) + (AM) => AM INH 3723 — 4 — A — A — — — —

ADCA Add with Carry to A (A) + (M) • C A IN08, X
IN08. Y
IND8, Z
IMM8

IND16. X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

43
53
63
73

1743
1753
1763
1773
2743
2753
2763

tf
ft
ft

gggg gggg

M

6
6
6
2
6
6
6
6
6
6
6

A A A A

ADCB Add with Carry to B (B) + (M) + C B IND0, X
IND8, Y
IND8, Z
IMM8
E, X
E, Y
E, Z

IND16, X
IND16, Y
IND16, Z

EXT

C3
D3
E3
F3

27C3
27 D3
27E3
17C3
17D3
17E3
17F3

ft ff
« ii

gggg gggg

API

6
6
6
2
6
6
6
6
6
6
6

A A A A

ADCD Add with Carry to D (D) + (M : M + 1) + C =s D IND8, X
IND8, Y
IND8, Z

E. X
E, Y
E, Z

iMMie
IND16, X
IND16, Y
IND16, Z

EXT

83
93
A3

2783
2793
27A3
37»3
37C3
37D3
37E3
37F3

ft
ft
tt

ii kk gggg
gggg gggg
hh II

6
6
6
6
6
6
4
6
6
6
6

A A A A

ADCE Add with Carry to E (E) + (M : M + 1) + C => E IMM16
IND16, X
IND16, Y
IND16.Z

EXT

3733
3743
3753
3763
3773

jj kk gggg
gggg

f H

4
6
6
6
6

A A A A

ADDA Add to A (A) + (M) => A INDfl, X
IND8. Y
IND8, Z
IMM8
E, X
E, Y
E. Z

IND16, X
IND16, Y
IND16.Z

EXT

41
51
61
71

2741
2751
2761
1741
1751
1761
1771

ff
ff
ff
i i

gggg gggg

SPI

6
6
6
2
6
6
6
6
6
6
6

-— — A — A A A A

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
21

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
Mnemonic Operation Description Address

Mode
Instruction Condition Codes Mnemonic Operation Description Address

Mode Opcode Operand Cycles S] MV] H (EV N | Z j V | C
ADDB Add 10 B (B) + (M) =JB 1ND8, X

IND8, Y
IND8. Z
IMM8
E, X
E, Y
E.Z

IND16. X
IND16, Y
IND16. Z

EXT

C i
D1
E l
F1

27C1
27D1
27E1
17C1
17D1
17E1
17F1

ff
ft
fl
ii

9999
9999

m

6
6
6
2
6
6
6
6
6
6
6

— — A — A A A A

A ODD Add to D (D) + (M . M + 1) => D IND8. X
IND8, Y
IND8. Z
IMM8
E. X
E, Y
E, Z

IMM16
IND16, X
IND16, Y
IND16.Z

EXT

81
91
A1
FC

2781
2791
27A1
37B1
37C1
3701
37E1
37F1

tt
it
H
ii

jjiTk
9999
9999

M

6
6
6
2
6
6
6
4
6
6
6
6

A A A A

ADDE Add to E (E) + (M : M + 1) => E IMM8
IMM16

IND16. X
IND16, Y
IND16.Z

EXT

7C
3731
3741
3751
3761
3771

I I

lj Kk
9999
flggg

HP*

2
4
6
6
6
6

A A A A

ADE Add D to E (E) + (D) =» E INH 2778 — 2 _ — __ A A A A
ADX Add D to X (XK : IX) + («D) => XK : IX INH 37CD - 2
ADY Add 0 to Y (YK : IY) • (-D) => YK : IY INH 37DD — 2
ADZ Add D to Z (ZK : 1Z) + («D) ZK : IZ INH 37ED — 2
AEX Add E to X (XK : IX) + («E) => XK : IX INH 374 D — 2
AEY Add E to Y (YK : IY) + (-E) => YK : IY INH 375D — 2
AEZ Add E to Z (ZK : IZ) + (»E) =» ZK : IZ INH 376 D — 2
AIS Add Immediate Data

to SP
SK : SP • - IMM SK :

SP
IMM8

IMM16
3F

373F
it

ii
2
4

AIX Add Immediate
Value to X

XK : IX + «IMM =» XK : IX IMM8
IMM16

3C
373C

ii
jj kk

2
4

— — — — — A — —

AIY Add Immediate
Value to Y

YK : IY + «IMM => YK ; IY IMM8
IMW16

3D
373D

it
jj kk

2
4

- — — — A — —

AIZ Add Immediate
Value to Z

ZK . IZ + «IMM => ZK : IZ IMM8
IMM16

3E
373E

ii
ii kk

2
4

— — — — — A — —

ANDA ANDA (A) • (M) =» A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16.Z

EXT
E. X
E, Y
E, Z

46
56
66
76

1746
1756
1766
1776
2746
2756
2766

ff
ff
tf
ii

gggg
gggg
ffif

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

ANDB ANDB (B) • (M) => B IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16.Z

EXT
E, X
E, Y
E.Z

C6
D6
E6
F6

17C6
17D6
17E6
17F6
27C6
27D6
27E6

ff
tf
tf
ii

gggg gggg

W !

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

M O T O R O L A
22

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
Mnemonic Operation Description Address

Mode
Instruction Condition Codes Mnemonic Operation Description Address

Mode Opcode Operand Cycle* S | MV| H | EV N | I [V | C
ANOD AND D (D) • (M . M + 1) =» D IND9, X

IND8, Y
IND8, Z

E. X
E. Y
E, Z

IMM16
IND16, X
IND16. Y
IND16.Z

EXT

86
96
A6

2786
2796
27A6
37B6
37C6
37D6
37E6
37F6

ff
ff
ff

IJ kk
gggg gggg

? H

6
6
6
6
6
6
4
6
6
6
6

A A Q —

ANDE AND E (E) " {M :M«-1)=» e IMM16
IND16, X
IND16, Y
IND16. Z

EXT

3736
3746
3756
3766
3776

ij kk gggg

gggg

M

4
6
6
6
6

A A 0 —

ANDP1 AND CCR (CCR)'IMM16=> CCR IMM16 373A jj kk 4 A A A A A A A A

ASL Arithmetic Shift Left
IEH I I I I I I I k-o

V bO

IND8. X
IND8. Y
IND8, Z
IND16. X
IND16. Y
IND16, Z

EXT

04
14
24

1704
1714
1724
1734

ff
ff
ff

9999
gggs

ffl

8
8
8
8
8
a
8

A A A A

ASLA Arithmetic Shift Left
A IcW I I I I I I I k-o

W ho

INH 3704 2 A A A A

ASLB Arithmetic Shift Left
B IcW I I I I I I I k-o

W bo

INH 3714 2 A A A A

ASLD Arithmetic Shift Left
D f c T H T T - - - " T O "

bis bo

INH 27F4 2 A A A A

ASLE Arithmetic Shift Left
E FcTH 1 1 - - - 1 1 > o

bis bO

INH 2774 2 A A A A

ASLM Arithmetic Shift Left
AM I c H T T - - - T T > o

INH 27B6 4 — A — A A — — A

ASLW Arithmetic Shift Left
Word f c T H T T - - - T T V o

bIS bO

IND16, X
IND16, Y
IND16, Z

EXT

2704
2714
2724
2734

gggg
5399

fflU

8
8
8
8

A A A A

ASR Arithmetic Shift Right
1 1 1 1 I I H c l

V to

IND8, X
IND8, Y
IND8, Z
IND16, X
IND16, Y
IND16.Z

EXT

OD
1D
20

170D
171D
172D
173D

ff
ff
ff

gggg gggg

m

8
8
8
8
8
B
8

A A A A

ASRA Arithmetic Shift Righl
A 5 1 ! 1 1 1 1 1 1 Mfcl

INH 370D 2 A A A A

ASRB Arithmetic Shift Righl
B GPl 1 1 1 1 M Wc l

INH 371D 2 A A A A

ASRD Arithmetic Shift Righl
D 5 V r - - - T T M C I

tail »

INH 27FD 2 A A A A

ASRE Arithmetic Shift Righl
Q V r - - - ~ r f h f c i

bis bo

INH 2770 2 A A A A

ASRM Arithmetic Shift Righl
AM

INH 27BA 4 — — — A A — — - A

ASRW Arithmetic Shift Righl
Word ^ P r r - - - T T h f c i

bis to

IND16. X
IND16, Y
IND16.Z

EXT

270D
271D
272D
2730

gggg gggg

B f *

8
8
8
8

A A A A

BCC4 Branch if Carry Clear If C = 0, branch REL8 B4 rr 6, 2

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
23

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
Mnemonic Operation Description Address

Mode
Instruction Condition Cod«s Mnemonic Operation Description Address

Mode Opcode Operand Cycles S | MVj H | EV N | Z | V | C
BCLR Clear Bit(s) (M) • f M i i t) M IND16, X

IND16, Y
1ND16.Z

EXT
IND8, X
IND8, Y
IND8, Z

08
18
28
38

1708
1718
1728

mm gggg
mm gggg
mm gggg
mm hh II

mm ft
mm ff
mm ff

8
8
8
8
8
8
8

A A 0 —

BCLRW Clear Bil(s) Word (M : M + 1) • (MasR) =»
M : M • 1

IND16, X

IND16, Y

IND16, Z

EXT

2708

2718

2728

2738

gggg
mmmm

gggg
mmmm

gggg
mmmm

hh II
mmmm

10

10

10

10

A A 0 —

BOS4 Branch if Carry Set If C = 1, branch REL8 B5 rr 6. 2

BEQ4 Branch if Equal If Z = 1. branch REL8 B7 rr 6, 2

BGE4 Branch tf Greater
Than or Equal to Zerq

tf N © V - 0, branch REL8 BC rr 6. 2

BGND Enter Background
Debug Mode

If BDM enabled
enter BDM;

else, illegal instruction

INH 37A6 ^̂

BGT 4 Branch if Greater
Than Zero

If Z + (N © V) = 0, branch REL8 BE rr 6 . 2

B H I 4 Branch if Higher If c + Z = 0, branch REL8 B2 rr 6, 2
BITA Bit Test A (A) • <M) IND8, X

IND8, Y
IND8, Z
IMM8

IND16, X
IND16. Y
IND16, Z

EXT
E. X
E, Y
E, Z

49
59
69
79

1749
1759
1769
1779
2749
2759
2769

fl
ff
tf
ii

gggg gggg

m

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

BITB Bit Test B (B) • (M) IND8, X
IND8, Y
IND8, Z
IMMfl

IND16. X
IND16, Y
IND16.Z

EXT
E. X
E, Y
E, Z

C9
D9
E9
F9

17C9
17D9
17E9
17F9
27C9
27D9
27E9

ft
ff
ft
ii

gggg gggg

m

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

BLE 4 Branch if Less Than
or Equal to Zero

If Z + (N © V) = 1, branch REL8 BF ir 6 . 2

BLS4 Branch if Lower or
Same

If C + Z = 1, branch REUS B3 rr 6, 2

BLT4 Branch if Less Than
Zero

If N « V = 1. branch HEL8 BD rr 6 . 2

BMI 4 Branch if Minus If N = 1, branch REL8 BB fT 6, 2

BNE 4 Branch if Not Equal If Z = 0 , branch REL8 B6 rr 6 , 2

BPL4 Branch if Plus II N s 0, branch REL8 BA rr 6 , 2
BRA Branch Always If 1 » 1, branch REL8 B0 rr 6

BRCLR4 Branch if Bit(s) Clear If (M) • (Mask) = 0, branch IND8, X
IND8, Y
1ND8, Z
IND16, X

IND16, Y

IND16.Z

EXT

CB
DB
EB
OA

1A

2A

3A

mm ff rr
mm ff rr
mm ff rr

mm gggg
rrrr

mm gggg
rrrr

mm gggg
mr

mm hh II
mr

10, 12
10. 12
10. 12
10, 14

10, 14

10, 14

10, 14

BRN Branch Never If 1 = 0, branch REL8 B1 rr 2

M O T O R O L A
2 4

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c Opera t ion Descr ip t ion A d d r e * *

M o d *
Instruct ion Cond i t ion C o d e s M n e m o n i c Opera t ion Descr ip t ion A d d r e * *

M o d * O p c o d e O p e r a n d C y c ! « s S J MVj H | E V N | Z | V | C
BRSET4 Branch if Bil(s) Set If (W) • (Mask) - 0, branch IND8, X

IND8, Y
IND8. Z
IND16, X

IND16, Y

IND16.Z

EXT

8B
9B
AB
OB

i B

2B

3B

mm ff rr
mm ff rr
mm ff rr

mm gggg
mr

m r n 999g
nnrr

mm 9999
mr

mm hh II
mr

10. 12
10, 12
10. 12
10, 14

10. 14

10, 14

10, 14

BSET Set Bit(s) (M) • (Mask) => M IND16, X
IND16. Y
IND16.Z

EXT
IND8. X
IND8, Y
IND8, Z

09
19
29
39

1709
1719
1729

mm gggg
mm gggg
mm ggga
mm nh II

mm ff
mm ff
mm ff

8
8
8
8
8
8
8

A A 0 —

BSETW Set Bit(s) in Word (M : M + 1) • (Mask)
=» M : M + 1

IND16, X

IND16. Y

IND16.Z

EXT

2709

2719

2729

2739

gggg mmmm

gggg
mmmm

9999
mmmm

hh II
mmmm

10

10

10

10

A A 0 —

BSR Branch to Subroutine (PK : PC) - 2 =» PK : PC
Push (PC)

(SK : SP) - 2 => SK : SP
Push (CCR)

(SK : SP) - 2 SK : SP
(PK:PC) + Offset => PK:PC

REL8 36 rr 10

BVC4 Branch if Overflow
Clear

If V = 0, branch REL8 B8 rr 6 .2

BVS4 Branch if Overflow
Set

If V = 1. branch REL8 B9 (T 6, 2

CBA Compare A to B (A) - (B) INH 37 IB — 2 • • - — — — A A A A
CLR Clear Memory $00 => M IND8, X

IND9. Y
IND8, Z
IND16, X
IND16, Y
IND16, Z

EXT

05
15
25

1705
1715
1725
1735

ff
ff
ff

gggg gggg

m

4
4
4
6
6
6
6

0 1 0 0

CLRA Clear A $00 A INH 3705 — 2 _ _ _ — 0 1 0 0
CLRB Clear B $00 => B INH 3715 — 2 _ _ _ _ 0 1 0 0
CLRD Clear 0 $0000 D INH 27F5 — 2 _ _ _ _ 0 1 0 0
CLRE Clear E $0000 =» E INH 2775 2 _ _ — _ 0 1 0 0
CLRM Clear AM $000000000 => AM[32:0] INH 27B7 — 2 _ 0 — 0 — — — —

CLRW Clear Memory Word $0000 => M : M + 1 IND16, X
1ND16, Y
1ND16.Z

EXT

2705
2715
2725
2735

gggg gggg

m

6
6
6
6

0 1 0 0

CMPA Compare A to
Memory

<A)~(M) IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16.Z

EXT
E. X
E. Y
E.Z

48
58
68
78

1748
1758
1768
1778
2748
2758
2768

ft
ff
ft
ii

gggg
gggg
gggg
hh II

6
6
6
2
6
6
6
6
6
6
6

A A A A

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
25

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c Operation Descr ip t ion A d d r e s s

M o d e
Instruct ion Cond i t ion C o d e s M n e m o n i c Operation Descr ip t ion A d d r e s s

M o d e O p c o d e O p e r a n d C y c l e s S j MVj H | EV N | Z | V | C
CMPB Compare 8 to

Memory
(B) - (M) IND8, X

1ND8, Y
IND8, Z
IMM8

IN016, X
IND16. Y
IND16, Z

EXT
E, X
E. Y
E, Z

C8
08
E8
F8

17C8
17D8
17E8
17F8
27 C8
27D8
27E8

ff
ff
ff
ii

9999
gggg

m

6
6
6
2
6
6
6
6
6
6
6

A A A A

COM Ones Complement $FF - (M) =» M IND8, X
IND8, Y
IND8, Z
IND16. X
IND16, Y
IND16, Z

EXT

00
10
20

1700
1710
1720
1730

tf «
tf

gggg gggg

m

8
8
8
8
8
8
8

A A 0 1

COMA Ones Complement A $FF - (A) => A INH 3700 — 2 — — — — A A 0 1
COMB Ones Complement B $FF - (B) => B INH 3710 — 2 — — — — A A 0 1
COMD Ones Complement D $FFFF-{D)=> D INH 27F0 — 2 — _ _ „ A A 0 1
COME Ones Complement E $FFFF - (E) => E INH 2770 — 2 — - A A 0 1
COMW Ones Complement

Word
$FFFF - M : M + i =>

M : M + 1
IND16, X
IND16, Y
IND16.Z

EXT

2700
2710
2720
2730

gggg 9999

m
8
8
8
8

A A 0 1

CPD Compare D to
Memory

(D) - (M : M + 1) IND8, X
IND8, Y
)ND8.Z

E. X
E, Y
E,Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

88
98
A8

2788
2798
27A8
37B8
37C8
37 D8
37E8
37F8

ff
tf
tf

jj * *
gggg
gggg

m

6
6
6
6
6
6
4
6
6
6
6

A A A A

C P E Compare E to
Memory

(E) - (M : M + 1) IMM16
IND16. X
IND16. Y
IND16.Z

EXT

3738
3748
3758
3768
3778

i i k k gggg
gggg

TO

4
6
6
6
6

A A A A

CPS Compare SP to
Memory

(SP) - (M : M + 1) IND8, X
IND8, Y
IND8, Z
IND16, X
IND16, Y
IND16.Z

EXT
IMM18

4F
5F
6F

174F
175F
176F
177F
377F

ff
ff
ff

gggg gggg

m
ii kk

6
6
6
6
8
6
6
4

A A A A

CPX Compare IX to
Memory

(IX) - (M : M +• 1) IND8, X
IND8, Y
IND8, Z
IND16, X
IND16, Y
IND16.Z

EXT
IMM16

4C
5C
6C

174C
175C
176C
177C
377C

n
ff
tf

gggg gggg

ffl
Jj kk

6
6
6
6
6
6
6
4

A A A A

CPV Compare IY to
Memory

(IY) - (M : M + 1) IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16.Z

E X T
IMM16

4D
5D
6D

1740
175D
1760
177D
377 D

ff
tf
ff

gggg gggg

m
jj kk

6
6
6
6
6
6
6
4

A A A A

M O T O R O L A
26

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c Operat ion Descr ip t ion A d d r e s s

M o d *
Instruct ion C o n d i t i o n C o d e s M n e m o n i c Operat ion Descr ip t ion A d d r e s s

M o d * Opcode O p e r a n d Cycles S | MVj H | E V N | Z | V | C
CPZ Compare IZ to

Memory
(IZ) - (M ; M + t) IND8, X

IND8. Y
IND8.Z
IND16, X
IND16, Y
IND16.Z

EXT
IMM16

4E
5E
6E

174E
175E
176E
177E
377E

ff
ff
ff

9 9 9 9
9 9 9 9

ffl
i i ^

6
6
6
6
6
6
6
4

A A A A

DAA Decimal Adjust A (A) 10 INH 3721 — 2 — — — — A A U A

DEC Decrement Memory (M) - $01 => M IND8, X
IND8, Y
IND8, Z

IND16. X
IND16, Y
IND16, Z

EXT

01
11
21

1701
1711
1721
1731

ff
fi
ff

gggg gggg

W l

0
8
8
8
8
8
8

A A A —

DECA Decrement A (A) - $ 0 1 => A INH 3701 — 2 — - — A A A —

DECB Decrement B (B) - $ 0 1 => B INH 371 1 — 2 — — — — A A A —

DECW Decrement Memory
Word

(M : M + 1) -$0001
=> M ; M + 1

IND16, X
1ND16, Y
IND16.Z

EXT

2701
2711
2721
2731

gggg gggg
8
8
8
8

A A A —

ED1V Extended Unsigned
Divide

(E D) / (IX)
Quotient =» IX

Remainder D

INH 3728 24 A A A A

EDIVS Extended Signed
Divide

(E : D) / (IX)
Quotient IX

Remainder ACCD

INH 3729 38 A A A A

EMUL Extended Unsigned
Multiply

(E) • (D) E : D INH 3725 — 10 — — _ — A A — A

EMULS Extended Signed
Multiply

< E) * (D) = > E : D INH 3726 — 6 — — — — A A — A

EORA Exclusive OR A (A) $ (M) => A IND8, X
IND8, Y
IND8.Z
IMM8

IND16. X
IND16. Y
IND16.Z

EXT
E, X
E, Y
E, Z

44
54
64
74

1744
1754
1764
1774
2744
2754
2764

ff
ff
ff
i i

gggg gggg

M

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

EORB Exclusive OR B (B) © (M) =j B 1ND8, X
INDB, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E. Y
E, Z

C 4
D4
E4
F4

17C4
1704
17E4
17F4
27C4
27 D4
27E4

ff
ff
ff
ii

gggg
gggg
gggg
hh II

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

EORD Exclusive OR D (D) ® (M : M + 1) D IND8, X
IND8, Y
INDB, Z

E, X
E, Y
E, Z

IMM16
IND1G, X
IND16, Y
IND16, Z

EXT

84
94
A4

2784
2794
27A4
37B4
37C4
3704
37E4
37F4

ff
ff
tf

m
gggg gggg

m

6
6
6
6
6
6
4
6
6
6
6

A A 0 —

EORE Exclusive OR E (E) ® (M : M + 1) IMM16
IND16, X
IND16, Y
IND16. Z

EXT

3734
3744
3754
3764
3774

i i kk gggg
gggg

m

4
6
6
6
6

A A 0 —

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
27

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c Operat ion Descr ip t ion A d d r e s s

M o d e
Instruct ion Condi t ion C o d e s M n e m o n i c Operat ion Descr ip t ion A d d r e s s

M o d e Opcode O p e r a n d cyc les S | MV| H (E V N [Z | V | C
FDIV Fractional

Unsigned Divide
(D)/(IX) =»IX

Remainder => D
INH 372B - 22 — A A A

FMULS Fractional Signed
Multiply

(E) • (D) =» E : D |3 l : i)
0=» D[OJ

INH 3727 — 8 — — _ A A A A

IDIV Integer Divide (D) / (IX) =» IX;
Remainder => D

INH 372A 22 — A 0 A

INC Increment Memory <M) + =» M IND8, X
INQ8, Y
IND8, Z
IND16. X
IND16, Y
IND16, Z

EXT

03
13
23

1703
1713
1723
1733

ft
ff
fl

0999
gggg

m

8
8
8
8
8
8
a

A A A —

INCA Increment A (A) + $01 => A INH 3703 — 2 — — A A A —
INC8 Increment B (B) + $01 =»B INH 3713 — 2 — — — — A A A —

INCW Increment Memory
Word

(M : M + 1) + $0001
=> M : M + 1

IND16, X
IND16, Y
IND16.Z

EXT

2703
2713
2723
2733

9999 gggg

M
6
8
8
8

A A A —

JMP Jump (ea) => PK : PC IND20, X
IND20, Y
IND20, Z
EXT 20

4B
5B
6B
7A

z9 9999 zg gggg

SM
8
8
8
6

JSR Jump to Subroutine Push(PC)
(SK . SP) - 2 =» SK : SP

Push (CCRl
(SK : SP) - 2 SK : SP

(ea) =? PK : PC

IND20, X
IND20, Y
IND20, Z
EXT 20

89
99
A9
FA

zg gggg *g gggg

MS
12
12
12
10

LBCC4 Long Branch if Carry
Clear

If C = 0, branch REL16 3784 mr 6, 4

LBCS4 Long Branch if Carry
Set

If C = 1, branch REL16 3785 mr 6. 4

LBEQ4 Long Branch if Equal If Z = 1, branch REL16 3787 mr 6, 4

LBEV4 Long Branch if EV
Set

If EV = 1, branch REL16 3791 mr 6, 4

LBGE4 Long Branch if
Greater Than or
Equal to Zero

If N © V = 0, branch REL16 378C rrrr 6, 4

LBGT 4 Long Branch if
Greater Than Zero

If Z + (N © V) = 0, branch REL16 378E rrrr 6, 4

LBHI 4 Long Branch if
Higher

If C + Z = 0, branch REL16 3782 mr 6. 4

LBLE 4 Long Branch if Less
Than or Equal to Zero

If Z + (N © V) = 1, branch REL16 378F mr 6, 4

LBLS4 Long Branch if Lower
or Same

If C + Z = 1. branch REL16 3783 rm 6, 4

LBLT 4 Long Branch if Less
Than Zero

If N © V = 1, branch REL16 378D rrrr 6, 4

LBMI 4 Long Branch if Minus If N = 1. branch REL16 378B mr 6, 4

LBMV4 Long Branch if MV
Set

If MV = 1, branch REL16 3790 rm 6, 4

LBNE 4 Long Branch if Not
Equal

If Z = 0, branch REL16 3786 no- 6. 4

LBPL4 Long Branch if Plus If N - 0, branch REL16 378A rm- 6, 4

LBRA Long Branch Always It 1 = 1, branch REL16 3780 rrrr 6
LBRN Long Branch Never If 1 =0 . branch REL16 3781 rm 6
LBSR Long Branch to

Subroutine
Push (PC)

(SK : SP) - 2 => SK : SP
Push (CCR)

(SK : SP) - 2 =» SK : SP
(PK : PC) + Offset =»

PK . PC

REL16 27F9 mr 10

LBVC4 Long Branch if
Overflow Clear

If V ^ 0, branch REL16 3788 mr 6, 4

LBVS4 Long Branch if
Overflow Set

II V = 1, branch REL16 3789 re- 6, 4

MOTOROLA
28

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
Mnemonic Operat ion Descr ipt ion Addrass

Mod*

Inst ruct ion Condi t ion Codas Mnemonic Operat ion Descr ipt ion Addrass
Mod* Opcode Operand Cyc les S | MVj H | EV N] Z | V [C

LDAA Load A <M)=, A INDfi. X
IND8. Y
IND8. Z
IMMB

IND16, X
INQ16, Y
IN016 .Z

EXT
E, X
E. Y
E. Z

45
55
65
75

1745
1755
1765
1775
2745
2755
2765

ff
ft
tf
i i

ggge
9999

m

6
6
6
2
6
6
6
6
e
6
6

A A 0 —

LDAB Load B <M)=> 8 IND8, X
IND8. Y
IND8, Z
IMM8

IND16, X
IN016, Y
IND16.Z

EXT
E, X
E, Y
E , Z

C5
D5
E5
F5

17C5
17D5
17E5
17F5
27C5
27D5
27E5

tf
ff
ff
i i

9999
9999

m

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

LDO Load D (M : M + 1) => D IND8. X
1ND8. Y
IND8. Z

E, X
E, Y
E, Z

IMM16
IND16, X
IND16. Y
IND16.Z

EXT

85
95
A5

2785
2795
27A5
37B5
37C5
37D5
37E5
37F5

H
ff
ff

ij ^
9999
gggg

6
6
6
6
6
6
4
6
6
6
6

A A 0 —

LDE Load E (M : M + 1) => E IMM16
IND16, X
IND16, Y
IND16, Z

EXT

3735
3745
3755
3765
3775

IJ kk
9999
gggg

4
6
6
6
6

A A 0 —

LDED Load Concatenated
E and D

(M : M + 1) ^ E
(M + 2 : M + 3) => D

EXT 2771 hh II 8

LDHI Initialize H and I (M : M + 1) x = > H R
(M : M + 1)y I R

EXT 27 BO — 8

LDS Load SP (M : M + 1) => SP IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16.Z

EXT
IMM16

CF
DF
EF

17CF
17DF
17EF
17FF
37BF

ff
ff
ff

9ggs gggg

m
ij kk

6
6
6
6
6
6
6
4

A A 0 —

LDX Load IX (M : M + 1) => IX IND8, X
IND8, Y
INDB, Z

IND16, X
IND16, Y
IND16, Z

EXT
IMM16

CC
DC
EC

17CC
17DC
17EC
17FC
37BC

ff
ff
ff

gggg
9999

m
ii kk

6
6
6
6
6
6
6
4

A A 0 —

LDY Load IY (M : M + 1) =» IY IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16.Z

EXT
IMM16

CD
DD
ED

17CD
17DD
17ED
17FD
37BD

ff
ff
ff

9999
9999
9999
hh II
jj kk

6
6
6
6
6
6
6
4

A A 0 —

LDZ Load IZ (M : M + 1) => IZ IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
IND16.Z

EXT
IMM16

CE
DE
EE

17CE
17DE
17EE
17FE
37BE

ff
ff
ft

gggg
9999

m
ii kk

6
6
6
6
6
6
6
4

A A 0 —

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
29

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c Opera t ion Descr ip t ion A d d r e s s

M o d *
Instruct ion Condi t ion C o d e s M n e m o n i c Opera t ion Descr ip t ion A d d r e s s

M o d * O p c o d e O p e r a n d C y c l e s S I U V j H | E V N | Z J V | C
LPSTOP Low Power Stop II J

then STOP
else NOP

INH 27F1

"

4. 20

LSR Logical Shift Right
- * L L L ± ± J _ J J _ H £]

IND8, X
IND8, Y
IND8, Z
IND16, X
IND16, Y
IND16, Z

EXT

OF
1F
2F

170F
171F
172F
173F

ff
ff
ft

gggg gggg

n

8
8
8
a
8
8
8

0 A A A

LSRA Logical Shift Right A
M I I I I I I I M B

h7 DO

INH 370F 2 0 A A A

LSRB Logical Shift Right B
M 1 1 1 j 1 1 1 M a

V BO

INH 371F 2 0 A A A

LSRD Logical Shift Right D
» - O T - -

INH 27FF 2 __ — « 0 A A A

LSRE Logical Shift Right E
M T T - - - ~ T T M c 1

us be

INH 277F 2 0 A A A

LSRW Logical Shift Right
Word

IND16. X
IND16, Y
IND16.Z

EXT

270F
271F
272F
273F

gggg gggg

m

8
8
8
8

0 A A A

MAC Multiply and
Accumulate

Signed 16-Bit
Fractions

(HR) • (IR) =» E : D
(AM) + (E : D) => AM
Qualified (IX) => IX
Qualified (IY) => IY

(HR) => IZ
(M . M + 1)x=> HR
(M : M + 1)y IR

IMM8 78 xpyo 12 -— A — A

MOVB Move Byte (M^ => M 2 IXP to EXT
EXT to IXP

EXT to
EXT

30
32

37FE

ff hh II
ff hh II

hh II hh II

8
8
10

A A 0 —

MOVW Move Word (M : M + 11) M : M + 12 IXP to EXT
EXT to IXP

EXT to
EXT

31
33

37FF

ff hh II
ff hh II

hh It hh 11

8
8
10

A A 0 —

MUL Multiply (A) *{B) => D INH 3724 — 10 — — — A
NEG Negate Memory $ 0 0 - (M) ^ M IND8, X

IND8, Y
IND8, Z

IND16, X
INQ16, Y
IND16.Z

EXT

02
12
22

1702
1712
1722
1732

ff
ff
ff

gggg gggg

H

8
8
8
8
8
8
8

A A A A

NEGA Negate A $00 - (A) => A tNH 3702 — 2 — — — — A A A A
NEGB Negate B $00 - (B) B INH 3712 — 2 — — — — A A A A
NEGD Negate D $0000 - (D) => D INH 27F2 — 2 - — - _ A A A A
NEGE Negate E $0000- (E) => E INH 2772 — 2 - — - — A A A A
NEGW Negate Memory

Word
$0000 - (M : M + 1)

=>M: M + 1
IND16, X
IND16. Y
IN016.Z

EXT

2702
2712
2722
2732

gggg
9999

8
8
8
8

A A A A

NOP Null Operation — INH 274C — 2
ORAA OR A (A) + (M) =» A IND8, X

IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E.Z

47
57
67
77

1747
1757
1767
1777
2747
2757
2767

ff
ff
ff
ii

gggg gggg

m

6
6
6
2
6
6
6
G
6
6
6

A A 0 —

M O T O R O L A
3 0

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c O p e r a t i o n D e s c r i p t i o n A d d r e s s

M o d s
Ins t ruc t ion C o n d i t i o n C o d e * M n e m o n i c O p e r a t i o n D e s c r i p t i o n A d d r e s s

M o d s O p c o d e O p e r a n d C y c l e s S JMV] H | E V N | Z | V | C
ORAB O R B (B) + (M) => B IND8, X

IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IND16, Z

EXT
E, X
E, Y
E, Z

C7
D7
E7
F7

17C7
17D7
17E7
17F7
Z7C7
27D7
27E7

ff
ff
ff
i i

gggg
gggg
m

6
6
6
2
6
6
6
6
6
6
6

A A 0 —

ORD O R D (0) + (M : M + i) = > 0 IND8, X
IN08. Y
IND8, Z

E, X
E, Y
E. Z

IMM16
IND16, X
IND16, Y
IND16, Z

EXT

87
97
A7

2787
2797
27A7
37B7
37C7
37D7
37E7
37F7

ff
Ff
ff

jj kk gggg
gggg

6
6
6
6
6
6
4
6
6
6
6

A A 0 —

ORE O R E (E) + (M : M + 1) =» E IMM16
IND16. X
IND16, Y
IN016, Z

EXT

3737
3747
3757
3767
3777

ii kk gggg
9999

m

4
6
6
6
6

A A 0 —

ORP 1 OR Condition Code
Register

(CCR) + IMM16 => CCR IMM16 373B ii kk 4 A A A A A A A A

PSHA Push A (SK : SP) + 1 => SK : SP
Push (A)

(SK : SP) - 2 SK : SP

INH 3708 4

PSHB Push B (SK : SP) + 1 => SK : SP
Push (B)

(SK : SP) - 2 =» SK : SP

INH 3718 4

PSHM Push Multiple
Registers

Mask bits:
0 = D
1 = E
2 = IX
3 = IY
4 = IZ
5 = K

6 = CCR
7 = (reserved)

For mask bits 0 to 7:

If mask bit set
Push register

(SK : SP) - 2 => SK : SP

IMM8 34 ii 4 + 2 N

N -
number of
iterations

PSHMAC Push MAC Stale MAC Registers =» Stack INH 27B8 — 14
PULA Pull A (SK : SP) + 2 => SK : SP

Pull (A)
(SK : SP) - 1 SK : SP

INH 3709 6

PULB Pull B (SK : SP) + 2 SK : SP
Pull (B)

(SK : SP) - 1 => SK : SP

INH 3719 6

PULM 1 Pull Multiple
Registers

Mask bits:
0 - C C R l 1 5 : 4]

1 = K
2 = IZ
3 = IY
4 > IX
5 = E
6 = D

7 = (reserved)

For mask bits 0 to 7:

If mask bit set
(SK : SP) + 2 =» SK : SP

Pull register

IMM8 35 i i 4 + 2 (N + 1)

N -
number of
iterations

& A A A A A A A

PULMAC Pull MAC State Stack => MAC Registers INH 2789 — 16
RMAC Repeating

Multiply and
Accumulate

Signed 16-Bit
Fractions

Repeat until (E) < 0
(AM) + (H) * (1) =» AM
Qualified (IX) => IX;
Qualified (IY) IY;
(M : M + 1)x => H;
{M : M + 1)Y =» I

(E) - 1 =* E

IMM8 FB xoyo 6 +
12 per

iteration

— A — A

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
31

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c Operation Descr ip t ion Address

M o d e
Instruct ion Condi t ion C o d e e M n e m o n i c Operation Descr ip t ion Address

M o d e O p c o d e O p e r a n d Cycles S | MV| H | E V N | Z | V | C
ROL Rotate Left

l E J M I I I I I I I h-l W to

IND8, X
IND0. Y
IN08, Z

IND16. X
IND16. Y
IND16.Z

EXT

OC
1C
2C

170C
171C
172C
173C

ff
ff
ff

gggg gggg

CT

8
8
8
8
8
8
8

A A A A

ROLA Rotate Left A
k c W I I I I I I I kJ

tf bo

INH 370C Z A A A A

ROLB Rotate Left B
k c H I I I I I I I K-J

w n

INH 371C 2 A A A A

ROLD Rotate Left D
k a n 11 - - - 1 1 iJ

us te

INH 27FC 2 A A A A

ROLE Rotate Left E INH 277C 2 A A A A

ROLW Rotate Left Word
M a - m - - - - T T T J

H i to

IND16. X
IND16, Y
IND16.Z

EXT

270C
271C
272C
273C

gggg gggg

m

8
8
8
8

A A A A

ROR Rotate Right
k i 1 1 1 1 1 1 M a p

W bO

IND8. X
IND8, Y
IND6. Z

IND16. X
IND16, Y
IND16.Z

EXT

OE
1E
2E

170E
171E
172E
173E

ff
ft
ff gggg

gggg

Wf

8
8
8
6
8
8
8

A A A A

RORA Rotate Right A
U L I I 1 I I I W C P

w to

INH 370E 2 A A A A

RORB Rotate Right B
4 I 1 1 1 1 1 1 M a p

tl to

INH 371E 2 A A A A

RORD Rotate Right D
U T T — " T T H T C P

bis tO

INH 27FE 2 A A A A

RORE Rotate Right E
k m - - - i i M & J

MS W

INH 277E 2 A A A A

RORW Rotate Right Word
k m - - - m x a - 1

bis bO

IND16, X
IND16. Y
IND16, Z

EXT

270E
27 tE
272E
273E

gggg gggg

i n
8
8
8
8

A A A A

RT!2 Return from Interrupt (SK : SP) + 2 =» SK : SP
Pull CCR

(SK : SPI + 2 => SK : SP
Pull PC

(PK: PC) - 6 => PK : PC

INH 2777 12 A A A A A A A A

RTS3 Return from
Subroutine

(SK : SP) + 2 => SK : SP
Pull PK

(SK : SPI + 2 => SK : SP
Pull PC

(PK : PC) - 2 PK : PC

INH 27F7 12

SBA Subtract B from A (A) - (B) A INH 370A — 2 — A A A A

SBCA Subtract with Carry
from A

(A) - (M) - C =» A IND8, X
IND8, Y
IND8, Z
IMM8

IND16, X
IND16, Y
IN016.Z

EXT
E, X
E, Y
E. Z

42
52
62
72

1742
1752
1762
1772
2742
2752
2762

ff
tf
ff
ii

gggg gggg

»t

6
6
6
2
6
6
6
6
6
6
6

A A A A

M O T O R O L A
32

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c Opera t ion Descr ip t ion Address instruction Condition Codes

Mode Opcode Operand Cycles S | MVj H j EV N | Z | V I C
SBCB Subtract with Carry (B) - (M) - G =» 8 IND8, X C2 ff 6 — — — — A A A A

from B
(B) - (M) - G =» 8

IND8, Y D2 ff 6
IND8, Z E2 ff 6
IMM8 F2 i i 2

IND16. X 17C2 gggg 6
1ND16, Y 17D2 gggg gggg

6
IND16, Z 17E2

gggg gggg 6
EXT 17F2 hh if 6
E. X 27C2 — 6
E, Y 27 D2 6
E,Z 27E2 — 6

SBCD Subtract with Carry { D) - (M : M + 1) - C => D IND8, X 82 ff 6 — A A A A
from D

{ D) - (M : M + 1) - C => D
INDS, Y 92 fi 6
IND8, Z A2 ff 6

E, X 2782 - 6
E, Y 2792 — 6
E.Z 27A2 — 6

IMM16 37B2 jj kk 4
IND16. X 37C2 gggg 6
IND16. Y 37D2 gggg 6
IND16.Z 37E2 gggg 6

EXT 37F2 hh ii 6
SBCE Subtract with Carry (E) - (M : M + 1) - C = » E I M M 1 6 3732 Ii kk 4 _ — — — A A A A

from E
(E) - (M : M + 1) - C = » E

IND16, X 3742 gggg 6
IND16. Y 3752 gggg gggg

6
JND16, Z 3762

gggg gggg 6
EXT 3772 nn n 6

SDE Subtract D from E (E)-(D)=» E INH 2779 — 2 — — — — A A A A

STAA Store A (A) ^ M 1ND8, X 4A ff 4 A A 0 — (A) ^ M
IND8, Y 5A ff 4
INDS, Z 6A ft 4

IND16. X 174A gggg 6
IND16. Y 175A gggg 6
IND16, Z 176A 9959 6

EXT 177A 6
E. X 274A — 4
E, Y 27 5A — 4
E, Z 276A — 4

STAB Store B (B) =t M IND8, X CA ff 4 _ — A A 0 — (B) =t M
IND8, Y DA ff 4
IND8, Z EA ff 4
IND16, X 17CA 9993 6
IND16, Y 17DA gggg 9999

6
IND16.Z 17EA

gggg 9999 6
EXT 17FA 6
E, X 27CA — 4
E, Y 27DA — 4
E, Z 27EA — 4

STD Store D (D) =»M : M + 1 INDS, X 8A ff 6 _ A A 0 — (D) =»M : M + 1
INDS, Y 9A ff 6
INDS, Z AA ff 6

E. X 278A — 6
E, Y 279A — 6
E, Z 27 AA — 6

IND16, X 37CA gggg
9999

4
IND16, Y 37DA

gggg
9999 4

IND16.Z 37EA 9999 4
EXT 37FA hh l l 6

STE Store E (E) => M : M + 1 IND16, X 374A gggg 6 — — — . A A 0 — (E) => M : M + 1
IND16. Y 375A gggg 9999

6
IND16, Z 376A

gggg 9999 6
EXT 377A M 6

STED Store Concatenated (E) => M ; M + 1 EXT 2773 hh II 8
D a n d E (D) => M + 2 : M + 3

STS Store SP (SP) => M : M + 1 INDS, X 8F ff 4 A A 0 — (SP) => M : M + 1
INDS. Y 9F ff 4
IND8, Z AF ff 4
IND16, X 178F 9999 6
IND16, Y 179F gggg 9999

6
IND16, Z 17AF

gggg 9999 6
EXT 17BF hhlf 6

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
33

I n s t r u c t i o n S e t S u m m a r y (C o n t i n u e d)
M n e m o n i c O p e r a t i o n D o scr ipt i o n A d d r e s s

M o d e
Ins t ruc t ion C o n d i t i o n C o d a s M n e m o n i c O p e r a t i o n D o scr ipt i o n A d d r e s s

M o d e O p c o d e O p e r a n d C y c l e s S | M V | H j E V N | Z | V | C
SIX Store IX (IX) =» M : M + 1 IND8. X

IND8, Y
IND8, Z

IND16, X
1ND16, Y
IND16.Z

EXT

8C
9 C
AC

178C
179C
17AC
17BC

ff
ff
ff

9999
9999
9999
h h II

4
4
4
6
6
6
6

A A 0 —

STY Store IY (tY) =» M . M + 1 INDB. X
IND8. Y
IND8, Z

IND16. X
IND16. Y
IND16.Z

EXT

8D
9D
AD

178D
179D
17AD
17BD

ff
ff
ff

9999
0999

m

4
4
4
6
6
6
6

A A 0 —

STZ Store Z (IZ) = » M : M + 1 IND8, X
IND8, Y
IND8, Z

IND16, X
IND16, Y
1ND16.Z

EXT

8E
9E
AE

178E
179E
17AE
17BE

ft
ft
ff

gggg gggg

m

4
4
4
6
6
6
6

A A 0 —

SUBA Subtract from A (A) - (M) =» A IND8, X
IND6, Y
IND8.Z
IMM8

IND16, X
IND16, Y
IND16.Z

EXT
E. X
E, Y
E, Z

40
50
60
70

1740
1750
1760
1770
2740
2750
2760

n
ff
ff
i i

gggg gggg

m

6
6
6
2
6
6
6
6
6
6
6

A A A A

SUBB Subtract from B < B) - (M) = , B IND8, X
IND8(Y
IND8, Z
IMM8

IND16, X
IND16. Y
IND16, Z

EXT
E. X
E. Y
E .Z

CO
DO
E0
F0

17C0
17D0
17E0
17F0
27C0
27D0
27E0

ft
ff
ff
i i

gggg gggg

m

6
6
6
2
6
6
6
6
6
6
6

A A A A

SUBD Subtract from D (D) - (M : M + 1) =»D 1ND8, X
IND8, Y
IND8, Z

E. X
E. Y
E, Z

IMM16
IND16, X
IND16. Y
IND16.Z

EXT

80
90
AO

2780
2790
27A0
3700
37C0
37 DO
37E0
37F0

n
ff
ff

j j T k
g g g g gggg

m

6
6
6
6
6
6
4
6
6
6
6

A A A A

SUBE Subtract from E (E) - {M : M + 1) =» E IMM16
IND16. X
IND16, Y
IND16.Z

EXT

3730
3740
3750
3760
3770

Jj K* gggg
gggg

BP!

4
6
6
6
6

A A A A

SWI Software Interrupt (PK : PC) + 2 => PK : PC
Push (PC)

(SK : SP) - 2 =» SK ; SP
Push (CCR)

{SK ; SP) - 2 SK : SP
$0 => PK

SWI Vector => PC

INH 3720 16

SXT Sign Extend B into A If 87 - 1
then A - $FF
else A - $00

INH 27F8 2 A A — —

T A B Transfer A to B (A) - B INH 3717 — 2 — — — A A 0 —
T A P Transfer A to CCR <A(7:0])=>CCR[15:8] INH 37FD — 4 A A A A A A A A
TBA Transfer B to A (B)=>A INH 3707 — 2 _ _ _ _ A A 0 —

TBEK Transfer B to EK <B) =» EK INH 27FA 2

M O T O R O L A
34

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

I n s t r u c t i o n Set S u m m a r y (C o n t i n u e d)
M n e m o n i c Operat ion Description Address

Mode
Instruction Condition Codes M n e m o n i c Operat ion Description Address

Mode Opcode Operand Cycles S] MV| H | EV N | Z | V] C
TBSK Transfer B to SK (B) => SK INH 379F — 2

TBXK Transfer B to XK (B) XK INH 379C — 2

T0YK Transfer B to YK (B) =» YK INH 379D — 2

TBZK Transfer B to ZK (B) =>ZK INH 379E — 2

TDE Transfer D to E (D ^ E INH 277B — 2 _ __ _ _ A A 0 —

TDMSK Transfer D to
XMSK : YMSK

(D[15:8) => X MASK
(D[7:0j =5 Y MASK

INH 372F 2

TDP1 Transfer D to CCR (0) =» CCR[15:4] INH 372D — 4 A A A A A A A A

TED Transfer E to D { E) ^ D INH 27FB — 2 — — — — A A 0 —
TEDM Transfer E and D to

AM[31:0]
Sign Extend AM

(D) => AM(15:0]
(E) => AM(31:16]

AM[35:32] = AM31

INH 2781 4 — 0 — 0

TEKB Transfer EK to B $0 B(7:4)
(EK) => B[3:0]

INH 2 /BB — 2

TEM Transfer E to
AM[31:16]

Sign Extend AM
Clear AM LSB

(E) AM[31:16)
$00 ^ AM[15:0]

AM[35:32] = AM31

INH 27B2 4 — 0 — 0

TMER Transfer AM to E
Rounded

Rounded (AM) => Temp
If (SM • (EV + MV))
then Saturation => E

else Temp[31:16] => E

INH 27B4 6 — A — A A A — —

TMET Transfer AM to E
Truncated

If (SM • {EV + MV))
then Saturation =» t
else AM(31:16} =» E

INH 27B5 2 A A — —

TMXED Transfer AM to
IX : E : D

AMJ35:32] IX[3:0]
AM35 => IX[15:4]
AMI31:16] => E
AM[15:0] => D

INH 27B3 6

TPA Transfer CCR MSB tq
A

(CCR(15:8)) => A INH 37 FC — 2

TPD Transfer CCR toD (CCR) ^ . D INH 37 2C — 2
TSKB Transfer SK to B (SK) B[3:0]

$0 => B[7:4]
INH 37AF — 2 _ _ _

TST Test for Zero or
Minus

(M) - $00 IND8, X
IND8, Y
IND8, Z
IND16, X
IND16, Y
IND16, Z

EXT

06
16
26

1706
1716
1726
1736

ff
ff
ff

9999
9999

m

6
6
6
6
6
6
6

A A 0 0

TSTA Test A for
Zero or Minus

(A) - $00 INH 3706 — 2 — — — — A A 0 0

TSTB Test B for
Zero or Minus

(B) - $00 INH 3716 — 2 — — — — A A 0 0

TSTD Test D for
Zero or Minus

(D) - $0000 INH 27F6 — 2 — — — - — A A 0 0

TSTE Test E for
Zero or Minus

(E) - $0000 INH 2776 — 2 - -- — A A 0 0

TSTW Test for
Zero Dr Minus Word

(M : M + 1) - $0000 IND16, X
IND16, Y
IND16, Z

EXT

2706
2716
2726
2736

9999
9999

? H

6
6
6
6

A A 0 0

TSX Transfer SP to X (SK : SP) + 2 XK : IX INH 274F 2

TSY Transfer SP to Y (SK : SP) + 2 => YK : IY INH 275F 2 ™ _ — — —

TSZ Transfer SP to Z (SK : SP) + 2 => ZK ; IZ INH 276F 2

TXKB Transfer XK to B $0 =» B[7:4l
(XK) 9(3:0]

INH 37AC 2

TXS Transfer X to SP (XK : IX) - 2 =» SK : SP INH 374E — 2

TXY Transfer X to Y (XK : IX) => YK : iY INH 27 5C _ 2 — — —

TXZ Transfer X to Z (XK : IX) =» ZK : IZ INH 276C — 2

TYKB Transfer YK to B $0 => B[7:4]
(YK) =» B[3:0]

INH 37AD — 2

TYS Transfer Y to SP (YK : IY) - 2 => SK : SP INH 375E — 2

TYX Transfer Y to X (YK : IY) XK : IX INH 274 D — 2

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
35

I n s t r u c t i o n Set S u m m a r y (C o n t i n u e d)
M n e m o n i c Operat ion Descr ip t ion A d d r e s s

M o d e
Instruct ion Condi t ion C o d e s M n e m o n i c Operat ion Descr ip t ion A d d r e s s

M o d e O p c o d e O p e r a n d C y c l e s S | M V | H [E V N | Z | V | C
TYZ Transfer Y to Z (YK : IY) ZK : IZ INH 276D — 2

TZKB Transfer ZK to B $0 => B[7:4]
(ZK) A[3:A)

INH 37AE — 2

TZS Transfer Z to SP (ZK : IZ) - 2 SK : SP INH 376E — 2
TZX Transfer Z to X (ZK : IZ) =» XK : IX INH 274E — 2
TZY Transfer Z to Y (ZK : IZ) => ZK : IY INH 27SE — 2
WAI Wait tor Interrupt WAIT INH 27F3 — 8

XGAB Exchange A with B (A) o (B) INH 3 7 1 A — 2
XGDE Exchange D with E (D) < >(E) INH 277A 2
XGDX Exchange D with X (D)o (IX) INH 37CC 2
XGDY Exchange D with Y (D)ei(IY) INH 37DC 2
XGDZ Exchange D with Z (D) < >(IZ) INH 37EC 2
XGEX Exchange E with X (E) c-> (IX) INH 374C 2
XGEY Exchange E with Y (E) « (l Y) INH 37SC 2
XGEZ Exchange E with Z <E> t»(IZ> INH 376C 2

NOTES:
1. CCR[15:4] change according to results of operation. The PK field is not affected.
2. CCR[15:0] change according to copy of CCR pulled from stack.
3. PK field changes according to state pulled from stack. The rest of the CCR is not affected.
4. Cycle times tor conditional branches are shown in "taken, not taken" order.

M O T O R O L A
36

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

A
AM

B
CCR

D
E

EK
IR

HR
IX
IY
IZ
K

PC
PK
SK
SL
SP
XK
YK
ZK

XMSK
YMSK

S
MV

H
EV
N
Z
V
c
IP

SM
PK

A
0
1

M
R
S

/ —

I n s t r u c t i o n Set
Accumulator A
Accumulator M
Accumulator B
Condition code register
Accumulator D
Accumulator E
Extended addressing extension fiold
MAC multiplicand register
MAC multiplier register
Index register X
Index register Y
Index register Z
Ackfress extension register
Program counter
Program counter extension field
Stack pointer extension field
Multiply and accumulate sign latch
Stack pointer
Index register X extension field
Index register Y extension field
Index register Z extension field
Modulo addressing index register X mask
Modulo addressing index register Y mask
Stop disable control bit
AM overflow indicator
HaJf carry indicator
AM extended overflow indicator
Negative indicator
Zero indicator
Two's complement overflow indicator
Carry/borrow indicator
Interrupt priority field
Saturation mode control bit
Program counter extension field
Bit not affected
Bit changes as specified
Bit cleared
Bit set
Memory location used in operation
Result of operation
Source data

Addition
Subtraction or negation (two's complement)
Multiplication
Division

Greater
Less
Equal
Equal or greater
Equal or less
Not equal

M

A b b r e v i a t i o n s
x
M

M +1
M + 1
()X
()Y
<->Z
E, X
E, Y
E.Z
EXT

EXT 20
IMM8

IMM16
IND8, X
IND8, Y
IND8, Z

(ND16. X
IND16, Y
IND16, Z
IND20, X
IND20, Y
IND20, Z

INH
IXP

REL8
REL16

b
ff

9999
tti

II
kk

II
mm

m m m m
rr

rrrr
xo
yo

z

+
©

NOT

+

a n d S y m b o l s
— Register used in operation
— Address of one memory byte
— Address of byte at M + $0001
— Address of one memory word
— Contents ol address pointed to by IX
— Contents of ackfress pointed to by IY
— Contents ol address pointed to by IZ
— IX with E offset
— IY with E offset
— IZ with E offset
— Extended
— 20-bit extended
— 8-bit immediate
— 16-bit immediate
— IX with unsigned 8-bit offset
— IY with unsigned 8-bit offset
— IZ with unsigned 8-bit offset
— IX with signed 16-bit offset
— IY with signed 16-bit offset
— IZ with signed 16-bit offset
— IX with signed 20-bit offset
— IY with signed 20-bit offset
— IZ with signed 20-bit offset
— Inherent
— Post-modfied indexed
— 8-bit relative
— 16-bit relative
— 4-bit address extension
— 8-bit unsigned offset
— 16-bit signed offset
— High byte of 16-bit extended address
— 8-bit immediate data
— High byte of 16-bit immediate data
— Low byte of 16-bit immediate data
— Low byte of 16-bit extended address
— 8-bit mask
— 16-bit mask
— 8-bit unsigned relative offset
— 16-bit signed relative offset
— MAC index register X offset
— MAC index register Y offset
— 4-bit zero extension

— AND
— Inclusive OR (OR)
— Exclusive OR (EOR)
— Complementation

— Concatenation
— Transferred
— Exchanged
— Sign bit; also used to show tolerance
— Sign extension
— Binary value
— Hexadecimal value

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

M O T O R O L A
37

2 . 8 E x c e p t i o n s
An exception is an event that preempts normal instruction process. Exception processing makes
the transition trom normal instruction execution to execution ot a routine that deals with an
exception.

Each exception has an assigned vector that points to an associated handler routine. Exception
processing includes all operations required to transfer control to a handler routine but does not
include execution ot the handler routine.

2 . 8 . 1 E x c e p t i o n V e c t o r s

An exception vector is the address ot a routine that handles an exception. Exception vectors are
contained in a data structure called the instruction vector table, which is located in the first 512
bytes of bank 0.

All vectors except the reset vector consist ot one word and reside in data space. The reset vector
consists of four words that reside in program space. There are 52 predefined or reserved vectors
and 200 user-defined vectors.

Each vector is assigned an 8-bit number. Vector numbers for some exceptions are generated by
external devices; others are supplied by the processor. There is a direct mapping of vector
number to vector table address. The CPU16 shifts the vector number left one place (multiplies by
two) to convert it to an address.

E x c e p t i o n V e c t o r T a b l e

V e c t o r
N u m b e r

V e c t o r
A d d r e s s

A d d r e s s
S p a c e

Type of
E x c e p t i o n

0 0000 P Reset — Initial ZK, SK, and PK 0
0002 P Reset — Initial PC

0

0004 P Reset — Initial SP

0

0006 P Reset — Initial IZ (Direct Page)
4 0008 D Breakpoint
5 000A D Bus Error
6 OOOC D Software Interrupt
7 000E O Illegal Instruction
8 0010 D Division by Zero

9 - E 0012 — 001C D Unassigned, Reserved
F 001E D Uninitialized Interrupt

to 0020 D Unassigned, Reserved
11 0022 D Level 1 Interrupt Autovector
12 0024 D Level 2 Interrupt Autovector
13 0026 D Level 3 Interrupt Autovector
14 0028 D Level 4 Interrupt Autovector
15 002A D Level 5 Interrupt Autovector
16 002C D Level 6 Interrupt Autovector
17 002E D Level 7 Interrupt Autovector
18 0030 D Spurious Interrupt

19-37 0032 - 006E D Unassigned, Reserved
38-FF 0070-01FE D User-defined Interrupts

MOTOROLA
38

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

2 . 8 . 2 E x c e p t i o n S t a c k F r a m e

During exception processing the contents of the program counter and condition code register are
stacked at a location pointed to by SK : SP. Unless it is altered during exception processing, the
stacked PK : PC value is the address of the next instruction in the current instruction stream, plus
$0006. The following figure shows the exception stack frame.

Low Address

High Address
Condition Code Register

Program Counter

SP After Except ion Stacking

SP Before Exception Stacking

2 . 8 . 3 E x c e p t i o n P r o c e s s i n g S e q u e n c e
Exception processing is performed in four distinct phases.

A. Priority of all pending exceptions is evaluated and the highest priority exception is
processed first.

B. Processor state is stacked and then the CCR PK extension field is cleared.
C. An exception vector number is acquired and converted to a vector address.
D. The content of the vector address is loaded into the PC and the processor jumps to the

exception handler routine.

There are variations within each phase for differing types of exceptions. However, all vectors
except the reset vectors contain 16-bit addresses, and the PK field is cleared. Exception
handlers must be located within bank 0 or vectors must point to a jump table.

2 . 8 . 4 T y p e s o f E x c e p t i o n s

Exceptions can be either internally or externally generated. External exceptions, which are
defined as asynchronous, include interrupts, bus errors, breakpoints, and resets. Internal
exceptions, which are defined as synchronous, include the software interrupt (SWI) instruction,
the background (BGND) instruction, illegal instruction exceptions, and the divide-by-zero
exception. Refer to 3 S i n g l e - C h i p I n t e g r a t i o n M o d u l e for more information about resets
and interrupts.

Asynchronous exceptions occur without reference to CPU 16 or 1MB clocks, but exception
processing is synchronized. For all asynchronous exceptions but reset, exception processing
begins at the first instruction boundary following recognition of an exception.

Synchronous exception processing is part of an instruction definition. Exception processing for
synchronous exceptions will always be completed, and the first instruction of the handler routine
will always be executed, before interrupts are detected.

Because of pipelining, the stacked return PK : PC value for asynchronous exceptions, other than
reset, is equal to the address of the next instruction in the current instruction stream plus $0006.
The RT1 instruction, which must terminate all exception handler routines, subtracts $0006 from
the stacked value to resume execution of the interrupted instruction stream. The value of PK : PC
at the time a synchronous exception executes is equal to the address of the instruction that
causes the exception plus $0006. Because RTI always subtracts $0006 upon return, the stacked
PK : PC must be adjusted by the instruction that caused the exception so that execution resumes
with the following instruction. $0002 is added to the PK : PC value before it is stacked.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
39

2 . 8 . 5 M u l t i p l e E x c e p t i o n s
Each exception has a hardware priority based upon its relative importance to system operation.
Asynchronous exceptions have higher priorities than synchronous exceptions. Exception
processing for multiple exceptions is done by priority, from highest to lowest. Note that priority
governs the order in which exception processing occurs, not the order in which exception
handlers are executed.

Unless bus error, breakpoint, or reset occur during exception processing, the first instruction of all
exception handler routines is guaranteed to execute before another exception is processed.
Because interrupt exceptions have higher priority than synchronous exceptions, the first
instruction in an interrupt handler will be executed before other interrupts are sensed.

Bus error, breakpoint, and reset exceptions that occur during exception processing of a previous
exception are processed before the first instruction of that exception's handler routine. The
converse is not true. If an interrupt occurs during bus error exception processing, for example,
the first instruction of the bus error exception handler is executed before interrupts are sensed.
This permits the exception handler to mask interrupts during execution.

2 . 8 . 6 R T I I n s t r u c t i o n

The return-from-interrupt instruction (RTI) must be the last instruction in all exception handlers
except for the reset handler. RTI pulls the exception stack frame that was pushed onto the
system stack during exception processing, and restores processor state. Normal program flow
resumes at the address of the instruction that follows the last instruction executed before
exception processing began.

RTI is not used in the reset handler because a reset initializes the stack pointer and does not
create a stack frame.

M O T O R O L A
40

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

3 S i n g l e - C h i p I n t e g r a t i o n M o d u l e
The single-chip integration module (SCIM) consists ot six submodules that control system startup,
initialization, configuration, and external bus with a minimum of external devices. The SCIM can be
configured to operate in 16-bit expanded mode, 8-bit expanded mode, or single-chip mode.
Operating mode is determined by the value of the DATA1 and BERR signals coming out of reset
A block diagram of the SCIM follows.

SCIM BU3CK

S i n g l e - C h i p I n t e g r a t i o n M o d u l e B l o c k D i a g r a m

3 . 1 O v e r v i e w

The system configuration and protection block controls configuration parameters and provides
bus and software watchdog monitors. In addition, it provides a periodic interrupt generator to
support execution of time-critical control routines.

The system clock generates clock signals used by the SCIM, other 1MB modules, and external
devices.

The external bus interface handles the transfer of information between 1MB modules and external
address space.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
41

The chip-select block provides eight general-purpose chip-select signals, a boot ROM chip-select
signal, and two emulation-support chip-select signals. The general-purpose and boot ROM chip-
select signals have associated base address registers and option registers.

The system test block incorporates hardware necessary for testing the MCU. It is used to perform
factory tests, and its use in normal applications is not supported.

S C I M A d d r e s s M a p

A d d r e s s 15 8 7 0
$YFFAOO SCIM CONFIGURATION (SCIMCR)
$YFFA02 FACTORY TEST (SCIMTR)
SYFFA04 CLOCK SYNTHESIZER CONTROL (SYNCR)
$YFFA06 UNUSED RESET STATUS REGISTER (RSR)
$YFFA08 SCIM TEST E (SCIMTRE)
$YFFAOA PORT A DATA REGISTER (PORTA) PORT B DATA REGISTER (PORTB)
SYFFAOC PORT G DATA REGISTER (PORTG) PORT H DATA REGISTER (PORTH)
$YFFA0E PORT G DATA DIRECTION (DDRG) PORT H DATA DIRECTION (DDRH)
$YFFA10 UNUSED PORT E DATA REGISTER (PORTE0)
$YFFA12 UNUSED PORT E DATA REGISTER (PORTEt)
$YFFA14 PORT A/B DATA DIRECTION (DDRAB) PORT E DATA DIRECTION (DDRE)
$YFFA16 UNUSED PORT E PIN ASSIGNMENT (PEPAR)
$YFFA18 UNUSED PORT F DATA (PORTFO)
$YFFA1A UNUSED PORT F DATA (PORTF1)
$YFFA1 C UNUSED PORT F DATA DIRECTION (DDRF)
$YFFA1E UNUSED PORT F PIN ASSIGNMENT (PFPAR)
$YFFA20 UNUSED SYSTEM PROTECTION CONTROL

(SYPCR)
$YFFA22 PERIODIC INTERRUPT CONTROL (PICR)
$YFFA24 PERIODIC INTERRUPT TIMING (PITR)
$YFFA26 UNUSED SOFTWARE SERVICE (SWSR)
$YFFA28 UNUSED PORT F EDGE-DETECT CONTROL

(PORTFE)
SYFFA2A UNUSED PORT F EDGE-DETECT INTERRUPT

VECTOR (PFIVR)
SYFFA2C UNUSED PORT F EDGE-DETECT INTERRUPT

LEVEL (PFLVR)

SYFFA2E UNUSED UNUSED
$YFFA30 TEST MODULE MASTER SHIFT A (TSTMSRA)
$YFFA32 TEST MODULE MASTER SHIFT B (TSTMSRB)
$YFFA34 TEST MODULE SHIFT COUNT (TSTSC)
$YFFA36 TEST MODULE REPETITION COUNTER (TSTRC)
SYFFA38 TEST MODULE CONTROL (CREG)
$YFFA3A TEST MODULE DISTRIBUTED REGISTER (DREG)
$YFFA3C UNUSED UNUSED
$YFFA3E UNUSED UNUSED
SYFFA40 UNUSED PORT C DATA REGISTER (PORTC)
$YFFA42 UNUSED UNUSED

M O T O R O L A
42

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

S C I M A d d r e s s M a p (C o n t i n u e d)

A d d r e s s 15 8 7 0
$YFFA44 CHIP-SELECT PIN ASSIGNMENT (CSPARO)
$YFFA46 CHIP-SELECT PIN ASSIGNMENT (CSPAR1)
SYFFA48 CHIP-SELECT BASE BOOT (CSBARBT)
SYFFA4A CHIP-SELECT OPTION BOOT (CSORBT)
$YFFA4C CHIP-SELECT BASE 0 (CSBARO)
$YFFA4E CHIP-SELECT OPTION 0 (CSOR0)
$YFFA50 UNUSED
$YFFA52 UNUSED
SYFFA54 UNUSED
$YFFA56 UNUSED
$YFFA58 CHIP-SELECT BASE 3 (CSBAR3)
SYFFA5A CHIP-SELECT OPTION 3 (CSOR3)
$YFFA5C UNUSED
$YFFA5E UNUSED
SYFFA60 CHIP-SELECT BASE 5 (CSBAR5)
$YFFA62 CHIP-SELECT OPTION 5 (CSOR5)
$YFFA64 CHIP-SELECT BASE 6 (CSBAR6)
$YFFA66 CHIP-SELECT OPTION 6 (CSOR6)
$YFFA68 CHIP-SELECT BASE 7 (CSBAR7)
$YFFA6A CHIP-SELECT OPTION 7 (CSOR7)
$YFFA6C CHIP-SELECT BASE 8 (CSBAR8)
$YFFA6E CHIP-SELECT OPTION 8 (CSOR8)

$YFFA70 CHIP-SELECT BASE 9 (CSBAR9)
$YFFA72 CHIP-SELECT OPTION 9 (CSOR9)
$YFFA74 CHIP-SELECT BASE 10 (CSBAR10)
$YFFA76 CHIP-SELECT OPTION 10 (CSORIO)
$YFFA78 UNUSED UNUSED
$YFFA7A UNUSED UNUSED
$YFFA7C UNUSED UNUSED
$YFFA7E UNUSED UNUSED

Y - M111, where M is the logic state of the modmap (MM) bit in theSCIMCR.

3 . 2 S y s t e m C o n f i g u r a t i o n

The MCU can operate as a stand-alone device (single-chip modes), with a 24-bit external address
bus and an 8-bit external data bus (partially expanded mode), or with a 24-bit external address bus
and a 16-bit external data bus. However, because ADDR[23:20] are driven to the same logic state
as ADDR19, the external bus is effectively only 20 bits wide. SCIM pins can be configured for use
as I/O ports or programmable chip select signals. System configuration is determined by setting
bits in the SCIM configuration register (SCIMCR), and by asserting MCU pins during reset.

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

MOTOROLA
43

S C I M C R — Single-Chip Integration Module Configuration Register $ Y F F A O O

15 14 13 12 11 10 9 8 7 6 5 4 3 0

EXOFF FRZSW FRZBM | CPUD SLVE 0 SHEN SUPV m ABO RWD lARB

RESET:

0 1 1 * * 0 0 0 1 1 * * 1 1 1 1

* Reset state is mode-dependent. Refer to the following bit descriptions.

The module configuration register controls system configuration. It can be read or written at any
time, except for the module mapping (MM) bit, which must remain set to one.

EXOFF — External Clock Off
0 = The CLKOUT pin is driven from an internal clock source.
1 = The CLKOUT pin is placed in a high-impedance state.

FRZSW — Freeze Software Enable
0 = When FREEZE is asserted, the software watchdog continues to run.
1 = When FREEZE is asserted, the software watchdog is disabled.

FRZBM — Freeze Bus Monitor Enable
0 = When FREEZE is asserted, the periodic interrupt timer counters continue to run.
1 = When FREEZE is asserted, the periodic interrupt timer counters are disabled, preventing

interrupts during software debug.

CPUD — CPU Development Support Disable
0 = Instruction pipeline signals available on pins IPIPE0 and IPIPE1
1 = Pins IPIPEO and IPIPE1 placed in high-impedance state unless a breakpoint occurs

CPUD is reset to zero when the MCU is in an expanded mode, and to one in single-chip mode.

SLVE — Slave Mode Enable
0 = 1MB is not available to an external master.
1 = An external bus master has direct access to the 1MB.

This bit is a read-only status bit that reflects the state of DATA11 during reset. Slave mode is used for
factory testing. Reset state is the complement of DATA11 during reset in fully expanded mode.

SHENJ1:0] — Show Cycle Enable
This field determines what the external bus interface does with the external bus during internal
transfer operations. A show cycle allows internal transfers to be monitored externally. The following
table shows whether show cycle data is driven externally, and whether external bus arbitration can
occur. To prevent bus conflict, external peripherals must not be enabled during show cycles.

S H E N A c t i o n
00 Show cycles disabled, external arbitration enabled
01 Show cycles enabled, external arbitration disabled
10 Show cycles enabled, external arbitration enabled
11 Show cycles enabled, external arbitration enabled;

internal activity is halted by a bus grant

SUPV — Supervisor/Unrestricted Data Space
In systems that support restricted access, the SUPV bit places SCIM global registers in either
supervisor data space or user data space. Because the CPU16 operates only in supervisory mode,
SUPV has no effect.

M O T O R O L A
44

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MM — Module Mapping
0 = Internal modules are addressed from $7FF000 - $7FFFFF.
1 Internal modules are addressed from $FFF000 - $FFFFFF.

The logic state of MM determines the value of ADDR23 in the 1MB module address. Because
ADDR[23:201 are driven to the same state as ADDR19, MM must be set to one. If MM is cleared, 1MB
modules are inaccessible. This bit can be written only once after reset.

ABD — Address Bus Disable
0 = Pins ADDR[2:0J operate normally.
1 = Pins ADDR[2:0] are disabled.

ABD is reset to zero when the MCU is in an expanded mode, and to one in single-chip mode. ABD
can be written only once after reset.

RWD — Read/Write Disable
0 = R/W signal operates normally
1 = R/W signal placed in high-impedance state.

RWD is reset to zero when the MCU is in an expanded mode, and to one in single-chip mode. RWD
can be written only once after reset.

IARB[3:01 — Interrupt Arbitration
Each module that can generate interrupts, including the SCIM, has an 1ARB field. Each IARB field can
be assigned a value from $0 to $F, During an interrupt acknowledge cycle, IARB permits arbitration
among simultaneous interrupts of the same priority level. The reset value of the SCIM IARB field is $F.
This prevents SCIM interrupts from being discarded. Initialization software must set the IARB field to a
lower value if lower priority interrupts are to be arbitrated.

3.3 O p e r a t i n g M o d e s

During reset, the SCIM configures itself according to the states of the DATA, BERR, MQDCLK,
and BKPT pins. DATA[11:0] provide pin configuration information. BERR, MODCLK, and BKPT
determine basic operation.

The SCIM can be configured to operate in one of three modes: 16-bit expanded, 8-bit expanded,
and single chip. Operating mode is determined by the value of the DATA1 and BERR signals
coming out of reset.

B a s i c C o n f i g u r a t i o n O p t i o n s

Se lec t Pin Defaul t Func t ion
(Pin Left High)

A l te rna te F u n c t i o n
(P in Pul led Low)

MODCLK Synthesized System Clock External System Clock

BKPT Background Mode Disabled Background Mode Enabled

BERR Expanded Mode Single-Chip Mode

DATA1 (if BERR = 1) 8-Bit Expanded Mode 16-Bit Expanded Mode

BERR, BKPT, and MODCLK do not have internal pull-ups and must be driven to the desired state
during reset.

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

M O T O R O L A
45

Operating mode determines which address and data bus lines are used and which general-
purpose I/O ports are available. The following table is a summary of bus and port configuration.

B u s a n d P o r t C o n f i g u r a t i o n O p t i o n s

M o d e A d d r e s s Bus Data B u s I /O Por ts
16-Bit Expanded ADDR[18:3] DATA[15:0] —

8-Bit Expanded ADDR[18:3] DATA[15:8] DATA[7:Q] = Port H
Single Chip None None ADDR[18.11] = Port A

ADDR(10:3] = Port B
DATA[1$;8] = Port G
DATA(7:0] * Port H

Many pins on the CPU16, including data and address bus pins, have multiple functions. The
reset value for these pins depends on the operating mode in effect. In expanded mode, the
values of DATAJ11:0] during reset determines the function of these pins. The functions of some
pins can be changed by then writing to the appropriate pin assignment register. Data bus pins
have internal pull-ups (active only when RESET is asserted) and must be pulled low to achieve the
desired alternate configuration. The following tables are a summary of the pin configuration
options for each operating mode.

MOTOROLA
46

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

3 . 3 . 1 1 6 - B l t E x p a n d e d M o d e

In 16-bit expanded mode, (BERR = 1, DATA1 = 0) pins ADDR[18:3J and DATA[15:01 are
configured as address and data pins, respectively. The alternate functions for these pins as ports
A, B, G. and H are unavailable.

1 6 - B i t E x p a n d e d M o d e R e s e t C o n f i g u r a t i o n

P in(s) A f f e c t e d Se lec t Pin Defau l t F u n c t i o n A l t e r n a t e F u n c t i o n
(P in Left High) (Pin Pul led Low)

CSBOOT DATAO CSBOOT 16-Bit CSBOOT 8-Bit

BR/CSO DATA2 CSO BR
FC0/CS3 CS3 FCO
FC1/PC1 FC1 FC1

FC2/CS5/PC2 CS5 FC2

ADDR19/CS6/PC3 DATA3 CS6 ADDR19
ADDR20/CS7/PC4 DATA4 CS[7:6] ADDR[20:19]
ADDR21 /CS8/PC5 DATA5 CS[8:6] ADDR[21:19]
ADDR22/CS9/PC6 DATA6 CS[9:6] ADDR[22:19]

ADDR23/CS10/ECLK DATA7 CS[10:6] ADDR[23:19]

DSACKO/PEO DATA8 DSACKO PEO
DSACK1/PE1 DSACK1 PE1

AVEC/PE2 AVEC PE2
PE3 PE3 PE3

DS/PE4 DS PE4
AS/PE5 AS PE5

SIZ0/PE6 SIZO PE6
SIZ1/PE7 SIZ1 PE7

MODCLK/PFO DATA9 MODCLK PFO
IRQ[7:1]/PF[7:1] IRQ[7:1] PF[7:1]

BGACK/CSE DATA10 BGACK CSE1

BG BG —

DATA11 DATA11 Slave Mode Disabled2 Slave Mode Enabled2

DATA14 DATA14 EEPROM Normal Mode EEPROM Stop Mode
NOTES:

1. CSE is enabled when DATA10 and DATA1 = 0 during reset.
2. Slave mode used for factory test only.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
47

3 . 3 . 2 8 - B i t E x p a n d e d M o d e

In 8-bit expanded mode (BERR = 1, DATA1 ^ 1), pins DATA(7:0J are configured as an 8-bit I/O
port. Pins DATA(15:8] are configured as data pins. Pins ADDR[18:3] are configured as address
pins. Emulator mode is always disabled.

8 - B l t E x p a n d e d M o d e R e s e t C o n f i g u r a t i o n

P ln (s) A f f e c t e d Se lec t Pin Defaul t F u n c t i o n A l t e r n a t e F u n c t i o n
(P in Left H igh) (Pin Pul led Low)

CSBOOT N/A1 CSBOOT 8-Bit CSBOOT 8-Bit

BR/CSO N/A1 CSO CSO
FC0/CS3/PC0 CS3 CS3

FC1/PC1 FC1 FC1
FC2/CS5/PC2 CSS CSS

ADDR19/CS6/PC3 N/A1 CS[10:6] CS[10:6j
ADDR20/CS7/PC4
ADDR21/CS8/PC5
ADDR22/CS9/PC6

ADDR23/CS10/ECLK

DSACKO/PEO DATA8 DSACKO PEO
DSACK1/PE1 DSACK1 PE1

AVEC/PE2 AVEC PE2
PE3 PE3 PE3

DS/PE4 DS PE4
AS/PE5 AS PE5

SIZ0/PE6 SIZO PE6
SIZ1/PE7 SIZ1 PE7

MODCLK/PFo DATA9 MODCLK PFO
IRQ[7:1]/PF[7:1] IRQ[7:1] PF[7:1]

BGACK/CSE N/A1 BGACK BGACK
BG BG BG

DATA14 DATA14 EEPROM Normal Mode EEPROM Stop Mode
NOTES:

1. These pins have only one reset configuration in 8-bit expanded mode.

MOTOROLA
48

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

3 . 3 . 3 S i n g l e - C h i p M o d e

In single-chip mode (BERR = 0), pins DATA[15:0] are configured as two 8-bit I/O ports.
ADDRI18:3] are also configured as two 8-bit I/O ports. There is no external data bus path.
Expanded mode configuration options are not available: I/O ports A, B, C, E, F, G, and H are
always selected. BERR can be tied low permanently to select single-chip mode.

S i n g l e - C h i p M o d e R e s e t C o n f i g u r a t i o n

P ln (s) A f f e c t e d F u n c t i o n
CSBOOT CSBOOT 8-Bit

ADDR[18:11] PA[7:0]
ADDR[10:3] PB[7:0]

BR/CSO CSO

FC0/CS3/PC0
FC1/PC1

FC2/CS5/PC2
ADDR19/CS6/PC3
ADDR20/CS7/PC4
ADDR21 /CS8/PC5
ADDR22/CS9/PC6

PC[6:0]

ADDR23/CS10/ECLK —

DSACKO/PEO
DSACK1/PE1

AVEC/PE2
PE3

DS/PE4
AS/PE5

SIZ0/PE6
SIZ1/PE7

PE[7:0]

MODCLK/PFO
IRQ[7;1]/PF[7:1]

PFO
PF[7:1]

DATA[15:8] PG[7:0]
DATA[7:0] PH[7:0]

BGACK/CSE
BG

BGACK
BG

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

MOTOROLA
49

3 - 4 E m u l a t i o n S u p p o r t

The SCIM contains logic that can be used to replace on-chip ports externally. The SCIM also
contains special support logic to allow external emulation of internal ROM. This emulation support
allows system development of a single-chip application in expanded mode.

Emulator mode is a special type of 16-bit expanded operation. It is entered by holding DATA 10
low, BERR high, and DATA1 low during reset. In emulator mode, all port A, B, E, G, and H data
and data direction registers and the port E pin assignment register are mapped externally. Port C
data, port F data and data direction registers, and port F pin assignment register are accessible
normally in emulator mode.

An emulator chip select (CSE) is asserted whenever any of the externally-mapped registers are
addressed. The signal is asserted on the falling edge of AS. The SCIM provides DSACK for
these accesses, but the data comes from the external data bus. This allows external logic, such as
a port replacement unit (PRU) to respond. Accesses to externally-mapped registers require three
clock cycles, whether in emulation mode or not.

In devices that contain a masked-ROM module, external ROM emulation is enabled by holding
DATA10 and DATA13 low during reset (DATA14 must be held high during reset to enable the
ROM module). While ROM emulation mode is enabled, memory chip select signal CSM is
asserted whenever a valid access to an address assigned to the masked ROM array is made.
Because the MC68HC916Y1 has no ROM, the CSM function is not used — the CSM pin is driven
high whenever the function is selected.

3 . 5 S y s t e m P r o t e c t i o n
System protection includes a bus monitor, a halt monitor, a spurious interrupt monitor, and a
software watchdog timer. These functions reduce the number of external components required
for a complete control system.

S Y P C R — System Protection Control Register $ Y F F A 2 1

15 8 7 6 5 4 3 2 1 0

N O T U S E D S W E S V \ P S W T H M E B M E B W T

RESET:

1 MODCLK 0 0 0 0 0 0

The system protection control register controls system monitor functions, software watchdog
clock prescaling, and bus monitor timing. During normal operation this register can be written only
once following power-on or reset, but can be read at any time.

SWE — Software Watchdog Enable
0 = Software watchdog disabled
1 = Software watchdog enabled

SWP — Software Watchdog Prescale
This bit controls the value of the software watchdog prescaler.

0 = Software watchdog clock not prescaled
1 = Software watchdog clock prescaled by 512

The reset value of SWP is the complement of the state of the MODCLK pin during reset.

M O T O R O L A
5 0

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

SWT[1:0] — Software Watchdog Timing
This field selects the divide ratio used to establish software watchdog timeout period. The following
table shows the ratio for each combination of SWP and SWT bits.

SWP SWT Ratio
0 00 29
0 01 211
0 10 213

0 11 215
1 00 218

1 01 220

1 10 222

1 11 224

HME — Halt Monitor Enable
0 = Disable halt monitor function
1 = Enable halt monitor function

BME — Bus Monitor External Enable
0 = Disable bus monitor function for an internal to external bus cycle.
1 = Enable bus monitor function for an internal to external bus cycle.

BMT[1:0] — Bus Monitor Timing
This field selects a bus monitor timeout period, as shown in the following table.

B M T Bus Monitor T imeout Period
00 64 System Clocks
01 32 System Clocks
10 16 System Clocks
11 8 System Clocks

3 . 5 . 1 B u s M o n i t o r

The internal bus monitor checks for excessively long response times during normal bus cycles
(DSACK) and during lACK cycles (AVEC). The monitor asserts BERR if response time is
excessive.

DSACK and AVEC response times are measured in clock cycles. The maximum allowable
response time can be selected by setting the BMT field.

The monitor does not check DSACK response on the external bus unless it initiates the bus
cycle. The BME bit in SYPCR enables the internal bus monitor for internal to external bus cycles.
If a system contains external bus masters, an external bus monitor must be implemented and the
internal to external bus monitor option must be disabled.

3 . 5 . 2 H a l t M o n i t o r

The halt monitor responds to an assertion of HALT on the internal bus caused by a double bus
fault. This signal is asserted by the CPU after a double bus fault occurs. A flag in the reset status
register (RSR) indicates that the last reset was caused by the halt monitor. The halt monitor reset
can be inhibited by the HME bit in SYPCR.

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

M O T O R O L A
51

3 . 5 . 3 S p u r i o u s I n t e r r u p t M o n i t o r

The spurious interrupt monitor causes a bus error exception it no interrupt arbitration occurs
during interrupt acknowledge cycle.

3 . 5 . 4 S o f t w a r e W a t c h d o g

SWSR — Software Service Register $ Y F F A 2 7

15 8 7 0

NOT USED SWSR

RESET:

0 0 0 0 0 0 0 0

Register shown with read value

The software watchdog is controlled by SWE in SYPCR. Once enabled, the watchdog requires
that a service sequence be written to SWSR on a periodic basis. If servicing does not take place,
the watchdog times out and issues a reset. SWSR can be written at any time, but returns zeros
when read.

Perform a software watchdog service sequence as follows:

a. Write $55 to SWSR.
b. Write $AA to SWSR.

Both writes must occur in the order listed prior to timeout, but any number of instructions can be
executed between the two writes.

Watchdog clock rate is affected by SWP and SWT in SYPCR.

When SWT[1:0] are modified, a watchdog service sequence must be performed before the new
timeout period takes effect.

The reset value of SWP is the complement of the state of the MODCLK pin on the rising edge of
reset.

Software watchdog timeout period can be calculated using the following expressions:

or

M O T O R O L A
52

M C 6 B H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

3 . 6 S y s t e m C l o c k
The system clock in the SCIM provides timing signals for the 1MB modules and for an external
peripheral bus. Because the MCU is a fully static design, register and memory contents are not
affected when clock rate changes. System hardware and software support changes in clock rate
during operation.

The system clock signal can be generated in three ways. Either an internal reference or an
external reference, or an external clock signal can be input. Keep the distinction between an
external reference and an external clock signal in mind while reading the rest of this section.

Following is a block diagram of the clock submodule.

1. MUST BE LOW-LEAKAGE CAPACITOR (INSULATION RESISTANCE 30,000 Mtt OR GREATER).
2. RESISTANCE AND CAPACITANCE BASED ON A TEST CIRCUIT CONSTRUCTED WITH A KDS041-18 4.194 MHz CRYSTAL

SPECIFIC COMPONENTS MUST BE BASED ON CRYSTAL TYPE CONTACT CRYSTAL VENDOR FOR EXACT CIRCUIT.
3.4 MHz DIVIDED TO 32 KHz.

IT SYS CLOCK BLOCK 4UHZ

S y s t e m C l o c k B l o c k D i a g r a m

3 . 6 , 1 C l o c k S o u r c e s

The state of the clock mode (MODCLK) pin during reset determines clock source. When
MODCLK is held high during reset, the clock synthesizer generates a clock signal from either an
internal or an external reference frequency — clock synthesizer control register (SYNCR)
determines operating frequency and mode of operation. When MODCLK is held low during

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

M O T O R O L A
53

reset, the clock synthesizer is disabled and an external system clock signal must be applied —
SYNCR control bits have no effect.

A reference crystal must be connected between the EXTAL and XTAL pins to use the internal
oscillator. If either an external reference signal or an external system clock signal is applied
through the EXTAL pin, the XTAL pin must be left floating. External reference signal frequency
must be less than or equal to maximum specified reference frequency. External system clock
signal trequency must be less than or equal to maximum specified system clock frequency.

When an external system clock signal is applied, the duty cycle of the input is critical, especially at
operating frequencies close to maximum. The relationship between clock signal duty cycle and
clock signal period is expressed as follows:

Minimum external clock period =
minimum external clock high / low time

50% - percentage variation of external clock input duty cycle

3 . 6 . 2 C l o c k S y n t h e s i z e r O p e r a t i o n
A voltage controlled oscillator (VCO) generates the system clock signal. A portion of the clock
signal is fed back to a divider/counter. The divider controls the frequency of one input to a phase
comparator. The other phase comparator input is a reference signal, either from the internal
crystal oscillator or from an external source. The reference frequency is divided by 128 before
being fed to the comparator. The comparator generates a control signal proportional to the
difference in phase between its two inputs. The signal is low-pass filtered and used to correct
VCO output frequency.

The synthesizer locks when VCO frequency is equal to reference frequency + 128. Lock time is
affected by the filter time constant and by the amount of difference between the two comparator
inputs. Whenever comparator input changes, the synthesizer must relock. Lock status is shown
by the SLOCK bit in SYNC R.

To maintain a 50% clock duty cycle, VCO frequency is either two or four times clock frequency,
depending on the state of the X bit in SYNCR.

The MCU does not come out of reset state until the synthesizer iocks. Crystal type, characteristic
frequency, and layout of external oscillator circuitry affect lock time.

The low-pass filter requires an external low-leakage capacitor, typically 0.1 JIF with an insulation
resistance specification of 30,000 MN or greater, connected between the XFC and VQDSYN pins.

VDDSYN IS used to power the clock circuits. A separate power source increases MCU noise
immunity and can be used to run the clock when the MCU is powered down. A quiet power
supply must be used as the V D D S Y N source. Adequate external bypass capacitors should be
placed as close as possible to the VDDSYN P i n to assure stable operating frequency.

When the clock synthesizer is used, control register SYNCR determines operating frequency and
various modes of operation. Because the CPU16 operates only in supervisor mode, SYNCR can
be read or written at any time.

The SYNCR X bit controls a divide by two prescaler that is not in the synthesizer feedback loop.
When X = 0 (reset state), the divider is enabled, and system clock frequency is one-fourth VCO

M O T O R O L A
5 4

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

frequency; setting X disables the divider, doubling clock speed without changing VCO speed.
There is no VCO relock delay. The SYNCR W bit controls a three-bit prescaler in the feedback
divider. Setting W increases VCO speed by a factor of four. The SYNCR Y field determines the
count modulus for a modulo 64 down counter, causing it to divide by a value of Y + 1. When either
the W or Y value change, there is a VCO relock delay.

Clock frequency is determined by SYNCR bit settings as follows:

F S V S T E M = F M ? " E N C E [4 (Y + 1) (2 2 W ' X) |

For the device to perform correctly, the clock frequency selected by the W, X, and Y bits must be
within the limits specified for the MCU. The reset state of SYNCR ($3F00) produces a modulus-64
count. System frequency is two times reference frequency.

3 . 6 . 3 L o s s of C l o c k
The SCIM can detect loss of either an external clock signal or a clock signal generated by the PLL.
Two bits in SYNCR determine how the SCIM responds to the loss of a clock signal.

The loss-of-clock oscillator disable (LOSCD) bit enables (LOSCD = 0) or disables (LOSCD = 1) an
internal RC oscillator which is used as the time base for the loss-of-clock detector, and also
provides an alternate system clock signal. LOSCD must be cleared for loss-of-clock detection to
take place.

The reset enable (RSTEN) bit determines how the SCIM responds when it detects the loss of a
clock signal. LOSCD must be cleared for the RSTEN bit to have any effect. When the RSTEN bit
is set and loss of clock is detected, the SCIM generates an asynchronous reset. If RSTEN is
cleared when loss of clock is detected, the internal oscillator is used as system clock until edges
are detected on the EXTAL input. AH clock switching is done synchronously, so that no short
pulses or glitches occur on the system clock.

LOSCD and RSTEN are automatically cleared during reset, ensuring that an alternate clock signal
is available during reset. If the system clock fails during reset, the SCIM detects the condition,
switches to the alternate clock, and completes reset processing.

An MCU using the alternate clock as the system clock is said to be operating in limp mode. The
limp mode status bit (SLIMP) in SYNCR indicates whether the MCU is running in limp mode.

Loss of clock is recognized during low-power operation as well as normal operation, provided
LOSCD is cleared. Low-power operation for loss of clock is the same as normal operation.

3 . 6 . 4 C l o c k C o n t r o l

The clock control circuits determine system clock frequency and clock operation under special
circumstances, such as loss of synthesizer reference or low-power mode. Clock source is
determined by the logic state of the MODCLK pin during reset.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
5 5

S Y N C R — Clock Synthesizer Control Register $ Y F F A 0 4

15 14 13 8 7 6 5 4 3 2 1 0

W | X Y EDIV 0 LOCSD SLIMP SLOCK RSTEN STSCIM STEXT

RESET:

0 0 1 1 1 1 1 1 0 0 0 U U 0 0 0

When the on-chip clock synthesizer is used, system clock frequency is controlled by the bits in
the upper byte of SYNCR. Bits in the lower byte show the status of, or control the operation of,
internal and external clocks. Because the CPU16 always operates in supervisor mode, SYNCR
can be read or written at any time.

W — Frequency Control (VCO)
This bit controls a prescaler tap in the synthesizer feedback loop. Setting the bit increases the VCO
speed by a factor of four. VCO relock delay is required.

X — Frequency Control Bit (Prescale)
This bit controls a divide by two prescaler that is not in the synthesizer feedback loop. Setting it
doubles clock speed without changing VCO speed. There is no VCO relock delay.

Y[5:0] — Frequency Control (Counter)
The Y field controls the modulus down counter in the synthesizer feedback loop, causing it to divide
by a value of Y + 1. Values range from 0 to 63. VCO relock delay is required.

EDIV—ECLK Divide Rate
0 = ECLK frequency is system ciock divided by 8.
1 = ECLK frequency is system clock divided by 16,

ECLK is an external M6800 bus clock available on pin ADDR23. Refer to 3 .11 C h i p S e l e c t s for
more information.

LOCSD — Loss-of-Clock Oscillator Disable
0 = Enable the loss-of-clock oscillator.
1 = Disable the loss-of-clock oscillator.

SLIMP — Limp Mode Flag
0 = External crystal is VCO reference.
1 = Loss of crystal reference.

When the on-chip synthesizer is used, loss of reference frequency causes SLIMP to be set. The
VCO continues to run using the base control voltage. Maximum limp frequency is the maximum
specified system clock frequency. X-bit state affects limp frequency.

SLOCK — Synthesizer Lock Flag
0 = VCO is enabled, but has not locked.
1 = VCO has locked on the desired frequency (or system clock is external).

The MCU maintains reset state until the synthesizer locks, but SLOCK does not indicate synthesizer
lock status until after the user writes to SYNCR.

RSTEN —Reset Enable
0 = Loss of crystal causes the MCU to operate in limp mode.
1 = Loss of crystal causes system reset.

STSCIM — Stop Mode SCIM Clock
0 = When LPSTOP is executed, the SCIM clock is driven from the crystal oscillator and the VCO is

turned off to conserve power.
1 = When LPSTOP is executed, the SCIM clock is driven from the VCO.

M O T O R O L A
56

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

STEXT — Stop Mode External Clock
0 = When LPSTOP is executed, the CLKOUT signal is held negated to conserve power.
1 = When LPSTOP is executed, the CLKOUT signal is driven trom the SCIM clock, as determined

by the state of the STSCIM bit.

3 . 6 . 5 P e r i o d i c I n t e r r u p t T i m e r
The periodic interrupt timer (PIT) generates interrupts of specified priorities at specified intervals.
Timing for the PIT is provided by a programmable prescaler driven by the system clock.

P I C R — Periodic Interrupt Control Register 5 Y F F A 2 2

15 14 13 12 11 10 9 8 7 0

0 0 0 0 0 PIRQL PIV

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

This register contains information concerning periodic interrupt priority and vectoring. Bits [10:0]
can be read or written at anytime. Bits [15:11] are unimplemented and always return zero.

PIRQL[2:0] — Periodic Interrupt Request Level
The following table shows what interrupt request level is asserted when a periodic interrupt is
generated. If a PIT interrupt and an external IRQ of the same priority occur simultaneously, the PIT
interrupt is serviced first. The periodic timer continues to run when the interrupt is disabled.

P I R Q L In ter rupt Reques t Level
000 Periodic Interrupt Disabled
001 Interrupt Request Level 1
010 Interrupt Request Level 2
011 Interrupt Request Level 3
100 Interrupt Request Level 4
101 Interrupt Request Level 5
110 Interrupt Request Level 6
111 Interrupt Request Level 7

PIV[7:0] — Periodic Interrupt Vector
The bits of this field contain the vector generated in response to an interrupt from the periodic timer.
When the SCIM responds, the periodic interrupt vector is placed on the bus.

PITR — Periodic Interrupt Timer Register $ Y F F A 2 4

15 14 13 12 11 10 9 8 7 0

0 0 0 0 0 0 0 PTP PfTM

RESET:

O O O O O O O MODCLK 0 0 0 0 0 0 0 0

PITR contains the count value for the periodic timer. A zero value turns off the periodic timer. This
register can be read or written at any time.

PTP — Periodic Timer Prescaler Control
1 = Periodic timer clock prescaled by a value of 512
0 = Periodic timer clock not prescaled

The reset state of PTP is the complement of the state of the MODCLK signal during reset.

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

M O T O R O L A
57

PITM[7:0] — Periodic Interrupt Timing Modulus Field
This is an 8-bit timing modulus. The period of the timer can be calculated as follows:

PIT Period - (P I T Modulus) (p reScaler Value) (512)
EXTAL Frequency

where

PIT Period = Periodic interrupt timer period
PIT Modulus = Periodic interrupt timer register modulus (PITR[7:0j)
EXTAL Frequency = Crystal frequency
Prescaler Value = 512 or 1 depending on the state of the PTP bit in the PITR

3 . 7 E x t e r n a l B u s I n t e r f a c e

The external bus interface (EBI) transfers information between the internal MCU bus and external
devices when the MCU is operating in expanded modes. In fully expanded mode, the external
bus has 24 address lines and 16 data lines. In partially expanded mode, the external bus has 24
address lines and 8 data lines. Because the CPU16 uses only 20 of the 24 1MB address lines,
ADDR[23:20] are driven to the same state as ADDR19.

The EBI provides dynamic sizing between 8-bit and 16-bit data accesses. It supports byte, word,
and long-word transfers. Ports are accessed through the use of asynchronous cycles controlled
by the data transfer (SIZ1 and SIZO) and data size acknowledge pins (DSACK1 and DSACKO). In
fully expanded mode, both 8-bit and 16-bit data ports can be accessed; in partially expanded
mode, only 8-bit ports can be accessed. Multiple bus cycles may be required for a transfer to an
8-bit port.

Port width is the maximum number of bits accepted or provided during a bus transfer. External
devices must follow the handshake protocol described beiow. Control signals indicate the
beginning of the cycle, the address space, the size of the transfer, and the type of cycle. The
selected device controls the length of the cycle. Strobe signals, one for the address bus and
another for the data bus, indicate the validity of an address and provide timing information for data.
The EBI operates in an asynchronous mode for any port width.

To add flexibility and minimize the necessity for external logic, MCU chip-select logic can be
synchronized with EBI transfers. Chip-select logic can also provide internally-generated bus
control signals for these accesses. Refer to 3.11 Chip Selects for more information.

3 . 7 . 1 B u s C o n t r o l S i g n a l s

The CPU16 initiates a bus cycle by driving the address, size, function code, and read/write
outputs. At the beginning of the cycle, size signals SIZO and SIZ1 are driven along with the
function code signals. The size signals indicate the number of bytes remaining to be transferred
during an operand cycle. They are valid while the address strobe (AS) is asserted. The following
table shows SIZO and SIZ1 encoding. The read/write (R/W) signal determines the direction of the
transfer during a bus cycle. This signal changes state, when required, at the beginning of a bus
cycle, and is valid while AS is asserted. R/W only transitions when a write cycle is preceded by a
read cycle or vice versa. The signal can remain low for two consecutive write cycles.

MOTOROLA M C 6 8 H C 9 1 6 Y 1
58 M C 6 8 H C 9 1 6 Y 1 T S / D

S i z e S i g n a l E n c o d i n g
S I Z 1 S I Z O T r a n s f e r S i z e

0 1 Byte
1 0 Word
1 1 3 Byte
0 0 Long Word

3 . 7 . 2 F u n c t i o n C o d e s

Function code signals FC[2:0] are automatically generated by the CPU16. The function codes
can be considered address extensions that automatically select one of eight address spaces to
which an address applies. These spaces are designated as either user or supervisor, and
program or data spaces. Because the CPU16 always operates in supervisor mode (FC2 always =
1), address spaces 0 to 3 are not used. Address space 7 is designated CPU space. CPU space is
used for control information not normally associated with read or write bus cycles. Function codes
are valid while AS is asserted.

C P U 1 6 A d d r e s s S p a c e E n c o d i n g

F C 2 F C 1 FCO A d d r e s s S p a c e
1 0 0 Reserved
1 0 1 Data Space
1 1 0 Program Space
1 1 1 CPU Space

3 . 7 . 3 A d d r e s s B u s

Address bus signals ADDR[19:0] define the address of the most significant byte to be transferred
during a bus cycle. The MCU places the address on the bus at the beginning of a bus cycle. The
address is valid while AS is asserted. Because the CPU16 does not use ADDR[23:20], these
lines are driven to the same logic state as ADDR19.

3 . 7 . 4 A d d r e s s S t r o b e

AS is a timing signal that indicates the validity of an address on the address bus and the validity of
many control signals. It is asserted one-half clock after the beginning of a bus cycle.

3 . 7 . 5 D a t a B u s

Data bus signals DATA[15:0) comprise a bidirectional, nonmultiplexed parallel bus that transfers
data to or from the MCU. A read or write operation can transfer 8 or 16 bits of data in one bus
cycle. During a read cycle, the data is latched by the MCU on the last falling edge of the clock for
that bus cycle. For a write cycle, all 16 bits of the data bus are driven, regardless of the port width
or operand size. The MCU places the data on the data bus one-half clock cycle after AS is
asserted in a write cycle.

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

M O T O R O L A
59

3 . 7 . 6 D a t a S t r o b e

Data strobe (DS) is a timing signal. For a read cycle, the MCU asserts DS to signal an external
device to place data on the bus. DS is asserted at the same time as AS during a read cycle. For a
write cycle, DS signals an external device that data on the bus is valid. The MCU asserts DS one
lull clock cycle after the assertion of AS during a write cycle.

3 . 7 . 7 B u s C y c l e T e r m i n a t i o n S i g n a l s

During bus cycles, external devices assert the data transfer and size acknowledge signals
(DSACK1 and DSACKO). During a read cycle, the signals tell the MCU to terminate the bus cycle
and to latch data. During a write cycle, the signals indicate that an external device has successfully
stored data and that the cycle can end. These signals also indicate to the MCU the size of the port
for the bus cycle just completed. (Refer to the discussion of dynamic bus sizing.)

The bus error (BERR) signal is also a bus cycle termination indicator and can be used in the
absence of DSACK1 and DSACKO to indicate a bus error condition, it can also be asserted in
conjunction with these signals, provided it meets the appropriate timing requirements. The
internal bus monitor can be used to generate the BERR signal for internal and internal-to-external
transfers. When BERR and HALT are asserted simultaneously, the CPU16 takes a bus error
exception.

Autovector signal (AVEC) can terminate external IRQ pin interrupt acknowledge cycles. AVEC
indicates that the MCU will internally generate a vector number to locate an interrupt handler
routine. If it is continuously asserted, autovectors will be generated for all external interrupt
requests. AVEC is ignored during all other bus cycles.

3 . 7 . 8 D a t a T r a n s f e r M e c h a n i s m

The MCU architecture supports byte, word, and long-word operands, allowing access to 8- and
16-bit data ports through the use of asynchronous cycles controlled by the data transfer and size
acknowledge inputs (DSACK1 and DSACKO).

3 . 7 . 9 D y n a m i c B u s S i z i n g

The MCU dynamically interprets the port size of the addressed device during each bus cycle,
allowing operand transfers to or from 8- and 16-bit ports. During an operand transfer cycle, the
slave device signals its port size and indicates completion of the bus cycle to the MCU through the
use of the DSACKO and DSACK1 inputs, as shown in the following table.

E f f e c t o f D S A C K S i g n a l s

D S A C K 1 D S A C K O R e s u l t
1 1 Insert Wait States in Current Bus Cycle
1 0 Complete Cycle — Data Bus Port Size is 8 Bits
0 1 Complete Cycle — Data Bus Port Size is 16 Bits
0 0 Reserved

For example, if the MCU is executing an instruction that reads a long-word operand from a 16-bit
port, the MCU latches the 16 bits of valid data and then runs another bus cycle to obtain the other
16 bits. The operation for an 8-bit port is similar, but requires four read cycles. The addressed
device uses the DSACKO and DSACK 1 signals to indicate the port width. For instance, a 16-bit
device always returns DSACKO = 1 and DSACK 1 = 0 for a 16-bit port, regardless of whether the
bus cycle is a byte or word operation.

M O T O R O L A
60

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

Dynamic bus sizing requires that the portion of the data bus used for a transfer to or from a
particular port size be fixed. A 16-bit port must reside on data bus bits [15:01 and an 8-bit port
must reside on data bus bits [15:8]. This minimizes the number of bus cycles needed to transfer
data and ensures that the MCU transfers valid data.

The MCU always attempts to transfer the maximum amount of data on all bus cycles. For a word
operation, it is assumed that the port is 16 bits wide when the bus cycle begins. Operand bytes
are designated as shown in the following figure. OPO is the most significant byte of a long-word
operand, and OP3 is the least significant byte. The two bytes of a word-length operand are OPO
{most significant) and OP1. The single byte of a byte-length operand is OPO.

O p e r a n d Byte Order
31 24 23 16 15 8 7 0

Long Word OPO OP1 OP2 OP3
Three Byte OPO OP1 OP2

Word OPO OP1
Byte OPO

O p e r a n d B y t e O r d e r

3 . 7 . 1 0 O p e r a n d A l i g n m e n t

The data multiplexer establishes the necessary connections for different combinations of address
and data sizes. The multiplexer takes the two bytes of the 16-bit bus and routes them to their
required positions. Positioning of bytes is determined by the size and address outputs. SIZ1 and
SIZO indicate the remaining number of bytes to be transferred during the current bus cycle. The
number of bytes transferred is equal to or less than the size indicated by SIZ1 and SIZO,
depending on port width.

ADDRO also affects the operation of the data multiplexer. During an operand transfer,
ADDR[23:1] indicate the word base address of the portion of the operand to be accessed, and
ADDRO indicates the byte offset from the base. Bear in mind the fact that ADDR[23:20] are driven
to the same logic state as ADDR19.

3 . 7 . 1 1 M i s a l i g n e d O p e r a n d s

CPU16 processor architecture uses a basic operand size of 16 bits. An operand is misaligned
when it overlaps a word boundary. This is determined by the value of ADDRO. When ADDRO = 0
{an even address), the address is on a word and byte boundary. When ADDRO = 1 (an odd
address), the address is on a byte boundary only. A byte operand is aligned at any address; a
word or long-word operand is misaligned at an odd address.

The largest amount of data that can be transferred by a single bus cycle is an aligned word. If the
MCU transfers a long-word operand via a 16-bit port, the most significant operand word is
transferred on the first bus cycle and the least significant operand word on a following bus cycle.

The CPU16 can perform misaligned word transfers. This capability makes it software compatible
with the M68HC11 CPU. The CPU16 treats misaligned long-word transfers as two misaligned
word transfers.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
61

3 . 7 . 1 2 O p e r a n d T r a n s f e r C a s e s

The following table summarizes how operands are aligned for various types of transfers. OPn
entries are portions of a requested operand that are read or written during a bus cycle and are
defined by StZ1, SIZO, and ADDRO for that bus cycle.

O p e r a n d A l i g n m e n t

Transfer C a s e SIZ1 S I Z O A D D R O DSACK1 D S A C K O D A T A
[15 :8]

D A T A
[7 :0]

Byte to 8-Bit Port 0 1 X 1 0 OPO (OPO)
Byte to 16-Bit Port (Even) 0 1 0 0 X OPO (OPO)
Byte to 16-Bit Port (Odd) 0 1 1 0 X (OPO) OPO

Word to 8-Bit Port (Aligned) 1 0 0 1 0 OPO (OP1)

Word to 8-Bit Port (Misaligned) 1 0 1 1 0 OPO (OPO)
Word to 16-Bit Port (Aligned) 1 0 0 0 X OPO OP1

Word to 16-Bit Port (Misaligned) 1 0 1 0 X (OPO) OPO
3 Byte to 8-Bit Port (Aligned)2 1 1 0 1 0 OPO (OP1)
3 Byte to 8-Bit Port (Misaligned)2 1 1 1 1 0 OPO (OPO)
3 Byte to 16-B'rt Port (Aligned)2 1 1 0 0 X OPO OP1
3 Byte to 16-Bit Port (Misaligned)2 1 1 1 0 X (OPO) OPO
Long Word to 8-Bit Port (Aligned) 0 0 0 1 0 OPO (OP1)
Long Word to 8-Bit Port (Misaligned)3 1 0 1 1 0 OPO (OPO)
Long Word to 16-Bit Port (Aligned) 0 0 0 0 X OPO OP1
Long Word to 16-Bit Port (Misaligned)3 1 0 1 0 X (OPO) OPO
NOTES:

1. Operands in parentheses are ignored by the CPU16 during read cycles.
2. Three-byte transfer cases occur only as a result of a long word to byte transfer.
3. The CPU16 treats misaligned long-word transfers as two misaligned word transfers.

3 . 8 R e s e t

Reset procedures handle system initialization and recovery from catastrophic failure. The MCU
performs resets with a combination of hardware and software. The SCIM determines whether a
reset is valid, asserts control signals, performs basic system configuration and boot ROM selection
based on hardware mode-select inputs, then passes control to the CPU 16.

Reset occurs when an active low logic level on the RESET pin is clocked into the SCIM. Resets
are gated by the CLKOUT signal. Asynchronous resets are assumed to be catastrophic. An
asynchronous reset can occur on any clock edge. Synchronous resets are timed to occur at the
end of bus cycles. If there is no clock when RESET is asserted, reset does not occur until the
clock starts. Resets are clocked to allow completion of write cycles in progress at the time RESET
is asserted.

Reset is the highest-priority CPU16 exception. Any processing in progress is aborted by the
reset exception, and cannot be restarted. Only essential tasks are performed during reset
exception processing. Other initialization tasks must be accomplished by the exception handler
routine.

MOTOROLA
62

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

R S R — Reset Status Register $ Y F F A 0 7

15 8 7 6 5 4 3 0

NOT USED EXT POW SW HLT 0 LOC SYS TST

The reset status register contains a bit for each reset source in the MCU. A set bit indicates what type of
reset has occurred. When multiple reset sources occur at the same time, more than one bit in RSR can be
set. The reset status register is updated by the reset control logic when the MCU comes out of reset. This
register can be read at any time. A write has no effect.

EXT — External Reset
Reset was caused by an external signal.

POW — Power-Up Reset
Reset was caused by the power-up reset circuit.

SW — Software Watchdog Reset
Reset was caused by the software watchdog circuit.

HLT — Halt Monitor Reset
Reset was caused by the system protection submodule halt monitor.

LOC — Loss of Clock Reset
Reset was caused by loss of clock submodule frequency reference. This reset can only occur if the
RSTEN bit in the clock submodule is set and the VCO is enabled.

SYS — System Reset
Reset was caused by a CPU RESET instruction. Since the CPU16 has no RESET instruction, this bit
is not used, and always reads zero.

T S T — Test Submodule Reset
Reset was caused by the test submodule.

3 . 8 . 1 S C I M R e s e t M o d e S e l e c t i o n

The logic states of certain MCU pins during reset determine SCIM operating configuration. Refer
to 3 .3 O p e r a t i n g M o d e s for more information.

3 . 8 . 2 M C U M o d u l e P i n F u n c t i o n D u r i n g R e s e t

As a general rule, module pins default to port functions, and input/output ports are set to input
state. This is accomplished by disabling pin functions in the appropriate control registers, and by
clearing the appropriate port data direction registers. Refer to individual module sections in this
technical summary for more information. The following table is a summary of module pin functions
out of reset.

M C 6 8 H C 9 1 6 Y 1
M C 6 6 H C 9 1 6 Y 1 T S / D

M O T O R O L A
63

M o d u l e P i n F u n c t i o n s

M o d u l e Pin Mnemonic F u n c t i o n
ADC PADA[7:0]/AN[7:0] Discrete Input

VRH Reference Voltage

VRL Reference Voltage

CPU DSI/IPIPE1 DSI/IPIPE1
DSO/IPIPEO DSO/IPIPEO

BKPT/DSCLK BKPT/DSCLK
GPT PGP7/IC4/OC5 Discrete Input

PGP[6:3]/OC[4:1] Discrete Input
PGP[2:0]/IC[3:1] Discrete Input

PAI Discrete Input
PCLK Discrete Input

PWMA, PWMB Discrete Output
MCCI PMC7/TXDA Discrete Input

PMC6/RXDA Discrete Input
PMC5/TXDB Discrete Input
PMC4/RXDB Discrete Input

PMC3/SS Discrete Input

PMC2/SCK Discrete Input
PMC1/MOSI Discrete Input
PMCO/MISO Discrete Input

TPU TP[15:0] TPU Input

3 . 8 , 3 R e s e t T i m i n g

The RESET input must be asserted for a specified minimum period in order for reset to occur.
External RESET assertion can be delayed internally for a period equal to the longest bus cycle
time (or the bus monitor timeout period) in order to protect write cycles from being aborted by
reset. While RESET is asserted, SCIM pins are either in an inactive, high-impedance state or are
driven to their inactive states.

When an external device asserts RESET for the proper period, reset control logic clocks the
signal into an internal latch. The control logic drives the RESET pin low for an additional 512
CLKOUT cycles after it detects that the RESET signal is no longer being externally driven, to
guarantee this length of reset to the entire system.

If an internal source asserts a reset signal, the reset control logic asserts RESET for a minimum of
512 cycles. If the reset signal is still asserted at the end of 512 cycles, the control logic continues
to assert RESET until the internal reset signal is negated.

After 512 cycles have elapsed, the reset input pin goes to an inactive, high-impedance state for
10 cycles. At the end of this 10-cycle period, the reset input is tested. When the input is at logic
level one, reset exception processing begins. If, however, the reset input is at logic level zero,
the reset control logic drives the pin low for another 512 cycles. At the end of this period, the pin
again goes to high-impedance state for 10 cycles, then it is tested again. The process repeats
until RESET is released.

MOTOROLA
64

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

3 . 8 . 4 P o w e r - O n R e s e t
When the SCIM clock synthesizer is used to generate system clocks, power-on reset involves
special circumstances related to application of system and clock synthesizer power. Regardless
of clock source, voltage must be applied to clock synthesizer power input pin VDDSYN in order for
the MCU to operate. The following discussion assumes that VDDSYN IS applied before and during
reset. This minimizes crystal start-up time. When VDDSYN is applied at power-on, start-up time is
affected by specific crystal parameters and by oscillator circuit design. VDD ramp-up time also
affects pin state during reset.

During power-on reset, an internal circuit in the SCIM drives the 1MB internal and external reset
lines. The circuit releases the internal reset line as VDD ramps up to the minimum specified value,
and SCIM pins are initialized. When VDD reaches the specified minimum value, the loss of clock
oscillator begins operation. Clock frequency ramps up to the specified limp mode frequency. The
external RESET line remains asserted until the clock synthesizer PLL locks and 512 CLKOUT
cycles elapse.

The SCIM clock synthesizer provides clock signals to the other MCU modules. After the clock is
running and the internal reset signal is asserted for four clock cycles, these modules reset. VDD
ramp time and VCO frequency ramp time determine how long these four cycles take. Worst case
is approximately 15 milliseconds. During this period, module port pins may be in an indeterminate
state. While input-only pins can be put in a known state by means of external pull-up resistors,
external logic on input/output or output-only pins must condition the lines during this time. Active
drivers require high-impedance buffers or isolation resistors to prevent conflict.

3 . 8 . 5 U s e of T h r e e S t a t e C o n t r o l P i n
Asserting the three-state control (TSC) input causes the MCU to put all output drivers in an
inactive, high-impedance state. The signal must remain asserted for ten clock cycles for drivers to
change state. There are certain constraints on use of TSC during power-on reset:

When the internal clock synthesizer is used (MODCLK held high during reset), synthesizer
ramp-up time affects how long the 10 cycles take. Worst case is approximately 20
milliseconds from TSC assertion.

When an external clock signal is applied (MODCLK held low during reset), pins go to high-
impedance state as soon after TSC assertion as 10 clock pulses have been applied to the
EXTAL pin.

When TSC assertion takes effect, internal signals are forced to values that can cause inadvertent
mode selection. Once the output drivers change state, the MCU must be powered down and
restarted before normal operation can resume.

3 . 9 I n t e r r u p t s

Interrupt recognition and servicing involve complex interaction between the central processing
unit, the single-chip integration module, and a device or module requesting interrupt service.

The CPU16 provides eight levels of interrupt priority (0-7), seven automatic interrupt vectors, and
200 assignable interrupt vectors. All interrupts with priorities less than 7 can be masked by the
interrupt priority (IP) field in the condition code register. The CPU16 handles interrupts as a type
of asynchronous exception.

Interrupt recognition is based on the states of interrupt request signals IRQ[7:1] and the IP mask
value. Each of the signals corresponds to an interrupt priority. IRQ1 has the lowest priority,
and IRQ7 has the highest priority.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
6 5

The IP field consists of three bits (CCR[7:5]). Binary values %000 to %111 provide eight priority
masks. Masks prevent an interrupt request of a priority less than or equal to the mask value
(except for IRQ7) from being recognized and processed. When IP contains %000, no interrupt is
masked. During exception processing, the IP field is set to the priority of the interrupt being
serviced.

Interrupt request signals can be asserted by external devices or by microcontroller modules.
Request lines are connected internally by means of a wired NOR — simultaneous requests of
differing priority can be made. Internal assertion of an interrupt request signal does not affect the
logic state of the corresponding MCU pin.

External interrupt requests are routed to the CPU16 via the external bus interlace and SCIM
interrupt control logic. The CPU treats external interrupt requests as though they come from the
SCIM.

External IRQ[6:1] are active-low level-sensitive inputs. External IRQ7 is an active-low transition-
sensitive input. IRQ7 requires both an edge and a voltage level for validity.

IRQ[6:1] are maskable, IRQ7 is nonmaskable. The IRQ7 input is transition-sensitive in order to
prevent redundant servicing and stack overflow. A nonmaskable interrupt is generated each time
IRQ7 is asserted, and each time the priority mask changes from %111 to a lower number while
IRQ7 is asserted.

Interrupt requests are sampled on consecutive falling edges of the system clock. Interrupt
request input circuitry has hysteresis. To be valid, a request signal must be asserted for at least
two consecutive clock periods. Valid requests do not cause immediate exception processing, but
are left pending. Pending requests are processed at instruction boundaries or when exception
processing of higher-priority exceptions is complete.

The CPU16 does not latch the priority of a pending interrupt request. If an interrupt source of
higher priority makes a service request while a lower priority request is pending, the higher priority
request is serviced. If an interrupt request of equal or lower priority than the current IP mask value
is made, the CPU does not recognize the occurrence of the request in any way.

3 . 9 . 1 I n t e r r u p t A c k n o w l e d g e a n d A r b i t r a t i o n
Interrupt acknowledge bus cycles are generated during exception processing. When the CPU16
detects one or more interrupt requests of a priority higher than the interrupt priority mask value, it
performs a CPU space read from address $FFFFF : [IP]: 1.

The CPU space read cycle performs two functions: it places a mask value corresponding to the
highest priority interrupt request on the address bus, and it acquires an exception vector number
from the interrupt source. The mask value also serves two purposes: it is latched into the CCR IP
field in order to mask lower-priority interrupts during exception processing, and it is decoded by
modules that have requested interrupt service to determine whether the current interrupt
acknowledge cycle pertains to them.

Modules that have requested interrupt service decode the IP value placed on the address bus at
the beginning of the interrupt acknowledge cycle, and if their requests are at the specified IP
level, respond to the cycle. Arbitration between simultaneous requests of the same priority is
performed by means of serial contention between module interrupt arbitration (IARB) field bit
values.

M O T O R O L A
66

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

Each module that can make an interrupt service request, including the SCIM, has an IARB field in
its configuration register. An IARB field can be assigned a value from %0001 (lowest priority) to
%1111 (highest priority). A value of %0Q0Q in an IARB field causes the CPU16 to process a
spurious interrupt exception when an interrupt from that module is recognized.

Because the EBI manages external interrupt requests, the SCIM IARB value is used for arbitration
between internal and external interrupt requests. The reset value of IARB for the SCIM is %1111,
and the reset IARB value for all other modules is %0000. Initialization software must assign
different IARB values in order to implement an arbitration scheme.

Each module must have a unique IARB value. When two or more IARB fields have the same
nonzero value, the CPU16 interprets multiple vector numbers simultaneously, with unpredictable
consequences.

Arbitration must always take place, even when a single source requests service. This point is
important for two reasons: the CPU interrupt acknowledge cycle is not driven on the external bus
unless the SCIM wins contention, and failure to contend causes an interrupt acknowledge bus
cycle to be terminated by a bus error, which causes a spurious interrupt exception to be taken.

When arbitration is complete, the dominant module must place an interrupt vector number on the
data bus and terminate the bus cycle. In the case of an external interrupt request, because the
interrupt acknowledge cycle is transferred to the external bus, an external device must decode
the mask value and respond with a vector number, then generate bus cycle termination signals. If
the device does not respond in time, a spurious interrupt exception is taken.

Chip-select logic can also be used to generate internal bus termination signals in response to
external interrupt requests. Chip-select addresses match logic functions only after the EBI
transfers an interrupt acknowledge cycle to the external address bus following IARB contention.
When the CPU acknowledges an interrupt request from an internal module, chip-select logic does
not respond to the interrupt acknowledge cycle.

The periodic interrupt timer (PIT) can generate internal interrupt requests of specific priority at
predetermined intervals. By hardware convention, PIT interrupts are serviced before external
interrupt service requests of the same priority. Refer to 3 . 6 . 5 P e r i o d i c I n t e r r u p t T i m e r for
more information.

Each of the interrupt request pins can be configured for edge-detection. When a pin is used for
edge-detection, it cannot be used for external interrupt service requests. SCIM edge-detection
logic can generate an internal interrupt service request, provided proper preconditions are met.
There is only one edge-detection interrupt. By hardware convention, edge-detect interrupt
requests are serviced after both PIT and external interrupt requests. Refer to 3 . 1 0 . 3 Port F for
more information.

3 . 9 . 2 I n t e r r u p t P r o c e s s i n g S u m m a r y

A summary of the interrupt processing sequence follows. When the sequence begins, a valid
interrupt service request has been detected and is pending. Chip-select logic can be used to
generate DSACK or AVEC termination signals for external interrupt requests, but the processing
sequence is not affected.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
67

A. The CPU finishes higher priority exception processing or reaches an instruction
boundary.

B. Processor state is stacked, then the CCR PK extension field is cleared.
C . T h e i n t e r r u p t a c k n o w l e d g e c y c l e b e g i n s :

1. FC[2:0] are driven to %111 (CPU space) encoding.
2. The address bus is driven as follows. ADDR[23:20] = %1111; ADDR[19;16] =

%1111, which indicates that the cycle is an interrupt acknowledge CPU space cycle;
ADDR[15;4] - %111111111111; ADDR[3:1] = the priority of the interrupt request
being acknowledged; and ADDRO = %1.

3. Request priority is latched into the CCR IP field from the address bus.
D. Modules or external peripherals that have requested interrupt service decode the priority

value in ADDR[3:1]. If request priority is the same as the priority value in the address,
iARB contention takes place. When there is no contention, the spurious interrupt
monitor asserts BERR, and a spurious interrupt exception is processed.

E. After arbitration, the interrupt acknowledge cycle can be completed in one of three ways:
1. The dominant interrupt source supplies a vector number and DSACK signals

appropriate to the access. The CPU16 acquires the vector number.
2. The AVEC signal is asserted (the signal can be asserted by the dominant interrupt

source or the pin can be tied low), and the CPU16 generates an autovector number
corresponding to interrupt priority.

3. The bus monitor asserts BERR and the CPU16 generates the spurious interrupt
vector number.

E . T h e v e c t o r n u m b e r is c o n v e r t e d to a v e c t o r a d d r e s s .
F. The content of the vector address is loaded into the PC, and the processor transfers

control to the exception handler routine.

3 . 1 0 G e n e r a l - P u r p o s e I n p u t / O u t p u t

The SCIM contains six general-purpose input/output ports: ports A, B, E, F, G, and H. (Port C, an
output-only port, is included under the discussion of chip selects.) Ports A, B, and G are available
in single-chip mode only and port H is available in single-chip or 8-bit expanded modes only. Ports
E, F, G, and H have an associated data direction register (DDR) to configure each pin as input or
output. Ports A and B share a DDR that configures each port as input or output. Ports E and F
have associated pin assignment registers that configure each pin as digital I/O or an alternate
function. Port F has an edge-detect flag register that indicates whether a transition has occurred
on any of its pins.

T h e following table shows the shared functions of the general-purpose I/O ports and the modes
in which they are available.

G e n e r a l - P u r p o s e I / O P o r t s

Port Shared Function Modes
A ADDR[18:11] Single Chip
B ADDR[10:3] Single Chip
E Bus Control All
F IRQ[7:1]/MODCLK All
G DATA[15:8] Single Chip
H DATA[7:0] Single Chip, 8-Bit Expanded

M O T O R O L A
68

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

Access to the port A, B, E, G, and H data and data direction registers, and the port E pin
assignment register requires three clock cycles to ensure timing compatibility with external port
replacement logic. Port registers are byte-addressable and are grouped to allow coherent word
access to port data register pairs A-B and G-H, as well as word-aligned long word coherency of
A-B-G-H port data registers. Port registers are not affected by CPU reset.

If emulator mode is enabled, accesses to ports A, B, E, G, and H data and data direction registers
and port E pin assignment register are ignored, and can be replaced with external logic, such as a
Motorola port replacement unit (PRU). Port F registers remain accessible.

A write to the port A, B, E, F, G, or H data register is stored in the internal data latch. If any port pin
is configured as an output, the value stored for that bit is driven on the pin. A read of the port data
register returns the value at the pin only if the pin is configured as a discrete input. Otherwise, the
value read is the value stored in the register.

3 .10 .1 P o r t s A a n d B
Ports A and B are available in single-chip mode only. One data direction register controls data
direction for both ports. The port A and B registers can be read or written at any time the MCU is
not in emulation mode.

P O R T A — Port A Data Register $ Y F F A 0 A
P O R T B — Port B Data Register $ Y F F A 0 B

15 14 13 12 11 10 9 8 7 G 5 4 3 2 1 0

PA7 PA6 PAS PA4 PA3 PA2 PA1 PAO P87 P86 PBS | PB4 PB3 PB2 PB1 PBO

RESET:

U U U U

D D R A B — Port A/B Data
15 14 13 12

U U U U

Direction Register

11 10 9 fi

u u u u

7

U U U U

$ Y F F A 1 4

0

0 0 0 0 0 0 DDA DOB DDRE

RESET:

U U U U U U U U U U U U U U U U

DDA and DDB control the direction of the pin drivers for ports A and B, respectively, when the
pins are configured for I/O. Setting DDA or DDB configures all pins in the corresponding port as
outputs. Clearing DDA or DDB to zero configures all pins in the corresponding port as inputs.

3 . 1 0 . 2 P o r t E

Port E can be made available in all operating modes. The state of BERR and DATA8 during reset
controls whether the port E pins are used as bus control signals or discrete I/O lines.

If the MCU is in emulator mode, an access of the port E data, data direction, or pin assignment
registers (PORTE, DDRE, PEPAR) is forced to go external. This allows port replacement logic to
be supplied externally, giving an emulator access to the bus control signals.

)

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
69

P O R T E — Port E Data Register $ Y F F A 1 1 , $ Y F F A 1 3

15 8 7 6 5 4 3 2 1 0

NOT USED | PE7 PE6 PE5 PE4 PES PE2 PE1 PE0 |

RESET'
u u u u u u u u

PORTE is a single register that can be accessed in two locations. It can be read or written at any
time the MCU is not in emulator mode.

D D R E — Port E Data Direction Register $ Y F F A 1 5

15 8 7 6 5 4 3 2 1 0

DDRAB [DDE7 DDES DDES DDE4 DDE3 DDE2 DDE1 DDE0

RESET;

U U U U U U U U U U U U U U U U

The bits in this register control the direction of the pin drivers when the pins are configured as I/O.
In this register, setting a bit configures the corresponding pin as an output. Clearing a bit
configures the corresponding pin as an input. DDRE can be read or written at any time the MCU is
not in emulator mode.

P E P A R — Port E Pin Assignment Register $ Y F F A 1 7

15 8 7 6 5 4 3 2 1 0

NOT USED PEPA7 PEPA6 j PEPA5 PEPA4 PEP A3 PEPA2 PEPA1 PEP AO

RESET (Expanded, Single chip):
DATA8 DATA8 DATA8 DATA8 DATA8 DATA8 DATA8 DATA8

0 0 0 0 0 0 0 0

The bits in PEPAR control the function of each port E pin. Setting a bit defines the
corresponding pin to be a bus control signal, with the function shown in the following table.
Clearing a bit defines the corresponding pin as an I/O pin, controlled by PORTE and DDRE.

P o r t E P i n A s s i g n m e n t s

P E P A R Bit Port E Signal Bus Contro l S ignal
P E P A 7 P E 7 SIZ1

P E P A 6 PE6 S1Z0

P E P A 5 PES A S

P E P A 4 P E 4 DS

P E P A 3 P E 3 •

P E P A 2 P E 2 A V E C

P E P A 1 PE1 DSACK1

P E P A 0 PEO DSACKO

* When PEPA3 is set, the PE3 pin goes to logic level one. The CPU 16 does not support the control
function for this pin.

BERR and DATA8 control the state of this register following reset. If BERR and/or DATA8 are low
during reset, this register is set to $00, defining all port E pins as I/O pins. If BERR and DATA8 are
both high during reset, the register is set to $FF, which defines all port E pins as bus control
signals.

M O T O R O L A
70

M C 6 8 H C 9 1 6 Y 1
M C 6 B H C 9 1 6 Y 1 T S / D

3 . 1 0 . 3 Por t F
Port F pins can be configured as level-sensitive interrupt request inputs, edge-detect inputs, or
discrete inputs/outputs. The edge-detection logic can make an interrupt service request when
the specified edge is detected. In order to enable the edge-detect interrupt request, an interrupt
priority level must be specified by writing a value to the port F interrupt level register (PFLVR). The
edge-detect interrupt has the lowest hardware priority in the SCIM — both PIT and external
interrupt requests have higher priority.

P O R T F — Port F Data Register $ Y F F A 1 9 , $ Y F F A 1 B

15 8 7 6 5 4 3 2 1 0

NOT USED PF7 PF6 PF5 PF4 PF3 PF2 PF1 PF0

RESET:

U U U U U U U U

A write to the port F data register is stored in an internal data latch. If any port F pin is configured as
an output, the value stored for that bit is driven on the pin. A read of PORTF returns the value on
a pin only if the pin is configured as a discrete input. Otherwise, the value read is the value stored
in the data register.

Port F is a single register that can be accessed in two locations. It can be read or written at any
time, including when the MCU is in emulation mode.

D D R F — Port F Data Direction Register $ Y F F A 1 D

15 8 7 6 5 4 3 2 1 0

NOT USED DDF7 DDF6 DDF5 DDF4 DDF3 DDF2 DDF1 DDFQ

RESET;

0 0 0 0 0 0 0 0

The bits in this register control the direction of port F pin drivers when the pins are configured for
I/O. Setting any bit in this register configures the corresponding pin as an output. Clearing any bit
in this register configures the corresponding pin as an input.

P F P A R — Port F Pin Assignment Register $ Y F F A 1 F

15 6 7 6 5 4 3 2 1 0

NOT USED PFPA7 PFPA6 PFPA5 PFPA4 PFPA3 PFPA2 PFPA1 PFPAO

RESET (Expanded, Single chip):

DATA9 DATA9 DATA9 DATA9 DATA9 DATA9 DATA9 DATA9

0 0 0 0 0 0 0 0

The fields in this register determine the functions of pairs of port F pins, as shown in the following
table. BERR and DATA9 determine the reset state of this register. If BERR and/or DATA9 are low
during reset, PFPAR is set to $00, defining all port F pins as I/O pins. If BERR and DATA9 are
both high during reset, PFPAR is set to $FF, which defines all port F pins except PF0 as interrupt
signals.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
71

P F P A R F u n c t i o n

P F P A R Field Pin A f fec ted PFPA Bits Pin Funct ion
PFPA3 PF[7:6]/IRQ[7:6] 00 I/O pin

PFPA2 PF[5:4]/IRO[5:4] 01 Rising edge detection

PFPA1 PF[3:2]/IRQ[3:2] 10 Falling edge detection

PFPA0 PF[1:0]/lRQ1, MODCLK* 11 Interrupt request

*MODClK signal is only recognized during reset.

PORTFE — Port F Edge-Detect Flag Register

15 8

$ Y F F A 2 9

1 o

| NOT USED EF7 EF6 EF5 EF4 | ! EF3 EF2 EF1 EFO |

RESET:

When the corresponding pin is configured for edge detection, a PORTFE bit is set when an edge
is detected. PORTFE bits remain set until cleared, regardless of the subsequent state of the
corresponding pin. To clear a bit, first read PORTFE, then write the bit to zero. When a pin is
configured for general-purpose I/O, or for use as an interrupt request input, PORTFE bits do not
change state.

P F I V R — Port F Edge-Detect Interrupt Vector Register $ Y F F A 2 B

15

NOT USED PFIVR7 PFIVR6 PFIVR5 PFIVR4 PFIVR3 PFIVR2 PFIVR1 PFIVRO

RESET:

This register determines which vector in the exception vector table is used to service interrupts
generated by the port F edge-detection logic. Program PFIVR[7:0] to the appropriate interrupt
vector number. Refer to 3.9 Interrupts for more information.

P F L V R — Port F Edge-Detect Interrupt Level Register

15 8 7

$ Y F F A 2 D

i o

NOT USED 0 0 0 0 0 PFLV2 PFLV1 PFLVO |

RESET:

PFLVR determines the priority level of port F edge-detect interrupt requests. The reset value is
$00, indicating that interrupts are disabled. The port F edge-detect interrupt has the lowest
priority of SCIM interrupt sources — both PIT and external interrupt service requests take
precedence over an edge-detection interrupt.

3 . 1 0 . 4 P o r t G

Port G is available in single-chip mode only. These pins are always configured for use as general-
purpose I/O in single-chip mode.

MOTOROLA
72

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

3 . 1 0 . 5 Por t H
Port H is available in single-chip and 8-bit expanded modes only. The function of these pins is
determined by the operating mode. There is no pin assignment register associated with this port.

P O R T G — Port G Data Register $ Y F F A O C
P O R T H — Port H Data Register $ Y F F A 0 D

15 14 13 12 11 10 9 6 7 6 5 4 3 2 1 0

PG7 PGG PG5 PG4 PG3 PG2 PG1 PGO PH7 PH6 PH5 PH4 PH3 PH2 PH1 PHO

RESET:

U U U U U U U U

These port data registers can be read or v
has no effect.

D D R G — Port G Data Direction Register
D D R H — Port H Data Direction Register

15 14 13 12 11 10 9 8

U U U U U U U U

i any time the MCU is not in emulation mode. Reset

$ Y F F A 0 E
$ Y F F A 0 F

7 G 5 4 3 2 1 0

DDG7 DDG6 DDG5 DDG4 DDG3 DDG2 DDG1 DDGO DDH7 DDH6 DDH5 DDH4 DDH3 DDH2 DDH1 DDHO

RESET:

U U U U U U U U U U U U U U U U

The bits in this register control the direction of the port pin drivers when pins are configured as I/O.
Setting a bit configures the corresponding pin as an output. Clearing a bit configures the
corresponding pin as an input.

3 . 1 1 C h i p S e l e c t s
Typical microcontrollers require additional hardware to provide external chip-select signals. The
MC68HC916Y1 includes nine programmable chip select circuits that can provide 2 to 13 clock
cycle access to external memory and peripherals. Two additional chip selects, CSE and CSM,
provide emulation support. Address block sizes of 2 Kbytes to 1 Mbyte can be selected.
However, because ADDR[23:20] are driven to the same logic state as ADDR19, 512-Kbyte blocks
are the largest usable size.

Chip select assertion can be synchronized with bus control signals to provide output enable,
read/write strobes, or interrupt acknowledge signals. Logic can also generate DSACK and AVEC
signals internally. A single DSACK generator is shared by all circuits. Multiple chip selects
assigned to the same address and control must have the same number of wait states. Chip
selects can also be synchronized with the ECLK signal available on ADDR23.

When a memory access occurs, chip select logic compares address space type, address, type of
access, transfer size, and interrupt priority (in the case of interrupt acknowledge) to parameters
stored in chip select registers. If all parameters match, a chip select signal is asserted. Select
signals are active low. The following block diagram shows a single chip-select circuit.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
73

Chip-Select Circuit Block Diagram

Because initialization software usually resides in a peripheral memory device controlled by chip-
select circuits, a CSBOOT register provides default reset values to support bootstrap operation.

If a chip select function is given the same address as a microcontroller module or memory array, an
access to that address goes to the module or array, and the chip select signal is not asserted.

Each chip-seiect pin has two or more functions. Configuration out of reset is determined by
operating mode. In all modes, the boot ROM select signal is automatically asserted out of reset. In
single-chip mode, all chip select pins except CS10 and CSO are configured for alternate functions
or discrete output. In expanded modes, appropriate pins are configured for chip select operation,
but chip select signals cannot be asserted until a transfer size is chosen. In fully expanded mode,
data bus pins can be held low to enable alternate functions for chip-select pins.

M O T O R O L A
74

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

The following table shows allocation of chip selects and discrete outputs to MCU pins.

C h i p S e l e c t P i n A l l o c a t i o n

Chip Select
F u n c t i o n

A l t e r n a t e
F u n c t i o n

D iscre te O u t p u t s
F u n c t i o n

CSBOOT CSBOOT __

CSO BR —

— BG —

CSE BGACK ' —

CS3 FCO , PCO

— FC1 PC1

CS5 FC2 PC2

CS6 ADDR19 PC3

CS7 ADDR20 PC4

CS8 ADDR21 PC5

CS9 ADDR22 PC6

CS10 ADDR23 ECLK

3 . 1 1 . 1 E m u l a t i o n M o d e C h i p S e l e c t S i g n a l s

Emulation mode chip select signals are used during external register or ROM emulation. Pin
function is controlled by a chip select pin assignment register, but the other chip select registers
do not affect these signals.

During emulator mode operation, all port A, B, E, G, and H data and data direction registers, and
the port E pin assignment register, are mapped externally. The emulator chip select signal (CSE)
is asserted when any of these registers is addressed. The SCIM does not respond to these
accesses. An external device, such as a port replacement unit, can respond instead. Refer to
3 . 4 E m u l a t i o n S u p p o r t for further information.

3.11.2 Chip Select Regis ters

Pin assignment registers (CSPAR) determine the functions of chip select pins. Pin assignment
registers also determine port size (8- or 16-bit) for dynamic bus allocation.

A pin data register (PORTC) latches discrete output data.

Blocks of addresses are assigned to each chip select function. Block sizes of 2 Kbytes to 1 Mbyte
can be selected by writing values to the appropriate base address register (CSBAR). However,
because the logic state of ADDR20 is always the same as the state of ADDR19, the largest usable
block size is 512 Kbytes. Address blocks for separate chip select functions can overlap.

Chip select option registers (CSOR) determine timing of and conditions for assertion of chip
select signals. Eight parameters, including operating mode, access size, synchronization, and
wait state insertion can be specified.

Initialization code often resides in a peripheral memory device controlled by the chip select
circuits. A set of special chip select functions and registers (CSORBT, CSBARBT) is provided to
support bootstrap operation.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
75

3.11.3 Pin Assignment Registers

The pin assignment registers contain pairs of bits that determine the functions of chip select pins.
Alternate functions of the associated pins are shown in the pin assignment tables. Reset value
depends on the operating mode.

In the following register diagrams, reset values are shown in the following order: single-chip
modes, partially expanded mode, and fully expanded mode. The notation DATA# indicates that a
bit goes to the logic level of that data bus pin on reset. DATA lines have weak pull-ups. During
reset in fully expanded mode, an active external device can pull the data lines low to select
alternate functions.

CSPARO — Chip Select Pin Assignment Register 0 $YFF A44

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 | CSPA0[6) | CSPA0[5} CSPA0[4] | CSPA0[3] CSPAO(2] CSPA0(1) CSBOOT |

RESET;

0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1

0 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0

0 0 DATA2 1 0 1 DATA2 1 DATA10 1 DATA10 1 DATA2 1 1 DATAO

CSPAR0[15:14] — Not used
These bits always read zero; write has no effect.

CSPAR011 — Not used
CSPAR010 determines whether pin is FC1 or a discrete output.

CSPAR1 — Chip Select Pin Assignment Register 1 $ Y F F A 4 6

15 14 13 12 11 10 9 8 7 G 5 4 3 2 1 0

0 0 0 0 0 0 CSPA1[4] CSPA1[3] CSPA1 [2] CSPA1(1] CSPA1 [0]

RESET:

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0

0 0 0 0 0 0 DATA? 1 DATA6 1 DATA5 1 DATA4 1 DATA3 1

CSPAR1[15:10] — Not used
These bits always read zero; write has no effect.

M O T O R O L A
76

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

Pin Ass ignment Field Encoding
Bit Pair D e s c r i p t i o n

00 Discrete Output
01 Alternate Function
10 Chip Select (8-Bit Port)
11 Chip Select (16-Bit Port)

CSPARO Pin A s s i g n m e n t s
CSPARO Field CSPARO Signa l A l te rna te S igna l

CSPA0[6] CS5 FC2

CSPA0[5] — FC1
CSPA0[4] CS3 FCO

CSPA0[3] CSE BGACK
CSPA0[2] — BG
CSPA0[1] cso BR

CSBOOT CSBOOT —

C S P A R 1 Pin A s s i g n m e n t s
C S P A R 1 Field C S P A R 1 S igna l A l te rna te S igna l

CSPA1[4] CS10* ADDR23

CSPA1[3] CS9 ADDR22

CSPA1[2J CS8 ADDR21

CSPA1[1) CS7 ADDR20

CSPA1[0] CS6 ADDR19

'Clearing both CSPA1[4] select bits enables the M6800 bus clock (ECLK) on ADDR23.

A pin programmed as a discrete output drives an external signal to the value specified in the pin
data register, with the following exceptions:

a. No discrete output function is available on pins BR, BG, or BGACK.
b. ADDR23 provides ECLK output rather than a discrete output signal.

When a pin is programmed for discrete output or alternate function, internal chip select logic is
inhibited.

Port size is determined when a pin is assigned as a chip select. When a pin is assigned to an 8-bit
port, the chip select is asserted at all addresses within the block range. If a pin is assigned to a
16-bit port, the upper/lower byte field of the option register selects the byte with which the chip
select is associated.

3 . 1 1 . 4 B a s e A d d r e s s R e g i s t e r s

A base address is the starting address for the block enabled by a given chip select. Block size
determines the extent of the block above the base address. Each chip select has an associated
base register, so that an efficient address map can be constructed for each application. If a chip
select is assigned an address used by a microcontroller module, the module has priority. The chip
select does not respond to an access.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
77

CSBARBT — Chip Select Base Address Register Boot ROM $ Y F F A 4 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

I ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR I I ADDR ADDR 1 I ADDR ADDR | 1 ADDR BLKSZ
| 23 22 21 20 19 18 17 16 I | 15 14 J i 13 12 | 11

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

C S B A R 0 - C S B A R 1 0 — Chip Select Base Address Registers $ Y F F A 4 C - $ Y F F A 7 4

15 14 13 12 i i 10 9 6 7 6 5 4 3 2 1 0

ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR BLKSZ J
23 22 21 20 19 18 17 16 15 14 13 12 11 I

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The CPU16 drives ADDR[23:20] to the same logic state as ADDR19. ADDR[23:20] must match
ADDR19 for the chip select to be active.

ADDR[15:3] — Base Address Field
This field sets the starting address of a particular address space. The address compare logic uses only
the most significant bits to match an address within a block. The value of the base address must be a
multiple of block size. Base address register diagrams show how base register bits correspond to
address lines.

Because ADDR[23:20] are driven to the same logic state as ADDR19, maximum block size is 512
Kbytes — if all 24 address lines are used, addresses from $080000 to $F7FFFF are inaccessible.

BLKSZ — Block Size Field
This field determines the size of the block above the base address that must be enabled by the chip
select. The following table shows bit encoding for the base address registers block size field.

Block Size Field Block Size A d d r e s s Lines C o m p a r e d
000 2 K ADDR[23:11]
001 8 K ADDR[23:13]
010 16 K ADDR[23:14]
011 64 K ADDR[23:16]
100 128 K ADDR[23:17]
101 256 K ADDR[23:18]
110 512 K ADDR[23:19]
111 512 K ADDR[23:20]

3 . 1 1 . 5 O p t i o n R e g i s t e r s

The option registers contain eight fields that determine the timing of and conditions for assertion
of chip select signals. These fields make the chip selects useful for generating peripheral control
signals. Certain constraints set by fields in the base address register and in the option register
must be satisfied to assert a chip select signal and to provide DSACK or autovector support.

M O T O R O L A
7 8

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

C S O R B T — Chip Select Option Register Boot ROM $ Y F F A 4 A

15 14 13 12 11 10 9 6 5 4 3 1 0

MOOE BYTE [R/W STRB DSACK SPACE JPL AVEC

RESET:

0 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0

C S O R O - C S O R I O — Chip Select Option Registers $ Y F F A 4 E - $ Y F F A 7 6

15 14 13 12 11 10 9 6 5 4 3 1 0

MOOE BYTE R/W | STRB DSACK SPACE IPL AVEC

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The option register for CSBOOT, CSORBT, contains special reset values that support bootstrap
operations trom peripheral memory devices.

The following bit descriptions apply to both CSORBT and CSOR[10:0] option registers.

MODE — Asynchronous/Synchronous Mode
0 = Asynchronous mode selected
1 = Synchronous mode selected ___

In asynchronous mode, the chip select is asserted synchronized with AS or DS.

The DSACK field is not used in synchronous mode, as a bus cycle is only performed as a
synchronous operation. When a match condition occurs on a chip select programmed for
synchronous operation, the chip select signals the EBI that an E-c!ock cycle is pending.

BYTE — Upper/Lower Byte Option
This field is used only when the chip select 16-bit port option is selected in the pin assignment
register. The following table lists upper/lower byte options.

B y t e D e s c r i p t i o n
00 Disable
01 Lower Byte
10 Upper Byte
11 Both Bytes

R/W — Read/Write

This field causes a chip select to be asserted only for a read, only for a write, or for both read and write.

The following table shows the options.

R / W D e s c r i p t i o n
00 Reserved
01 Read Only
10 Write Only
11 Read/Write

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
79

STRB — Address Strobe/Data Strobe
0 = Address strobe
1 = Data strobe

This bit controls the timing for assertion of a chip select in asynchronous mode. Selecting address
strobe causes chip select to be asserted synchronized with address strobe. Selecting data strobe
causes chip select to be asserted synchronized with data strobe.

DSACK — Data Strobe Acknowledge
This field specifies the source of DSACK in asynchronous mode. It also allows the user to adjust bus
timing with internal DSACK generation by controlling the number of wait states that are inserted. This
function optimizes bus speed in a particular application. The following table shows the DSACK field
encoding. A no-wait encoding (%0000) corresponds to a three clock-cycle bus. The fast termination
encoding (%1110) corresponds to a two clock-cycle bus. The fast termination encoding is used for
two-cycle access to external memory.

D S A C K D e s c r i p t i o n
0000 No Wait States
0001 1 Wait State
0010 2 Wait States
0011 3 Wait States
0100 4 Wait States
0101 5 Wait States
0110 6 Wait States
0111 7 Wait States
1000 8 Wait States
1001 9 Wait States
1010 10 Wait States
1011 11 Wait States
1100 12 Wait States
1101 13 Wait States
1110 Fast Termination
1111 External DSACK

SPACE — Address Space
This option field is used to select an address space for the chip select logic. The CPU16 normally
operates in supervisor space. All space types can be used. Interrupt acknowledge cycles take place
in CPU space.

S p a c e
F i e l d

A d d r e s s S p a c e

00 CPU Space
01 User Space
10 Supervisor Space
11 Supervisor/User Space

MOTOROLA
80

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

IPL — Interrupt Priority Level
When the space field is set for CPU space (%00), chip select logic can be used for interrupt
acknowledge. During an interrupt acknowledge cycle, the priority level on address lines ADDR[3:1] is
compared to the value in the IPL field. If the values are the same, then a chip select signal can be
asserted, provided other option register conditions are met. When the space field has any value
except %00, the IPL field determines whether an access takes place in program or data space. The
following table shows IPL field encoding. IPL encoding only affects chip-select assertion — it has no
effect on interrupt recognition by the CPU.

IPL Space = 00 Space = 01, 10, 11
000 All priority levels Data or Program
001 Priority level 1 Data
010 Priority level 2 Program
011 Priority level 3 Reserved
100 Priority level 4 Reserved
101 Priority level 5 Data
110 Priority level G Program
111 Priority level 7 Reserved

AVEC — Autovector Enable
0 = External interrupt vector enabled
1 = Autovector enabled

This field selects one of two methods of acquiring the interrupt vector during the interrupt
acknowledge cycle. It is not usually used in conjunction with a chip select pin.

If the chip select is configured to trigger on an interrupt acknowledge cycle (SPACE = %00) and the
AVEC bit is set, the chip select automatically generates an AVEC in response to the interrupt
acknowledge cycle. Otherwise, the vector must be supplied by the requesting device.

P O R T C — Port C Data Register $ Y F F A 4 1

15 8 7 6 5 4 3 2 1 0

NOT USED 0 PC6] PC5 PC4 PC3 PC2 PC1 PC0

RESET:

0 1 1 1 1 1 1 1

The state of bits in PORTC determines the state of pins programmed as port C discrete outputs.
When a pin is assigned as a discrete output, the value in this register appears at the output.
FC[6:0] correspond to pins CS[9:3]. This is a read/write register. Bit 7 is not used. Writing to this
bit has no effect and it always reads zero.

3 . 1 1 . 6 C h i p S e l e c t R e s e t O p e r a t i o n

The reset values of the chip select pin assignment fields in CSPARO and CSPAR1 depend on the
operating mode selected. Refer to 3 . 8 . 1 S C I M R e s e t M o d e S e l e c t i o n and to the
discussion of the CSPARO and CSPAR1 registers for more information.

The CSBOOT assignment field in CSPARO is configured differently. The MSB, bit 1 of CSPARO,
is always one. This enables the CSBOOT signal to select a boot ROM containing initialization
firmware. The LSB value, determined by the logic level of DATAO during reset, selects boot ROM
port size. When DATAO is held low, port size is 8 bits. When internal connections pull the LSB
high, port size is 16 bits.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
81

After reset, the MCU fetches initialization vectors from addresses $0000 to $0006 in bank 0 of
program space. To support bootstrap operation from reset, the bits in the base address field in
CSBARBT have a reset value of zero. A ROM device containing vectors located at these
addresses can be enabled by the CSBOOT signal after a reset. The block size field in CSBARBT
has a reset value of 512 Kbytes.

The byte field in option register CSORBT has a reset value of both bytes, but CSOR[10:0] have a
reset value of disable, as they should not select external devices until an initial program sets up
the base and option registers. The following table shows the reset values in the base and option
registers for CSBOOT.

C h i p S e l e c t R e s e t V a l u e s

F i e l d Reset V a l u e
Base Address $0000 0000

BLKSZ 512 Kbyte
MODE Asynchronous Mode
BYTE Both Bytes

RAV Read/Write

STRB AS

DSACK 13 Wait States

SPACE Supervisor/User
IPL Ail

AVEC External Interrupt Vector

3 . 1 1 . 7 F a c t o r y T e s t

Test functions are integrated into the SCIM to support scan-based testing of the various MCU
modules during production. Test submodule registers are intended for Motorola use. Register
names and addresses are provided to show the user that these addresses are occupied.

S C I M T R — Single-Chip Integration Module Test Register

S C I M T R E — Single-Chip Integration Module Test Register (E Clock)

T S T M S R A — Test Module Master Shift Register A

T S T M S R B — Test Module Master Shift Register B

T S T S C — Test Module Shift Count

T S T R C — Test Module Repetition Count

C R E G — Test Module Control Register

D R E G — Test Module Distributed Register

$ Y F F A 0 2

$ Y F F A 0 8

$ Y F F A 3 0

$ Y F F A 3 2

$ Y F F A 3 4

$ Y F F A 3 6

$ Y F F A 3 8

$ Y F F A 3 A

M O T O R O L A
82

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

4 T i m e P r o c e s s o r U n i t
The time processor unit (TPU) is an intelligent, semi-autonomous microcontroller designed for
timing control. The TPU operates simultaneously with the CPU; it processes ROM instructions,
schedules tasks, performs input and output, and accesses shared data without CPU intervention.
Consequently, setup and service time for each timer event are minimized. The figure below is a
simplified block diagram of the TPU.

HOST
INTERFACE

SYSTEM
CONFIGURATION

DEVELOPMENT
SUPPORT AND TEST!

CHANNEL
CONTROL

PARAMETER
RAM

CONTROL SCHEDULER SERVICE REQUESTS

o
i z z PIN >

TCR1

TCR2
f \

A — A
DATA

\ /

MICROENGINE

CONTROL
STORE

EXECUTION
UNIT

CONTROL AND DATA 7

TIMER
1 CHANNELS •!;-•••

CHANNEL 0

CHANNEL 1

•
•
•

CHANNEL 15

IPU BLOCK

TPU Block Diagram

4 .1 O v e r v i e w
The TPU can be viewed as a special-purpose microcomputer that performs a programmable series
of two operations, match and capture. Each occurrence of either operation is called an event. A
programmed series of events is called a function. TPU functions replace software functions that
would require host CPU interrupt service. The following pre-programmed timing functions are
currently available:

• Input capture/input transition counter
• Output compare
• Pulse-width modulation
• Synchronized pulse-width modulation
• Period measurement with additional transition detect
• Period measurement with missing transition detect
• Position-synchronized pulse generator
• Stepper motor
• Period/pulse-width accumulator

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
8 3

4 . 2 P r o g r a m m e r ' s M o d e l

The TPU control register address map occupies 512 bytes. Unused registers within the 512-byte
address space return zeros when read.

T P U A d d r e s s M a p

Address 15 8 7 0
$YFFE00 TPU MODULE CONFIGURATION REGISTER (TPUMCR)
SYFFE02 TEST CONFIGURATION REGISTER (TCR)
$YFFEQ4 DEVELOPMENT SUPPORT CONTROL REGISTER (DSCR)
$YFFE06 DEVELOPMENT SUPPORT STATUS REGISTER (DSSR)
$YFFE08 TPU INTERRUPT CONFIGURATION REGISTER (TICR)
SYFFEOA CHANNEL INTERRUPT ENABLE REGISTER (CIER)
$YFFE0C CHANNEL FUNCTION SELECTION REGISTER 0 (CFSRO)
$YFFE0E CHANNEL FUNCTION SELECTION REGISTER 1 (CFSR1)
$YFFE10 CHANNEL FUNCTION SELECTION REGISTER 2 (CFSR2)
$YFFE12 CHANNEL FUNCTION SELECTION REGISTER 3 (CFSR3)
$YFFE14 HOST SEQUENCE REGISTER 0 (HSQRO)
5YFFE16 HOSTSEOUENCE REGISTER 1 (HSQR1)
$YFFE18 HOST SERVICE REQUEST REGISTER 0 (HSRRO)
$YFFE1A HOST SERVICE REQUEST REGISTER 1 (HSRR1)
$YFFE1 C CHANNEL PRIORITY REGISTER 0 (CPRO)
$YFFE1E CHANNEL PRIORITY REGISTER 1 (CPR1)
$YFFE20 CHANNEL INTERRUPT STATUS REGISTER (CISR)
$YFFE22 LINK REGISTER (LR)
$YFFE24 SERVICE GRANT LATCH REGISTER (SGLR)
$YFFE26 DECODED CHANNEL NUMBER REGISTER (DCNR)

Y - M111, where M represents the logic state of the MODMAP bit in the SCIMCR. In
M68HC16 devices, M must equal 1.

4 . 3 T P U C o m p o n e n t s

The TPU module consists of two 16-bit time bases, sixteen independent timer channels, a task
scheduler, a microengine, and a host interface. In addition, a dual-port parameter RAM is used to
pass parameters between the module and the host CPU.

4 . 3 . 1 T i m e B a s e s

Two 16-bit counters provide reference time bases for all output compare and input capture
events. Prescalers for both time bases are controlled by the host CPU via bit fields in the TPU
module configuration register (TPUMCR). Timer count registers TCR1 and TCR2 provide access
to current counter values. TCR1 and TCR2 can be read/write accessed in microcode, but are not
directly available to the host CPU. The TCR1 clock is derived from the system clock. The TCR2
clock can be derived from the system clock or from an external clock input via the T2CLK pin.

MOTOROLA
84

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

4 . 3 . 2 T i m e r C h a n n e l s
The TPU has 16 independent channels, each connected to an MCU pin. The channels have
identical hardware. Each channel consists of an event register and pin control logic. The event
register contains a 16-bit capture register, a 16-bit compare/match register, and a 16-bit greater-
than-or-equal-to comparator. The direction of each pin, either output or input, is determined by
the TPU microengine. Each channel can either use the same time base for match and capture, or
can use one time base for match and the other for capture.

4 . 3 . 3 S c h e d u l e r
When a service request is received, the scheduler determines which TPU channel is serviced by
the microengine. A channel can request service for one of four reasons: for host service, for a
link to another channel, for a match event, or for a capture event. The host system assigns each
active channel one of three priorities: high, middle, or low. When multiple service requests are
received simultaneously, a priority-scheduling mechanism grants service based on channel
number and assigned priority.

4 . 3 . 4 M i c r o e n g i n e
The microengine is composed of a control store and an execution unit. Control-store ROM holds
the microcode for each factory-masked time function. When assigned to a channel by the
scheduler, the execution unit executes microcode for a function assigned to that channel by the
host CPU. Microcode can also be executed from the TPURAM module instead of the control
store. The TPURAM module allows emulation and development of custom TPU microcode
without the generation of a microcode ROM mask. Refer to 4 . 5 Emulation S u p p o r t for more
information.

4 . 3 . 5 H o s t I n t e r f a c e
Host interface registers allow communication between the host CPU and the TPU, both before
and during execution of a time function. The registers are accessible from the 1MB through the
TPU bus interface unit.

4 . 3 . 6 P a r a m e t e r R A M
Parameter RAM occupies 256 bytes at the top of the system address map. Channel parameters
are organized as 128 16-bit words. Although all parameter word locations in RAM can be
accessed by all channels, only 100 are normally used: channels 0 to 13 use six parameter words,
while channels 14 and 15 each use eight parameter words. The parameter RAM address map
shows how parameter words are organized in memory.

The host CPU specifies function parameters by writing the appropriate RAM address. The TPU
reads the RAM to determine channel operation. The TPU can also store information to be read by
the CPU in RAM. Detailed descriptions of the parameters required by each time function are
beyond the scope of this technical summary. Refer to the TPU Reference Manual (TPURM/AD)
for more information.

For pre-programmed functions, one of the parameter words associated with each channel
contains three channel control fields. These fields perform the following functions:

PSC — Forces the output level of the pin.
PAC — For input capture, PAC specifies the edge transition to be detected. For output

comparison, PAC specifies the logic level to be output when a match occurs.
TBS — Specifies channel direction (input or output) and assigns a time base to the input

capture and output compare functions of the channel.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
85

T P U P a r a m e t e r R A M A d d r e s s M a p

C h a n n e l
N u m b e r

B a s e
A d d r e s s

P a r a m e t e r A d d r e s s C h a n n e l
N u m b e r

B a s e
A d d r e s s 0 1 2 3 4 5 6 7

0 SYFFFF— 00 02 04 06 08 OA — —

1 $YFFFF— 10 12 14 16 18 1A — —

2 $YFFFF— 20 22 24 26 28 2A — —

3 $YFFFF— 30 32 34 36 38 3A — —

4 SYFFFF— 40 42 44 46 48 4A — —

5 $YFFFF— 50 52 54 56 58 5A — —

6 $YFFFF— 60 62 64 66 68 6A — —

7 $YFFFF— 70 72 74 76 78 7A — —

8 SYFFFF— 80 82 84 86 88 8A — —

9 SYFFFF— 90 92 94 96 98 9A — —

10 $YFFFF— AO A2 A4 A6 A8 AA — —

11 SYFFFF— B0 B2 B4 B6 B8 BA — —

12 SYFFFF— CO C2 C4 C6 C8 CA — —

13 SYFFFF— DO D2 D4 D6 D8 DA — —

14 SYFFFF— E0 E2 E4 E6 E8 EA EC EE
15 SYFFFF— F0 F2 F4 F6 F8 FA FC FE

— - Not Implemented
Y - M111, where M represents the logic state of the MODMAP bit in the SC1MCR. In
M68HC16 devices, M must equal 1.

4 . 4 T P U O p e r a t i o n

All TPU functions are related to one of the two 16-bit free-running timebases. Functions are
synthesized by combining sequences of match events and capture events. Because the
primitives are implemented in hardware, the TPU can determine precisely when a match or capture
event occurs, and respond rapidly. An event register for each channel provides for simultaneity of
match/capture event occurrences on all channels.

When a match or input capture event requiring service occurs, the affected channel generates a
service request to the scheduler. The scheduler determines the priority of the request and
assigns the channel to the microengine at the first available time. The microengine performs the
function defined by the content of the control store or emulation RAM, using parameters from the
parameter RAM.

4 . 4 . 1 E v e n t T i m i n g

Match and capture events are handled by independent channel hardware. This provides an
event accuracy of one time-base clock period, regardless of the number of channels that are
active. An event normally causes a channel to request service. However, before an event can be
serviced, any pending previous requests must be sen/iced. The time needed to respond to and
service an event is determined by the number of channels requesting service, the relative
priorities of the channels requesting service, and the microcode execution time of the active
functions. Worst-case event service time (latency) determines TPU performance in a given
application. Latency can be closely estimated — see Motorola TPU Reference Manual
(TPURM/AD) for more information.

MOTOROLA
86

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

4 . 4 . 2 C h a n n e l O r t h o g o n a l i t y

Most timer systems are limited by the fixed number of functions assigned to each pin. All TPU
channels contain identical hardware and are functionally equivalent in operation, so that any
channel can be configured to perform any time function. Any function can operate on the calling
channel, and, under program control, on another channel determined by the program or by a
parameter. The user controls the combination of time functions.

4 . 4 . 3 I n t e r c h a n n e l C o m m u n i c a t i o n
The autonomy of the TPU is enhanced by the ability of a channel to affect the operation of one or
more other channels without CPU intervention. Interchannel communication can be
accomplished by issuing a link service request to another channel, by controlling another channel
directly, or by accessing the parameter RAM of another channel.

4 . 4 . 4 P r o g r a m m a b l e C h a n n e l S e r v i c e P r i o r i t y

The TPU provides a programmable service priority level to each channel. Three priority levels are
available. When more than one channel of a given priority requests service at the same time,
arbitration is accomplished according to channel number. To prevent a single high-priority
channel from permanently blocking other functions, other service requests of the same priority
are performed in channel order after the lowest-numbered, highest-priority channel is serviced.

4 . 4 . 5 C o h e r e n c y
For data to be coherent, all available portions of it must be identical in age, or must be logically
related. As an example, consider a 32-bit counter value that is read and written as two 16-bit
words. The 32-bit value is read-coherent only if both 16-bit portions are updated at the same time,
and write-coherent only if both portions take effect at the same time. Parameter RAM hardware
supports coherent access of two adjacent 16-bit parameters. The host CPU must use a long-word
operation to guarantee coherency.

4 . 5 E m u l a t i o n S u p p o r t
Although factory-programmed time functions can perform a wide variety of control tasks, they may
not be ideal for all applications. The TPU provides emulation capability that allows the user to
develop new time functions. Emulation mode is entered by setting the EMU bit in the TPUMCR.
In emulation mode, an auxiliary bus connection is made between TPURAM and the TPU module,
and access to TPURAM via the intermodule bus is disabled. A 9-brt address bus, a 32-bit data
bus, and control lines transfer information between the modules. To ensure exact emulation,
RAM module access timing remains consistent with access timing of the TPU ROM control store.

To support changing TPU application requirements, Motorola has established a TPU lunction
library. The function library is a collection of TPU functions written for easy assembly in
combination with each other or with custom functions. Refer to Motorola Programming Note
TPUPNOO/D, Using the TPU Function Library and TPU Emulation Mode for information about
developing custom functions and accessing the TPU function library. Refer to the TPU
Reference Manual (TPURM/AD) for more information about specific functions.

4 . 6 T i m e F u n c t i o n s
The following paragraphs describe factory-programmed time functions implemented in TPU
microcode ROM. A complete description of the functions is beyond the scope of this summary.
Refer to the TPU Reference Manual (TPURM/AD) for additional information.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
8 7

4 . 6 . 1 D i s c r e t e I n p u t / O u t p u t
When a pin is used as a discrete input, a parameter indicates the current input level and the
previous 15 levels of a pin. Bit 15, the most significant bit of the parameter, indicates the most
recent state. Bit 14 indicates the next most recent state, and so on. The programmer can choose
one of the three following conditions to update the parameter: 1) when a transition occurs,
2) when the CPU makes a request, or 3) when a rate specified in another parameter is matched.
When a pin is used as a discrete output, it is set high or low only upon request by the CPU.

4 . 6 . 2 I n p u t C a p t u r e / I n p u t T r a n s i t i o n C o u n t e r

Any channel of the TPU can capture the value ot a specified TCR upon the occurrence of each
transition or specified number of transitions, and then generate an interrupt request to notify the
CPU. A channel can perform input captures continually, or a channel can detect a single transition
or specified number of transitions, then cease channel activity until reinitialization. After each
transition or specified number of transitions, the channel can generate a link to a sequential block
of up to eight channels. The user specifies a starting channel of the block and the number of
channels within the block. The generation of links depends on the mode of operation. In
addition, after each transition or specified number of transitions, one byte of the parameter RAM
(at an address specified by channel parameter) can be incremented and used as a flag to notify
another channel of a transition,

4 . 6 . 3 O u t p u t C o m p a r e

The output compare (OC) function generates a rising edge, falling edge, or a toggle of the
previous edge in one of three ways:

1. Immediately upon CPU initiation, thereby generating a pulse with a length equal to a
programmable delay time.

2. At a programmable delay time from a user-specified time.
3. Continuously. Upon receiving a link from a channel, OC references, without CPU

interaction, a specifiable period and calculates an offset:

OFFSET s PERIOD * RATIO

where RATIO is a parameter supplied by the user.

This algorithm generates a 50% duty-cycle continuous square wave with each high/low
time equal to the calculated OFFSET. Due to offset calculation, there is an initial link time
before continuous pulse generation begins.

4 . 6 . 4 P u l s e - W i d t h M o d u l a t i o n

The TPU can generate a pulse-width modulation (PWM) waveform with any duty cycle from zero to
100% (within the resolution and latency capability of the TPU). To define the PWM, the CPU
provides one parameter that indicates the period and another parameter that indicates the high
time. Updates to one or both of these parameters can direct the waveform change to take effect
immediately, or coherently beginning at the next low-to-high transition of the pin.

4 . 6 . 5 S y n c h r o n i z e d P u l s e - W i d t h M o d u l a t i o n
The TPU generates a PWM waveform in which the CPU can change the period and/or high time at
any time. When synchronized to a time function on a second channel, the synchronized PWM
(SPWM) low-to-high transitions have a time relationship to transitions on the second channel.

M O T O R O L A
88

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

4 . 6 . 6 P e r i o d M e a s u r e m e n t w i t h A d d i t i o n a l T r a n s i t i o n D e t e c t
This function and the following function are used primarily in toothed-wheel speed-sensing
applications, such as monitoring rotational speed of an engine. The period measurement with
additional transition detect (PMA) function allows for a special-purpose 23-bit period
measurement. It can detect the occurrence of an additional transition (caused by an extra tooth
on the sensed wheel) indicated by a period measurement that is less than a programmable ratio of
the previous period measurement. Once detected, this condition can be counted and compared
to a programmable number of additional transitions detected before TCR2 is reset to $FFFF.
Alternatively, a byte at an address specified by a channel parameter can be read and used as a
flag. A nonzero value of the flag indicates that TCR2 is to be reset to $FFFF once the next
additional transition is detected.

4 . 6 . 7 P e r i o d M e a s u r e m e n t w i t h M i s s i n g T r a n s i t i o n D e t e c t
Period measurement with missing transition detect (PMM) allows a special-purpose 23-bit period
measurement. It detects the occurrence of a missing transition (caused by a missing tooth on the
sensed wheel), indicated by a period measurement that is greater than a programmable ratio of
the previous period measurement. Once detected, this condition can be counted and compared
to a programmable number of additional transitions detected before TCR2 is reset to $FFFF. In
addition, one byte at an address specified by a channel parameter can be read and used as a flag.
A nonzero value of the flag indicates that TCR2 is to be reset to $FFFF once the next missing
transition is detected.

4 . 6 . 8 P o s i t i o n - S y n c h r o n i z e d P u l s e G e n e r a t o r
Any channel of the TPU can generate an output transition or pulse, which is a projection in time
based on a reference period previously calculated on another channel. Both TCRs are used in
this algorithm: TCR1 is internally clocked, and TCR2 is clocked by a position indicator in the user's
device. An example of a TCR2 clock source is a sensor that detects special teeth on the flywheel
of an automobile using PMA or PMM. The teeth are placed at known degrees of engine rotation;
hence, TCR2 is a coarse representation of engine degrees, i.e., each count represents some
number of degrees.

Up to 15 position-synchronized pulse generator (PSP) function channels can operate with a
single input reference channel executing a PMA or PMM input function. The input channel
measures and stores the time period between the flywheel teeth and resets TCR2 when the
engine reaches a reference position. The output channel uses the period calculated by the input
channel to project output transitions at specific engine degrees. Because the flywheel teeth
might be 30 or more degrees apart, a fractional multiplication operation resolves down to the
desired degrees. Two modes of operation allow pulse length to be determined either by angular
position or by time.

4 . 6 . 9 S t e p p e r M o t o r
The stepper motor (SM) control algorithm provides for linear acceleration and deceleration control
of a stepper motor with a programmable number of step rates of up to 14. Any group of channels,
up to eight, can be programmed to generate the control logic necessary to drive a stepper motor.

The time period between steps (P) is defined as

P(r) = K1 - K2 • r

where r is the current step rate (1-14), and K1 and K2 are supplied as parameters.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
89

After providing the desired step position in a 16-bit parameter, the CPU issues a step request.
Next, the TPU steps the motor to the desired position through an acceleration/deceleration
profile defined by parameters. The parameter indicating the desired position can be changed by
the CPU while the TPU is stepping the motor. This algorithm changes the control state every time
a new step command is received.

A 16-bit parameter initialized by the CPU for each channel defines the output state of the
associated pin. The bit pattern written by the CPU defines the method of stepping, such as full
stepping or half stepping. With each transition, the 16-bit parameter rotates one bit. The period
of each transition is defined by the programmed step rate.

4 . 6 . 1 0 P e r i o d / P u l s e - W i d t h A c c u m u l a t o r
The period/pulse-width accumulator (PPWA) algorithm accumulates a 16-bit or 24-bit sum of
either the period or the pulse width of an input signal over a programmable number of periods or
pulses (from 1 to 255). After an accumulation period, the algorithm can generate a link to a
sequential block of up to eight channels. The user specifies a starting channel of the block and
number of channels within the block. Generation of links depends on the mode of operation.

Any channel can be used to measure an accumulated number of periods of an input signal. A
maximum of 24 bits can be used for the accumulation parameter. From 1 to 255 period
measurements can be made and summed with the previous measurement(s) before the TPU
interrupts the CPU, allowing instantaneous or average frequency measurement, and the latest
complete accumulation (over the programmed number of periods).

The pulse width (high-time portion) of an input signal can be measured (up to 24 bits) and added
to a previous measurement over a programmable number of periods (1 to 255). This provides an
instantaneous or average pulse-width measurement capability, allowing the latest complete
accumulation (over the specified number of periods) to always be available in a parameter.

By using the output compare function in conjunction with PPWA, an output signal can be
generated that is proportional to a specified input signal. The ratio of the input and output
frequency is programmable. One or more output signals with different frequencies, yet
proportional and synchronized to a single input signal, can be generated on separate channels.

M O T O R O L A
90

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

4 . 7 T P U R e g i s t e r s

The TPU memory map contains three groups of registers:

System Configuration Registers
Channel Control and Status Registers
Development Support and Test Verification Registers

4 . 7 . 1 S y s t e m C o n f i g u r a t i o n R e g i s t e r s

T P U M C R — TPU Module Configuration Register $ Y F F E 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

STOP TCR1P TCR2P EMU T2CG STF SUPV PSCK 0 0 IARB

RESET:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

STOP — Stop Bit
0 = TPU operating normally
1 = Internal clocks shut down

TCR1P — Timer Count Register 1 Prescaler Control
TCR1 is clocked from the output of a prescaler. The prescaler's input is the internal TPU system clock
divided by either 4 or 32, depending on the value of the PSCK bit. The prescaler divides this input by
1, 2, 4, or 8. Channels using TCR1 have the capability to resolve down to the TPU system clock
divided by 4.

SYSTEM
CLOCK

PRESCALER CTL BLOCK 1

P r e s c a l e r C o n t r o l 1

PSCK = 0 PSCK = 1
T C R 1 D i v i d e Number of Rate at Number of Rate at

P r e s c a l e r B y C l o c k s 16 M H z C l o c k s 16 M H z
00 1 32 2 ms 4 250 ns
01 2 64 4 ms 8 500 ns
10 4 128 8 ms 16 1 ms
11 8 256 16 ms 32 2 ms

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
91

TCR2P — Timer Count Register 2 Prescaler Control
TCR2 is clocked from the output of a prescaler If T2CG = 0, the input to the TCR2 prescaler is the
external TCR2 clock source. If T2CG = 1, the input is the TPU system clock divided by eight. The
TCR2P field specifies the value of the prescaler: 1, 2, 4, or 8. Channels using TCR2 have the
capability to resolve down to the TPU system clock divided by 8. The following table is a summary of
prescaler output.

T C R 2 P r e s c a l e r Div ide By In te rna l C lock
Div ided By

E x t e r n a l C lock
D iv ided By

00 1 8 1
01 2 16 2
10 4 32 4

11 8 64 8

EMU — Emulation Control
In emulation mode, the TPU executes microinstructions from MCU TPURAM exclusively. Access to
the TPURAM module through the 1MB by a host is blocked, and the TPURAM module is dedicated for
use by the TPU. After reset, this bit can be written only once.

0 = TPU and TPURAM not in emulation mode
1 = TPU and TPURAM in emulation mode

T2CG — TCR2 Clock/Gate Control
When the T2CG bit is set, the external TCR2 pin functions as a gate of the DIV8 clock (the TPU system
clock divided by 8). In this case, when the external TCR2 pin is low, the D1V8 clock is blocked,
preventing it from incrementing TCR2. When the external TCR2 pin is high, TCR2 is incremented at
the frequency of the DIV8 clock. When T2CG is cleared, an external clock from the TCR2 pin, which
has been synchronized and fed through a digital filter, increments TCR2.

0 = TCR2 pin used as clock source for TCR2
1 * TCR2 pin used as gate of DIV8 clock for TCR2

EXTERNAL
TCR2 PIN

INT CLK /6

SYNCHRO-
NIZER

TCR2
PRESCALER

MUX 00 + 1
CONTROL 01+2

10 + 4
11 + 8

(T2CG CONTROL BIT)
0 - A
1 - B

K
15

TCR2

PRESCALER CTL BLOCK 1

P r e s c a l e r C o n t r o l 2

STF — Stop Flag
0 * TPU operating
1 = TPU stopped (STOP bit has been asserted)

MOTOROLA M C 6 8 H C 9 1 6 Y 1
92 M C 8 8 H C 9 1 6 Y 1 T S / D

SUPV — Supervisor Data Space
0 = Assignable registers are unrestricted (FC2 is ignored)
1 = Assignable registers are restricted (FC2 is decoded)

PSCK — Prescaler Clock
0 = System clock/32 is input to TCR1 prescaler
1 = System clock/4 is input to TCR1 prescaler

lARB — Interrupt Arbitration Number
This field contains the arbitration number of the TPU that is used to arbitrate for the intermodule
bus when two or more modules or peripherals have an interrupt on the same priority level.

TICR — TPU Interrupt Configuration Register $ Y F F E 0 8

15 11 10 8 7 4 3 0

NOT USED CIRL CIBV NOT USED

RESET:

0 0 0 0 0 0 0

CIRL — Channel Interrupt Request Level
The interrupt request level for all channels is specified by this 3-bit encoded field. Level seven for this
field indicates a nonmaskable interrupt; level zero indicates that all channel interrupts are disabled.

CIBV — Channel Interrupt Base Vector
The TPU is assigned 16 unique interrupt vector numbers, one vector number for each channel. The
CIBV field specifies the most significant nibble of all 16 TPU channel interrupt vector numbers. The
lower nibble of the TPU interrupt vector number is determined by the channel number on which the
interrupt occurs.

4 . 7 . 2 C h a n n e l C o n t r o l R e g i s t e r s

C I E R — Channel Interrupt Enable Register $YFFE0A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 CH 0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CH[15:0) — Channel Interrupt Enable/Disable
0 = Channel interrupts disabled
1 = Channel interrupts enabled

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
93

C I S R — Channel Interrupt Status Register $ Y F F E 2 0

15 H 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8 CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 C H 0

RESET:

0 0 0 0 0 0 0 0

CH[15:0] — Channel Interrupt Status Bit
0 - Channel interrupt not asserted
1 = Channel interrupt asserted

C F S R O — Channel Function Select Register 0

15 12 11 8

0 0 0 0 0 0 0 0

$ Y F F E 0 C

7 4 3 0

CHANNEL 15 CHANNEL14 CHANNEL13 CHANNEL12

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C F S R 1 — Channel Function Select Register 1 $ Y F F E 0 E

15 12 11 8 7 4 3 0

CHANNEL11 CHANNEL10 CHANNEL9 CHANNEL8

RESET:

0 0 0 0 0 0 0 0

C F S R 2 — Channel Function Select Register 2
15 12 11 8

0 0 0

S Y F F E 1 0

o

CHANNEL7 CHANNELS CHANNELS CHANNEL4

RESET:

0 0 0 0 0 0 0 0

C F S R 3 — Channel Function Select Register 3
15 12 11 8

0 0 0

$ Y F F E 1 2

CHANNELS CHANNEL2 CHANNEL1 CHANNELO

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CHANNEL[15:0] — Encoded Time Function for each Channel
Encoded 4-bit fields in the channel function select registers specify one of 16 time functions to be
executed on the corresponding channel. Encodings for predefined functions are found in the table
H o s t S e r v i c e R e q u e s t a n d S e q u e n c e C o d e s .

M O T O R O L A
94

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

HSQRO — Host Sequence Register 0 $ Y F F E 1 4

15 14 13 12 11 10 9 6 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8

RESET;

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

HSQR1 — Host Sequence Register 1 $ Y F F E 1 6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 C H 0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CH[15:0] — Encoded Host Sequence
The host sequence field selects the mode of operation for the time function selected on a given
channel. The meaning of the host sequence bits depends on the time function specified. Refer to
the table, H o s t S e r v i c e R e q u e s t a n d S e q u e n c e C o d e s , which is a summary of the host
sequence and host service request bits for each predefined time function.

HSRRO — Host Service Request Register 0 $ Y F F E 1 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH 15 CH 14 CH 13 CH 12 CH 11 CH 10 CH 9 CH 8

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H S R R 1 — Host Service Request Register 1 $YFFE1 A

15 14 13 12 11 10 9 8 7 G 5 4 3 2 1 0

CH 7 CH 6 CHS CH 4 CH 3 CH 2 CH 1 C H 0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CH[15:0] — Encoded Type of Host Service
The host service request field selects the type of host service request for the time function selected
on a given channel. The meaning of the host service request bits depends on the time function
specified. The table, H o s t S e r v i c e R e q u e s t a n d S e q u e n c e C o d e s , is a summary of the host
sequence and host service request bits for each predefined time function.

A host sen/ice request field cleared to %00 signals the host that service is completed by the
microengine on that channel. The host can request service on a channel by writing the
corresponding host service request field to one of three nonzero states. The CPU should monitor
the host service request register until the TPU clears the service request to %00 before the CPU
changes any parameters or issues a new service request to the channel.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
95

I

H o s t S e r v i c e R e q u e s t a n d S e q u e n c e C o d e s

F u n c t i o n N a m * F u n c t i o n
C o d e

H o s t S e r v i c e R e q u e s t
C o d e

H o s t S e q u e n c e
C o d e *

DIO
Discrete Input/Output

$8 1» Force Output High

2 = Force Output Low

3 = Initialization, Input Spec.

3 > Initialization, Periodic Input

3 - Update Status Parameter

0 = Trans Mode — Record Pin on
Transition

0 = Trans Mode — Record Pin on
Transition

0 = Trans Mode — Record Pin on
Transition

1 a Match Mode — Record Pin at
Match_Rate

2 - Record Pin State on HSR 11
ITC
Input Capture/
Input Transition Counter

$A 0 - None
1 * Initialization
2 «(Not Implemented)
3 - (Not Implemented)

0 = No Link, Single Mode
1 - No Link, Continuous Mode
2 = Link, Single Mode
3 • Unk, Continuous Mode

OC
Output Compare

$E 0 » None
1 - Host-Initiated Pulse Mode
2 • (Not Implemented)
3 = Continuous Pulse Mode

0 = Execute All Functions
1 = Execute All Functions
2 « Only Update TCRn Parameters
3 = Only Update TCRn Parameters

PWM
Pulse-Width Modulation

$9 0 - None
1 - Immediate Update Request
2 s Initialization
3 - (Not Implemented)

(None Implemented)

SPWM
Synchronized Pulse-
Width Modulation

$7 0 - None
1 = (Not Implemented)
2 « Initialization
3 = Immediate Update Request

0 = Mode 0
1 = Model
2 -Mode 2
3 m (Not Implemented)

PMA/PMM
Period Measurement
with Additional/Missing
Transition Detect

$B 0 a None
1 = Initialization
2 * (Not Implemented)
3 - (Not Implemented)

0 - PMA Bank Mode
1 = PMA Count Mode
2 = PMM Bank Mode
3 = PMM Count Mode

PSP
Position-Synchronized
Pulse Generator

$C 0 = None
1 - Immediate Update Request
2 - Initialization
3 » Force Change

0 = Pulse Width Set by Angle
1 - Pulse Width Set by Time
2 = Pulse Width Set by Angle
3 = Pulse Width Set by Time

SM
Stepper Motor

$D 0 x None
1 - None
2 * Initialization
3 » Step Request

(None Implemented)

PPWA
Period/Pulse-Width
Accumulator

$F 0 » None
1 - (Not Implemented)
2 a Initialization
3 * (Not Implemented)

0 =* 24-Bit Period
1 - 16-Bit Period + Link
2 . 24-Bit Pulse Width
3 - 16-Bit Pulse Width + Link

MOTOROLA
96

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

CPRO — Channel Priority Register 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2

$ Y F F E 1 C

1 o

CH 15 CH 14 CH13 CH 12 CH 11 CH 10 CH 9 CH 8

RESET;

0 0 0 0 0 0

C P R 1 — Channel Priority Register 1
15 14 13 12 11 10

0 0 0 0 0 0 0 0

9 8 7 6 5 4 3 2

0 0

$ Y F F E 1 E

1 o

CH 7 CH 6 CH 5 CH 4 CH 3 CH 2 CH 1 C H 0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CH[15:0] — Encoded One of Three Channel Priority Levels

C H X [1 : 0] S e r v i c e G u a r a n t e e d T i m e S lo ts
00 Disabled —

01 Low 4 out of 7
10 Middle 2 out of 7
11 High 1 out of 7

4 . 7 . 3 D e v e l o p m e n t S u p p o r t a n d T e s t R e g i s t e r s

These registers are used for custom microcode development or for factory test. Describing the
use of the registers is beyond the scope of this technical summary. Register names and
addresses are given for reference only. Please refer to the TPU Reference Manual (TPURM/AD)
for more information.

D S C R — D e v e l o p m e n t S u p p o r t C o n t r o l R e g i s t e r $ Y F F E 0 4

D S S R — D e v e l o p m e n t S u p p o r t S t a t u s R e g i s t e r $ Y F F E 0 6

L R — L i n k R e g i s t e r $ Y F F E 2 2

S G L R — S e r v i c e G r a n t L a t c h R e g i s t e r $ Y F F E 2 4

D C N R — D e c o d e d C h a n n e l N u m b e r R e g i s t e r $ Y F F E 2 6

T C R — T e s t C o n f i g u r a t i o n R e g i s t e r $ Y F F E 0 2

The TCR is used for factory test of the MCU.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
97

5 G e n e r a l - P u r p o s e T i m e r M o d u l e
The 11-channel general-purpose timer (GPT) is used in systems where a moderate level ol CPU
control is required. The GPT consists of a capture/compare unit, a pulse accumulator, and two
pulse-width modulators. A bus interface unit connects the GPT to the intermodule bus (1MB),

IC1/PGP0 • < >

IC2/PGP1 •< >

IC3/PGP2 • < >

CAPTURE/COMPARE UNIT

PULSE ACCUMULATOR

PRESCALER

PWM UNIT

BUS INTERFACE

OC1/PGP3

OC2/OC1/PGP4

OC3/OC1^PGP5

OC4/OC1/PGP6

IC4/OC5/OC1/PGP7

• PAI

PCLK

PWMA

PWMB

GPT Block Diagram

5.1 Overview

The capture/compare unit features three input capture channels, four output compare channels,
and one channel that can be selected as an input capture or output compare channel. These
channels share a 16-bit free-running counter (TCNT) which derives its clock from a nine-stage
prescaler or from the external clock input signal, PCLK.

Pulse accumulator channel logic includes an 8-bit counter; the pulse accumulator can operate in
either event counting mode or gated time accumulation mode.

Pulse-width modulator outputs are periodic waveforms whose duty cycles can be independently
selected and modified by user software. The PWM circuits share a 16-bit free-running counter
that can be clocked by the same nine-stage prescaler used by the capture/compare unit or by the
PCLK input.

All GPT pins can also be used for general-purpose input/output. The input capture and output
compare pins form a bidirectional 8-bit parallel port (port GP). PWM pins are outputs only. PAI and
PCLK pins are inputs only.

GPT input capture/output compare pins are bidirectional and can be used to form an 8-bit parallel
port. The pulse-width modulator outputs can be used as general-purpose outputs. The PAI and
PCLK inputs can be used as general-purpose inputs.

M O T O R O L A
98

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

G P T A d d r e s s M a p

A d d r e s s 15 8 7 0
$YFF900 GPT MODULE CONFIGURATION (GPTMCR)
$YFF902 (RESERVED FOR TEST)
SYFF904 INTERRUPT CONFIGURATION (ICR)
$YFFE06 PGP DATA DIRECTION (DDRGP) PGP DATA (PORTGP)
$YFF908 OC1 ACTION MASK (OC1M) OC1 ACTION DATA (OC1D)
$YFF90A TIMER COUNTER (TCNT)
$YFF90C PA CONTROL (PACTL) PA OOUNTER (PACNT)
SYFF90E INPUT CAPTURE 1 (TIC1)
$YFF910 INPUT CAPTURE 2 (TIC2)
$YFF912 INPUT CAPTURE 3 (TIC3)
$YFF914 OUTPUT COMPARE 1 (TOC1)
SYFF916 OUTPUT COMPARE 2 (TOC2)
$YFF918 OUTPUT COMPARE 3 (TOC3)
$YFF91A OUTPUT COMPARE 4 (TOC4)
$YFF91C INPUT CAPTURE 4/OUTPUT COMPARE 5 (TWOS)
$YFF91 E TIMER CONTROL 1 (TCTL1) TIMER CONTROL 2 (TCTL2)
$YFF920 TIMER MASK 1 (TMSK1) TIMER MASK 2 (TMSK2)
$YFF922 TIMER FLAG 1 (TFLG1) TIMER FLAG 2 (TFLG2)
$YFF924 FORCE COMPARE (CFORC) PWM CONTROL C (PWMC)
$YFF926 PWM CONTROL A (PWMA) PWM CONTROL B (PWMB)
$YFF928 PWM COUNT (PWMCNT)
$YFF92A PWMA BUFFER (PWMBUFA) PWMB BUFFER (PWMBUFB)
$YFF92C GPT PRESCALER (PRESCL)

$YFF92E-
SYFF93F

RESERVED

Y « M111, where M is the logic state of the modmap (MM) bit in SC1MCR.

5 . 2 C a p t u r e / C o m p a r e U n i t

The capture/compare unit features three input capture channels, four output compare channels,
and one input capture/output compare channel (function selected by control register). These
channels share a 16-bit free-running counter (TCNT), which derives its clock from seven stages of
a 9-stage prescaler or from external clock input PCLK. This section, which is similar to the timer
found on the MC68HC11F1, also contains one pulse accumulator channel. The pulse
accumulator logic includes its own 8-bit counter and can operate in either event counting mode or
gated time accumulation mode. Refer to the following block diagrams of the GPT timer and
prescaler.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
99

(pciK y
SYSTEM
CLOCK

PRESCALER-DIVIDE BY
4,8,16,32,64,128,256
1 1 1 ! I T

1 OF 8 SELECT
I CPR2 | CPR1 | CPRO |

TCNT(HI) | TCNT(LO) I TOI

16-BIT FREE RUNNING
COUNTER

>L TOF 16-BIT FREE RUNNING
COUNTER

CFORC T1ISK1
FORCE OUTPUT INTERRUPT

COMPARE ENABLES
CAPTURE

COUPARE BLOCK

G P T T i m e r B l o c k D i a g r a m

M O T O R O L A
1 0 0

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

SYSTEM CLOCK

I
DIVIDER

<o o j ^ S5 S ^
f 7 7 ? T *¥ t

PCLK SYNCHRONIZER AND
PIN DIGITAL FILTER

•512 TO PULSE ACCUMULATOR
EXT TO PULSE ACCUMULATOR

TO PULSE ACCUMULATOR

+256

+128

+64

+32

+16

EXT

+128

+64

i-32

+16

+8

EXT

CPR2 CPR1 CPRO

SELECT

TO CAPTURE/
COMPARE

TIMER

SELECT

TO
PWM UNIT

PPR2 PPR1 PPfiO

OPT Pfl£SCAL£fl BLOCK

P r e s c a l e r B l o c k D i a g r a m

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
101

FROM
PRESCALER CLOCK

11 PWM BLOCK

P W M Uni t B l o c k D i a g r a m

5 . 3 P u l s e - W i d t h M o d u l a t o r
The pulse-width modulation submodule has two output pins. The outputs are periodic waveforms
controlled by a single frequency whose duty cycles can be independently selected and modified
by user software. Each PWM can be independently programmed to run in fast or slow mode. The
PWM unit has its own 16-bit free-running counter, which is clocked by an output of the nine-stage
prescaler (the same prescaler used by the compare/capture unit) or by the clock input pin, PCLK.

M O T O R O L A
102

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

5 . 4 G P T R e g i s t e r s

G P T M C R — GPT Module Configuration Register $ Y F F 9 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 0

STOP FRZ1 FRZO STOPP INCP 0 0 0 SUPV 0 0 0 (ARB

RESET:
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

The GPTMCR contains parameters for configuring the GPT.

STOP — Stop Clocks
0 = Internal clocks not shut down
1 = Internal clocks shut down

FRZ1 — Not implemented at this time

FRZO — FREEZE Response
0 = Ignore FREEZE
1 = FREEZE the current state of the GPT

STOPP — Stop Prescaler
0 = Normal operation
1 = Stop prescaler and pulse accumulator from incrementing. Ignore changes to input pins.

INCP — Increment Prescaler
0 = Has no meaning
1 = If STOPP is asserted, increment prescaler once and clock input synchronizers once.

SUPV — Supervisor/Unrestricted Data Space
0 = Registers with access controlled by SUPV are unrestricted (FC2 is a don't care).
1 = Registers with access controlled by SUPV are restricted when FC2 = 1.

Because the CPU16 operates in supervisor mode only (FC2 is always logic level one), this bit has no
effect.

IARB — Interrupt Arbitration Identification
The value in this field is used to arbitrate between simultaneous interrupt service requests of the same
priority. Each module that can generate interrupts has an IARB field — in order to implement an
arbitration scheme, each IARB field must be set to a different non-zero value. If an interrupt request
from a module that has an IARB field value of $0 is recognized, the CPU 16 processes a spurious
interrupt exception. The reset value of all IARB fields other than that of the SCIM is $0 (no priority), to
preclude interrupt processing during reset.

M T R — GPT Module Test Register (Reserved) $ Y F F 9 0 2

This address is currently unused and returns zeros if read. It is reserved for GPT factory test.

ICR — GPT Interrupt Configuration Register $ Y F F 9 0 4

15 12 11 10 8 7 4 3 2 1 0

1PA 0 IPL (VBA 0 0 0 0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

IPA — Interrupt Priority Adjust
Specilies which GPT interrupt source is given highest internal priority

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
103

IPL — Interrupt Priority Level
Specifies the priority level ot interrupts generated by the GPT.

IVBA — Interrupt Vector Base Address
Most significant nibble of interrupt vector numbers generated by the GPT.

D D R G P / P O R T G P — Port GP Data Direction Register/Port GP Data Register $ Y F F 9 0 6

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DDGP7 DDGP6 D0GP5 DDGP4 DDGP3 DDGP2 DDGP1 DDGP0 PGP7 PGP6 PGP5 PGP4 PGP3 PGP2 PGP1 PGP0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

When GPT pins are used as an 8-bit port, DDRGP determines whether pins are input or output
and PORTGP holds the 8-bit data.

DDRGP[7:0] — Port GP Data Direction Register
0 = Input only
1 = Output

Each bit in DDRGP determines whether the corresponding PORTGP bit is input or output.

O C 1 M / O C 1 D — 0 0 1 Action Mask Register/OC1 Action Data Register $ Y F F 9 0 8
15 11 10 9 8 7 3 2 1 0

[OC1M 0 0 0 ocio 0 0 0

RESET

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

All OC outputs can be controlled by the action of OC1. OC1M contains a mask that determines
which pins are affected. OC1D determines what the outputs are.

0C1M[5:1] — OC1 Mask Field
0 = Corresponding output compare pin is not affected by OC1 compare.
1 = Corresponding output compare pin is affected by OC1 compare,

0C1M[5:1] correspond to OC[5:1].

OC1D[5:1] — OC1 Data Field
0 = If OC1 mask bit is set, clear the corresponding output compare pin on OC1 match.
1 = If OC1 mask bit is set, set the corresponding output compare pin on OC1 match.

0C1D[5:1] correspond to OC[5:1].

T C N T — Timer Counter Register $ Y F F 9 0 A

TCNT is the 16-bit free-running counter associated with the input capture, output compare, and
pulse accumulator functions of the GPT module.

M O T O R O L A
104

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

P A C T L / P A C N T — Pulse Accumulator Control Register/Counter $ Y F F 9 0 C

15 14 13 12 11 10 9 8 7 0

PAJS PAEN PAMOD PEDGE PCIXS 14/05 PACLK PACNT

RESET:

U O O O U O 0 0 0 0 0 0 0 0 0 0

PACTL enables the pulse accumulator and selects either event counting or gated mode. In event
counting mode, PACNT is incremented each time an event occurs. In gated mode, it is
incremented by an internal clock.

PAIS — PAI Pin State (Read Only)

PAEN — Pulse Accumulator System Enable
0 = Pulse accumulator disabled
1 = Pulse accumulator enabled

PAMOD — Pulse Accumulator Mode
0 = External event counting
1 = Gated time accumulation

PEDGE — Pulse Accumulator Edge Control
The effects of PEDGE and PAMOD are shown in the following table.

P A M O D P E D G E E f f e c t
0 O PAI falling edge increments counter
0 1 PAI rising edge increments counter
1 0 Zero on PAI inhibits counting
1 1 One on PAI inhibits counting

PCLKS — PCLK Pin State (Read Only)

14/05 — Input Capture 4/Output Compare 5
0 = Output compare 5 enabled
1 = Input capture 4 enabled

PACLK[1:0] — Pulse Accumulator Clock Select (Gated Mode)

P A C L K [1 : 0] Pu lse Accumula to r C lock Se lec ted
00 System Clock Divided by 512
01 Same Clock Used to Increment TCNT
10 TOF Flag from TCNT
11 External Clock, PCLK

PACNT — Pulse Accumulator Counter
8-bit read/write counter used for external event counting or gated time accumulation.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
105

TIC[13] — Input Capture Registers 1-3 $YFF90E, $YFF910, $YFF912

The input capture registers are 16-bit read-only registers which are used to latch the value of
TCNT when a specified transition is detected on the corresponding input capture pin. They are
reset to $FFFF.

TOC[1:4] —Output Compare Registers 1 -4 $YFF914, $YFF916, $YFF918, $YFF91 A

The output compare registers are 16-bit read/write registers which can be used as output
waveform controls or as elapsed time indicators. For output compare functions, they are written to
a desired match value and compared against TCNT to control specified pin actions. They are reset
to $FFFF.

TI4/05 — Input Capture 4/Output Compare 5 Register $ Y F F 9 1 C

This register serves either as input capture register 4 or output compare register 5, depending on
the state of 14/05 in PACTL.

TCTL1/TCTL2 — Timer Control Registers 1 -2 $ Y F F 9 1 E

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OM5 0L5 0M4 OL4 0M3 OL3 0M2 0L2 EDGE4 EDGE3 EDGE2 EDGE1

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TCTL1 determines output compare mode and output logic level. TCTL2 determines the type of
input capture to be performed.

OM/OL[5:2] — Output Compare Mode Bits and Output Compare Level Bits
Each pair of bits specifies an action to be taken when output comparison is successful.

OM/OL[5:2] Action Taken
00 Timer Disconnected from Output Logic
01 Toggle OCx Output Line
10 Clear OCx Output Line to 0
11 Set OCx Output Line to 1

EDGE[4:1] — Input Capture Edge Control Bits
Each pair of bits configures input sensing logic for the corresponding input capture.

EDG E[4:1] Conf igurat ion
00 Capture Disabled
01 Capture on Rising Edge Only
10 Capture on Falling Edge Only
11 Capture on Any (Rising or Falling) Edge

M O T O R O L A
106

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

TMSK1/TMSK2 — Timer Interrupt Mask Registers 1-2 $ Y F F 9 2 0

15 14 11 10 8 7 6 5 4 3 2 0

14/051 OCI ICI TOI 0 PAOVI PAII CPROUT CPR

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TMSK1 enables OC and IC interrupts. TMSK2 controls pulse accumulator interrupts and TCNT
functions.

I4/05I — Input Capture 4/Output Compare 5 Interrupt Enable
0 = IC4/OC5 interrupt disabled
1 = IC4/OC5 interrupt requested when I4/05F flag in TFLG1 is set

OCI[4:1] — Output Compare Interrupt Enable
0 = OC interrupt disabled
1 = OC interrupt requested when OC flag set

OCI[4:1] correspond to OC[4:1].

ICI[3:1] — Input Capture Interrupt Enable
0 = IC interrupt disabled
1 = IC interrupt requested when IC flag set

ICI[3:1] correspond to IC[3:1].

TOI — Timer Overflow Interrupt Enable
0 = Timer overflow interrupt disabled
1 = Interrupt requested when TOF flag is set

PAOVI — Pulse Accumulator Overflow Interrupt Enable
0 = Pulse accumulator overflow interrupt disabled
1 = Interrupt requested when PAOVF flag is set

PAII — Pulse Accumulator Input Interrupt Enable
0 = Pulse accumulator interrupt disabled
1 = Interrupt requested when PAIF flag is set

CPROUT — Compare/Capture Unit Clock Output Enable
0 = Normal operation for OC1 pin
1 = TCNT clock driven out OC1 pin

CPR[2:0] — Timer Prescaler/PCLK Select Field
This field selects one of seven prescaler taps or PCLK to be TCNT input.

CPR[2:0] System Clock
Divide-by Factor

000 4
001 8
010 16
011 32
100 64
101 128
110 256
111 PCLK

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
107

T F L G 1 / T F L G 2 — Timer Interrupt Flag Registers 1-2 $ Y F F 9 2 2

15 14 11 10 8 7 6 5 4 3 2 1 0

I4/05F OCF ICF TOF 0 PAOVF PAF 0 0 0 0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

These registers show condition flags that correspond to various GPT events. If the
corresponding interrupt enable bit in TMSK1/TMSK2 is set, an interrupt occurs.

I4/05F — Input Capture 4/Qutput Compare 5 Flag
When 14/05 in PACTL is zero, this flag is set each time TCNT matches the value in TOC5. When 14/05
in PACTL is one, the flag is set each time a selected edge is detected at the 14/05 pin.

OCF[4:l] — Output Compare Flags
An output compare flag is set each time TCNT matches the corresponding TOC register. OCF[4:1]
correspond to OC[4:1],

1CFI3:1] — Input Capture Flags
A flag is set each time a selected edge is detected at the corresponding input capture pin. ICF[3:1]
correspond to IC[3:1],

TOF — Timer Overflow Flag
This flag is set each time TCNT advances from a value of $FFFF to $0000.

PAOVF — Pulse Accumulator Overflow Flag
This flag is set each time the pulse accumulator counter advances from a value of $FF to $00.

PAIF — Pulse Accumulator Flag
In event counting mode, this flag is set when an active edge is detected on the PAI pin. In gated time
accumulation mode, PAIF is set at the end of the timed period.

C F O R C / P W M C — Compare Force Register/PWM Control Register C $ Y F F 9 2 4

15 11 10 9 8 7 6 4 3 2 1 0

FOC 0 FPWMA FPWK€ PPROUT PPR SFA SFB F1A F1B

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Setting a bit in CFORC causes a specific output on OC or PWM pins. PWMC sets PWM operating
conditions.

FOC[5:1] — Force Output Compare
0 = Has no meaning
1 = Causes pin action programmed for corresponding OC pin, but the OC flag is not set.

FOC[5:1] correspond to OC{5:1].

FPWMA — Force PWMA Value
0 = Normal PWMA operation
1 = The value of F1A is driven out on the PWMA pin, regardless of the state of PPROUT.

M O T O R O L A
108

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

FPWMB — Force PWMB Value
0 = Normal PWMB operation
1 = The value of F1B is driven out on the PWMB pin.

PPROUT — PWM Clock Output Enable
0 = Normal PWM operation on PMWA
1 = TCNT clock driven out PWMA pin

PPR[2:0J — PWM Prescaler/PCLK Select
This field selects one of seven prescaler taps, or PCLK, to be PWMCNT input.

PPR[2:0] System Clock
Divide-by Factor

000 2
001 4
010 8
011 16
100 32
101 64
110 128
111 PCLK

SFA — PWMA Slow/Fast Select
0 = PWMA period is 256 PWMCNT increments long.
1 = PWMA period is 32768 PWMCNT increments long.

SFB — PWMB Slow/Fast Select
0 = PWMB period is 256 PWMCNT increments long.
1 = PWMB period is 32768 PWMCNT increments long.

The following table shows the effects of SF settings on PWM frequency (16.78-MHz system clock).

PPR[2:0] Prescaler Tap SFA/B = 0 SFA/B = 1
000 Div 2 - 8.39 MHz 32.8 kHz 256 Hz
001 Div 4 = 4,19 MHz 16.4 kHz 128 Hz
010 Div 8 = 2.10 MHz 8.19 kHz 64.0 Hz
011 Div 16 =1.05 MHz 4.09 kHz 32.0 Hz
100 Div 32 = 524 kHz 2.05 kHz 16.0 Hz
101 Div 64 = 262 kHz 1.02 kHz 8.0 Hz
110 Div 128= 131 kHz 512 Hz 4.0 Hz

111 PCLK PCLK/256 PCLK/32768

F1A — Force Logic Level One on PWMA
0 = Force logic level zero output on PWMA pin
1 « Force logic level one output on PWMA pin

F1B — Force Logic Level One on PWMB
0 « Force logic level zero output on PWMB pin
1 = Force logic level one output on PWMB pin

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
109

P W M A / P W M B — PWM Control Registers A/B $ Y F F 9 2 6 , $ Y F F 9 2 7

These registers are associated with the pulse-width value of the PWM output on the
corresponding PWM pin. A value ol $00 loaded into one of these registers results in a
continuously low output on the corresponding pin. A value of $80 results in a 50% duty cycle
output. Maximum value ($FF) selects an output that is high for 255/256 of the period.

P W M C N T — PWM Count Register $ Y F F 9 2 8

PWMCNT is the 16-bit free-running counter associated with the PWM functions of the GPT
module.

P W M B U F A / B — PWM Buffer Registers A/B $ Y F F 9 2 A , $ Y F F 9 2 B

These read-only registers contain values associated with the duty cycles of the corresponding
PWM. Reset state is $0000.

P R E S C L — GPT Prescaler $ Y F F 9 2 C

The 9-bit prescaler value can be read from bits [8:0] at this address. Bits [15:9] always read as
zeros. Reset state is $0000.

M O T O R O L A
110

M C 6 8 H C & 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

6 A n a l o g - t o - D i g i t a l C o n v e r t e r M o d u l e
The ADC is a unipolar, successive-approximation converter with eight modes of operation. It has
selectable 8- or 10-bit resolution, Monotonicity is guaranteed in both modes. A block diagram ot
the ADC module follows.

RC DAC ARRAY
AND

COMPARATOR

MODE
AND

TIMING
CONTROL

SAR

RESULT 0

RESULT 1

RESULT 2

RESULT 3

RESULT 4

RESULT 5

RESULT 6

RESULT 7

ANALOG
MUX

AND SAMPLE
BUFFER AMP

RESERVED
RESERVED
RESERVED
RESERVED

V R H
VRL

(Vrh-VRL>'2
RESERVED

PORT ADA DATA
REGISTER

< - 4 -

s u p p l y

VRH
vE, REFERENCE

HL

AN7/PADA7
AN6/PADA6
AN5/PADA5
AN4/PADA4
AN3/PADA3
AN2/PADA2
AN1/PADA1
ANO/PADAO

l INTERNAL
CONNECTIONS

CLK SELECT/
PRESCALE

1
ADC BUS

INTERFACE UNIT

INTERMODULE BUS (1MB)

A n a l o g - t o - D l g i t a l C o n v e r t e r B l o c k D i a g r a m

6 . 1 O v e r v i e w

ADC module conversion functions can be grouped into three basic subsystems: an analog front
end, a digital control section, and result storage. In addition to use as multiplexer inputs, the eight
analog inputs can be used as a general-purpose digital input port (Port ADA), provided signals are
within logic level specification.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
111

A D C M o d u l e A d d r e s s M a p

A d d r e s s 15 8 7 0
$YFF700 MODULE CONFIGURATION (ADCMCR)
$YFF702 FACTORY TEST (ADTEST)
$YFF704 (RESERVED)
$YFF706 PORT ADA DATA (PORTADA)
$YFF708 (RESERVED)
$YFF70A ADC CONTROL 0 (ADCTLO)
$YFF70C ADC CONTROL 1 (ADCTL1)
$YFF70E ADC STATUS (ADSTAT)
$YFF710 RIGHT-JUSTIFIED UNSIGNED RESULT 0 (RJURRO)
$YFF712 RIGHT-JUSTIFIED UNSIGNED RESULT 1 (RJURR1)
$YFF714 RIGHT-JUSTIFIED UNSIGNED RESULT 2 (RJURR2)
$YFF716 RIGHT-JUSTIFIED UNSIGNED RESULT 3 (RJURR3)
$YFF718 RIGHT-JUSTIFIED UNSIGNED RESULT 4 (RJURR4)
$YFF71A RIGHT-JUSTIFIED UNSIGNED RESULT 5 (RJURR5)
$YFF71 C RIGHT-JUSTIFIED UNSIGNED RESULT 6 (RJURR6)
$YFF71 E RIGHT-JUSTIFIED UNSIGNED RESULT 7 (RJURR7)
$YFF720 LEFT-JUSTIFIED SIGNED RESULT 0 (USRRO)
$YFF722 LEFT-JUSTIFIED SIGNED RESULT 1 (LJSRR1)
$YFF724 LEFT-JUSTIFIED SIGNED RESULT 2 (USRR2)
$YFF726 LEFT-JUSTIFIED SIGNED RESULT 3 (USRR3)
$YFF728 LEFT-JUSTIFIED SIGNED RESULT 4 (USRR4)
SYFF72A LEFT-JUSTIFIED SIGNED RESULT 5 (USRR5)
$YFF72C LEFT-JUSTIFIED SIGNED RESULT 6 (USRR6)
$YFF72E LEFT-JUSTIFIED SIGNED RESULT 7 (USRR7)
$YFF730 LEFT-JUSTIFIED UNSIGNED RESULT 0 (UURRO)
SYFF732 LEFT-JUSTIFIED UNSIGNED RESULT 1 (UURR1)
$YFF734 LEFT-JUSTIFIED UNSIGNED RESULT 2 (UURR2)
$YFF736 LEFT-JUSTIFIED UNSIGNED RESULT 3 (UURR3)
$YFF738 LEFT-JUSTIFIED UNSIGNED RESULT 4 (UURR4)
$YFF73A LEFT-JUSTIFIED UNSIGNED RESULT 5 (UURR5)
$YFF73C LEFT-JUSTIFIED UNSIGNED RESULT 6 (UURR6)
$YFF73E LEFT-JUSTIFIED UNSIGNED RESULT 7 (UURR7)

Y = M111, where M is the logic state of the modmap (MM) bit in the SCIMCR

6 . 2 A n a l o g S u b s y s t e m

The analog front end consists of a multiplexer, a buffer amplifier, a resistor-capacitor (RC) array,
and a high-gain comparator. The multiplexer selects one of eight internal or eight external signal
sources for conversion. The buffer amplifier protects the input channel from the relatively large
capacitance of the RC array. The resistor capacitor array performs two functions. It acts as a
sample/hold circuit, and it provides the digital-to-analog comparison output necessary for
successive approximation conversion. The comparator indicates whether each successive
output of the RC array is higher or lower than the sampled input.

M O T O R O L A
112

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

6 . 3 D i g i t a l C o n t r o l S u b s y s t e m

The digital control section includes conversion sequence control logic, channel and reference
select logic, successive approximation register, eight result registers, a port data register, and
control/status registers. It controls the multiplexer and the output of the RC array during the
sample and conversion periods, stores the results of comparison in the successive-approximation
register, then transfers the result to a result register.

6 . 4 B u s I n t e r f a c e S u b s y s t e m

The bus interface contains logic necessary to interface the ADC to the intermodule bus. The ADC
is designed to act as a slave device on the bus. The interface must respond with appropriate bus
cycle termination signals and supply appropriate interface timing to the other submodules.

6 . 5 A D C R e g i s t e r s

A D C M C R — Module Configuration Register $ Y F F 7 0 0

15 14 13 12 8 7 6 0

STOP FRZ NOT USED SUPV NOT USED

RESET:

1 0 0 1

The module configuration register is used to initialize the ADC.

STOP — STOP Mode
0 = Normal operation
1 = Low-power operation

STOP places the ADC in low-power state by disabling the ADC clock and powering down the analog
circuitry. Setting STOP aborts any conversion in progress. STOP is set to logic level one at reset, and
can be cleared to logic level zero by the CPU.

Clearing STOP enables normal ADC operation. However, because analog circuitry bias current has
been turned off, there is a period of recovery before output stabilization.

FRZ[1:0J — Freeze 1
The FRZ field is used to determine ADC response to assertion of the FREEZE signal. The following
table shows possible responses.

FRZ Response
00 Ignore IFREEZE
01 Reserved
10 Finish conversion, then freeze
11 Freeze immediately

SUPV — Supervisor/Unrestricted
0 = Unrestricted access
1 = Supervisor access

SUPV defines access to assignable ADC registers. Because the CPU16 operates in supervisor mode
only, this bit has no effect.

A D T E S T — ADC Test Register $ Y F F 7 0 2

ADTEST is used with the SCIM test register for factory test of the ADC.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
113

P O R T A D A — Port ADA Data Register $ Y F F 7 Q 6

15

NOT USED PADA7 PADA6 PADA5 PADA4 PADA3 PADA2 PADA1 PAD AO

RESET:

INPUT DATA

PADA[7:0] — Port ADA Data
A read of PADA[7:0] returns the logic level of the port A pins. When the input is outside the defined
levels, the read is indeterminate. Use of a port A pin for digital input does not preclude its use as an
analog input.

A D C T L O — A /D Control Register 0 $ Y F F 7 0 A

15 8 7 6 5 4 0

NOT USED RES10 STS PRS

RESET:

0 0 0 0 0 0 1 1

ADCTLO is used to select ADC clock source and to set up prescaling. Writes to it have immediate
effect.

RES10 — 10-Bit Resolution
0 = 8-bit conversion
1 = 10-bit conversion

Conversion results are appropriately aligned in result registers to reflect conversion status.

STS[1:0] — Sample Time Select Field
The STS field is used to select one of four sample times, as shown in the following table.

S T S [1 : 0] S a m p l e T ime
00 2 A/D Clock Periods
01 4 A/D Clock Periods
10 8 A/D Clock Periods
11 16 A/D Clock Periods

PRS[4:0] — Prescaler Rate Selection Field
ADC clock is generated from system clock using a modulo counter and a divide-by-two circuit. The
binary value of this field is the counter modulus. System clock is divided by the PRS value plus one,
then sent to the divide-by-two circuit, as shown in the following table. Maximum ADC clock rate is
2 MHz. Reset value of PRS is a divisor value of eight. This translates to a nominal 2-MHz ADC clock.

P R S [4 : 0] Div isor Va lue
00000 Reserved

00001 4
00010 6

11101 60
11110 62
11111 64

M O T O R O L A
114

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

A0CTL1 — A/D Control Register 1 $YFF70C

15 7 6 5 4 3 2 1 0

NOT USED SCAN MULT S8CM CD CC CB CA

RESET:
0 0 0 0 0 0 0

ADCTL1 is used to initiate A/D conversion. It is also used to select conversion modes and
conversion channel. It can be written or read at any time. A write to ADCTL1 initiates a conversion
sequence. If a conversion sequence is already in progress, a write to ADCTL1 aborts it and resets
the SCF and CCF flags in the A/D status register.

SCAN — Scan Mode Selection Bit
0 = Single conversion sequence
1 = Continuous conversion

Length of conversion sequence(s) is determined by S8CM.

MULT — Multichannel Conversion Bit
0 = Conversion sequence(s) run on single channel (channel selected through [CD:CA])
1 = Sequential conversion of a block of four or eight channels (block selected through [CD:CA])

Length of conversion sequence(s) is determined by S8CM.

S8CM — Select Eight-Conversion Sequence Mode
0 = Four-conversion sequence
1 = Eight-conversion sequence

This bit determines the number of conversions in a conversion sequence.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
115

[CD:CA] — Channel Selection Field
The bits in this field are used to select an input or block of inputs for A/D conversion.

The following table summarizes the operation of S8CM and [CD:CA] when MULT is cleared
(single-channel mode). Number of conversions per channel is determined by SCAN.

S 8 C M C D c c C B C A I n p u t Resul t Reg is te r
0 0 0 0 0 ANO RSLT[0:3]
0 0 0 0 1 AN1 RSLT[0:3]
0 0 0 1 0 AN2 RSLT[0:3]
0 0 0 1 1 AN3 RSLT[0:3]
0 0 1 0 0 AN4 RSLT[0:3]
0 0 1 0 1 AN5 RSLT[0;3]
0 0 1 1 0 AN 6 RSLT[0:3]
0 0 1 1 1 AN7 RSLT[0:3]
0 0 0 0 Reserved RSLT[0:3]
0 0 0 1 Reserved RSLT[0:3]
0 0 1 0 Reserved RSLT[0:3]
0 0 1 1 Reserved RSLT[0:3]
0 1 0 0 VRH RSLT[0:3]

0 1 0 1 VRL RSLT[0:3]
0 1 1 0 (V R H - V R L) / 2 RSLT[0:3]

0 1 1 1 Test/Reserved RSLT[0:3]
0 0 0 0 ANO RSLT[0:7]
0 0 0 1 AN1 RSLT[0:7]
0 0 1 0 AN2 RSLT[0:7]
0 0 1 1 AN3 RSLT[0:7]
0 1 0 0 AN4 RSLT[0:7]
0 1 0 1 AN5 RSLT[0:7]
0 1 1 0 AN6 RSLT[0:7]
0 1 1 1 AN7 RSLT[0:7|

0 0 0 Reserved RSLT[0:7]

0 0 1 Reserved RSLT[0:7]
0 1 0 Reserved RSLT[0:7]
0 1 1 Reserved RSLT[0:7|
1 0 0 VRH RSLT[0:7]

1 0 1 VRL RSLT[0:7]

1 1 0 (V R H - V R L) / 2 RSLT[0:7]

1 1 1 Test/Reserved RSLT[0:7]

MOTOROLA
116

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y1 T S / D

The following table is a summary of the operation of S8CM and [CD:CA] when MULT is set (multi-
channel mode). Number of conversions per channel is determined by SCAN. Channel numbers
are given in order of conversion.

S 8 C M C D c c C B C A I n p u t Resu l t Reg is te r
0 0 0 X X ANO RSLTO

AN1 RSLT1
AN2 RSLT2
AN3 RSLT3

0 0 1 X X AN4 RSLTO
AN5 RSLT1
AN6 RSLT2
AN7 RSLT3

0 1 0 X X Reserved RSLTO
Reserved RSLT1
Reserved RSLT2
Reserved RSLT3

0 1 1 X X VRH RSLTO

VRL RSLT1
(V R H _ V R L) / 2 RSLT2
Test/Reserved RSLT3

1 0 X X X ANO RSLTO
AN1 RSLT1
AN2 RSLT2
AN3 RSLT3
AN4 RSLT4
AN5 RSLT5
AN 6 RSLT6
AN 7 RSLT7

1 1 X X X Reserved RSLTO
Reserved RSLT1
Reserved RSLT2
Reserved RSLT3

VRH RSLT4

VRL RSLT5
(V R H - V R L) / 2 RSLT6
Test/Reserved RSLT7

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
117

A D S T A T — ADC Status Register $ Y F F 7 0 E

15 14 11 10 8 7 0

SCF NOT USEO CCTR CCF

RESET:

0 0 0 0 0 0 0 0 0 0 0 0

ADSTAT contains information related to the status of a conversion sequence.

SCF — Sequence Complete Flag
0 = Sequence not complete
1 = Sequence complete

SCF is set at the end of the conversion sequence when SCAN is cleared, and at the end of the first
conversion sequence when SCAN is set. SCF is cleared when ADCTL1 is written and a new
conversion sequence begins.

CCTR[2:0] — Conversion Counter Field
This field reflects the contents of the conversion counter pointer in either four or eight count
conversion sequence. The value corresponds to the number of the next result register to be written,
and thus indicates which channel is being converted.

CCF[7:0] — Conversion Complete Field
Each bit in this field corresponds to an A/D result register (CCF7 to RSLT7, etc.). A bit is set when
conversion for the corresponding channel is complete, and remains set until the result register is read.
It is cleared when the register is read.

R S L T 0 - R S L T 7 — A/D Result Registers $ Y F F 7 1 0 - $ Y F F 7 3 E

The result registers store data after conversion is complete. Each register can be read from three
different addresses in the register block. Data format depends on the address from which the
result register is read.

R J U R R — Unsigned Right-Justified Format $ Y F F 7 1 0 - $ Y F F 7 1 F

Conversion result is unsigned right-justified data. Bits [9:0] are used for 10-bit resolution, bits
[7:0] are used for 8-bit conversion (bits [9:8] are zero). Bits [15:10] always return zero when read.

L J S R R —Signed Left-Justified Format $ Y F F 7 2 0 - $ Y F F 7 2 F

Conversion result is signed left-justified data. Bits [15:6] are used for 10-bit resolution, bits [15:8]
are used for 8-bit conversion (bits [7:6] are zero). Although the ADC is unipolar, it is assumed that
the zero point is halfway between low and high reference when this format is used. For positive
input, bit 15 = 0, for negative input, bit 15 = 1. Bits [5:0] always return zero when read.

L J U R R — Unsigned Left-Justified Format $ Y F F 7 3 0 - $ Y F F 7 3 F

Conversion result is unsigned left-justified data. Bits [15:6] are used for 10-bit resolution, bits
[15:8] are used for 8-bit conversion (bits [7:6] are zero). Bits [5:0] always return zero when read.

M O T O R O L A
118

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

7 M u l t i c h a n n e l C o m m u n i c a t i o n I n t e r f a c e
The MCCI contains three serial interfaces; two serial communication interfaces (SCI) and a serial
peripheral interface (SPI), Refer to the following block diagram of the MCCI.

INTERMODULE BUS (1MB)

1
BUS INTERFACE UNIT

SERIAL PERIPHERAL
INTERFACE

(SPI)

SERIAL COMMUNICATION
INTERFACE

(SCIB)

SERIAL COMMUNICATION
INTERFACE

(SCIA)

PORT
MCCI

MISO/PMCO
MOSI/PMC1
SCK/PMC2
SS/PMC3

RXDB/PMC4
TXDB/PMC5

RXDA/PMC6
TXDA/PMC7

MCCIBUOCK

MCCI Block Diagram

7 . 1 O v e r v i e w

The two SCI interfaces in the MCCI provide serial communication via a standard nonreturn to zero
(NRZ) mark/space format. Either SCI can operate in full or half-duplex mode. There are separate
transmitter and receiver enable bits and dual data buffers for each SCI. A modulus-type baud rate
generator provides rates from 64 to 524 kbaud (with a 16.78-MHz system clock). Word length of
either eight or nine bits is software selectable. Optional parity generation and detection provide
either even or odd parity check capability. Advanced error detection circuitry catches glitches of
up to 1/16 of a bit time in duration. Wakeup functions allow the CPU to run uninterrupted until
meaningful data is available.

The SPI provides easy peripheral expansion or interprocessor communication through a full-
duplex, synchronous, three-line bus; data in, data out, and a serial clock. The SPI is compatible
with SPI interfaces found in other Motorola devices, but contains enhanced operational features,
such as programmable shift direction.

MCCI pins can also be configured for use in 8-bit general-purpose I/O port MC.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
1 1 9

M C C I A d d r e s s M a p

Address 15 8 7 0
$YFFC00 MCCI MODULE CONFIGURATION REGISTER (MMCR)
$YFFC02 MCCI TEST REGISTER (MTEST)
$YFFC04 SCI INTERRUPT REGISTER (ILSCI) SCI INTERRUPT VECTOR

REGISTER (MIVR)
$YFFC06 SPI INTERRUPT REGISTER (ILSPI) RESERVED
$YFFC08 RESERVED PORTMC PIN ASSIGNMENT

REGISTER (PMCPAR)
$YFFC0A RESERVED PORTMC DATA DIRECTION

REGISTER (DDRMC)
$YFFC0C RESERVED PORTMC DATA REGISTER

(PORTMC)
$YFFCOE RESERVED MCCI PORT PIN STATE REGISTER

(PORTMCP)
$YFFC10-
$YFFC16

RESERVED

$YFFC18 SCIA CONTROL REGISTER 0 (SCCROA)
SYFFC1A SCIA CONTROL REGISTER 1 (SCCR1A)
$YFFC1C SCIA STATUS REGISTER (SCSRA)
$YFFC1 E SCIA DATA REGISTER (SCDRA)
$YFFC20-
$YFFC26

RESERVED

$YFFC28 SCIB CONTROL REGISTER 0 (SCCROB)
$YFFC2A SCIB CONTROL REGISTER 1 (SCCR1B)
$YFFC2C SCIB STATUS REGISTER (SCSRB)
SYFFC2E SCIB DATA REGISTER (SCDRB)
$YFFC30-
$YFFC36

RESERVED

$YFFC38 SPI CONTROL REGISTER (SPCR)
$YFFC3A RESERVED
$YFFC3C SPI STATUS REGISTER (SPSR)
$YFFC3E SPI DATA REGISTER (SPDR)

Y« M111, where M is the logic state of the modmap (MM) bit in the SCIMCR

7 . 2 M C C I R e g i s t e r s

MCCI registers are divided Into four categories: MCCI global registers, MCCI pin control registers,
SCI registers, and SPI registers. SPI and SCI registers are defined in separate sections later.
Writes to unimplemented register bits have no meaning or effect, and reads from unimplemented
bits always return a logic zero value.

The modmap bit of the single-chip integration module configuration register (SCIMCR) defines
the most significant bit (ADDR23) of the address, shown in each register diagram as Y. This bit,
concatenated with the rest of the address given, forms the absolute address of each register.
The CPU16 drives ADDR[23:20] to the same logic state as ADDR19, and Y must equal $F. Refer
to 3 S i n g l e - C h i p I n t e g r a t i o n M o d u l e for more information about how the state of MM affects
the system.

M O T O R O L A
120

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

7 . 2 . 1 M C C I G l o b a l R e g i s t e r s
Global registers contain parameters used to interface the MCCI with the rest of the MCU.
Parameters in global registers affect both the SPI and the SCI as well as the MCCI as a whole.

M M C R — MCCI Configuration Register $ Y F F C Q 0

15 14 8 7 6 4 3 0

STOP NOT USED SUPV NOT USED IARB

RESET:

0 1 0 0 0 0

STOP ' — Stop Enable
0 = Normal MCCI clock operation
1 = MCCI clock operation stopped

STOP places the MCCI into a low power state by disabling the system clock in most parts of the
module. MMCR is the only register guaranteed to be readable while STOP is asserted. STOP can be
negated by the CPU and by reset.

SUPV — Supervisor/Unrestricted
0 = Unrestricted access
1 = Supervisor access

In systems with controlled access levels, SUPV places assignable registers in either supervisor-only
data space or unrestricted data space. All MCCI registers reside in supervisor-only space. Because
the CPU16 operates only in supervisor mode, SUPV has no meaning.

IARB — Interrupt Arbitration Identification Number
The value in this field is used to arbitrate between simultaneous interrupt service requests of the same
priority. Each module that can generate interrupts has an IARB field. In order to implement an
arbitration scheme, each IARB field must be set to a different non-zero value. If an interrupt request
from a module that has an IARB field value of $0 is recognized, the CPU 16 processes a spurious
interrupt exception. The reset value of all IARB fields other than that of the SCIM is $0 (no priority), to
preclude interrupt processing during reset.

M T E S T — MCCI Test Register $ Y F F C 0 2

MTEST is used in conjunction with SCIM test functions during factory test of the MCCI. Accesses
to MTEST must be made while the MCU is in test mode.

I L S C I / M I V R — SCI Interrupt Request Level Register/MCCI Interrupt Vector Register $ Y F F C 0 4

15 14 13 11 10 8 7 2 1 0

0 0 ILSCIB ILSCIA MtVR • •

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
'Supplied by MCCI

ILSCI determines the priority level of interrupts requested by each SCI. Separate fields hold
interrupt priority values for SCI A and SCIB. Priority determines which interrupt is serviced first
when two or more modules or external peripherals request an interrupt simultaneously.

1LSCIA, ILSCIB — Interrupt Level for SCIA, SCIB
ILSCIA and ILSCIB determine the priority levels of SCIA and SCIB interrupts, respectively. This field
must contain a value between $1 (lowest priority) and $7 (highest priority) for interrupts to be
recognized.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
121

MIVR — MCCI Interrupt Vector Register
MIVR determines which vector the CPU uses to service an MCCI interrupt after it is acknowledged. At
reset, MIVR is initialized to $0F, which corresponds to the uninitialized interrupt vector in the
exception vector table. MIVR must be programmed to one of the user-defined vectors ($40-$FF)
during initialization of the MCCI in order for interrupts to be serviced.

MCCI interrupt vectors are adjacent to one another in the exception vector table. MIVR[7:2] are the
same for all three interfaces. The MCCI provides the values for MIVR[1:0] according to the source of
the interrupt (%00 for SCIA, %01 for SCJB, and %10 for the SPI). Writes to MIVR[1:0| have no
meaning or effect. Reads of MIVR[1:0] return a value of %11.

ILSPI — SPI Interrupt Level Register $ Y F F C 0 6

15 14 13 11 10 9 8 7 0

0 0 ILSPI 0 0 0 RESERVED

RESET:

0 0 0 0 0 0 0 0

ILSPI determines the priority of interrupts requested by the SPI. The ILSPI field must contain a
value between $1 (lowest priority) and $7 (highest priority) for interrupts to be recognized. If
ILSPI, ILSCIA, and ILSCIB are the same, simultaneous interrupt requests are recognized in SPI,
SCIA, SCIB priority.

7 . 2 . 2 M C C I P i n C o n t r o l R e g i s t e r s
MCCI pin control registers determine the use of eight MCU pins. Although these pins are used by
the serial subsystems, any pin can alternately be assigned for use in a general-purpose parallel
port. The MCCI pin assignment register (PMCPAR) determines whether pins are assigned to the
SPI or to the parallel port. Clearing a bit assigns the corresponding pin to the port; setting a bit
assigns the pin to the SPI. PMCPAR does not affect operation of the SCI submodule.

The MCCI data direction register (DDRMC) determines whether pins are inputs or outputs.
Clearing a bit makes the corresponding pin an input; setting a bit makes the pin an output.
DDRMC affects both SPI function and I/O function. DDRMC determines the direction of SCI TXD
pins only when an SCI transmitter is disabled. When an SCI transmitter is enabled, the TXD pin is
an output.

MCCI port data register PORTMC latches I/O data; MCCI pin state register PORTMCP allows pin
state to be read regardless of data direction configuration.

P O R T M C — MCCI Port Data Register $ Y F F C 0 C

15 8 7 6 5 4 3 2 1 0

RESERVED PMC7 PMC6 PMC5 PMC4 PMC3 PMC2 PMC1 PMCO

Writes to PORTMC are stored in an internal data latch. If any bit of PORTMC is configured as
discrete output, the latched value is driven onto the corresponding pin. Reads of PORTMC
return the value of the pin only if the pin is configured as a discrete input. Otherwise, the value
read is the latched value. To avoid driving undefined data, first write a byte to PORTMC, then
configure DDRMC.

M O T O R O L A
122

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

P O R T M C P — MCCI Port Pin State Register $ Y F F C 0 E

15 8 7 6 5 4 3 2 1 0

RESERVED PMCP7 PMCP6 PMCP5 PMCP4 PMCP3 PMCP2 PMCP1 PMGPO

Reads of PORTMCP always return the state ot the pins regardless of whether the pins are
configured as input or output. Writes to PORTMCP have no effect.

P M C P A R — MCCI Pin Assignment Register $ Y F F C 0 8

15 8 7 6 5 4 3 2 1 0

RESERVED 0 0 0 0 PMCPA3 0 PMCPA1 PMCPA0

RESET:

0 0 0 0 0 0 0 0

PMCPAR determines which of the SPI pins, with the exception of the SCK pin (the state of which
is determined by the SPI enable bit), are used by the SPI submodule, and which pins are available
for general-purpose I/O. Clearing a bit in PMCPAR assigns SPI pins for use as general-purpose
I/O; setting a bit assigns the pin to the SPI. SPI pins designated by PMCPAR as general-purpose
I/O are controlled only by DDRMC and PORTMC; the SPI has no effect on these pins. PMCPAR
does not affect the operation of the SCI submodule.

D D R M C —Port MC Data Direction Register $ Y F F C 0 B

15 8 7 6 5 4 3 2 1 0

RESERVED DDM7 DDM6 DDM5 DDM4 DDM3 DDM2 DDM1 DDM0

RESET:

0 0 0 0 0 0 0 0

DDRMC determines whether a general-purpose I/O pin is an input or an output. During reset, all
MCCI pins are configured as general-purpose inputs. Clearing a bit makes the pin an input;
setting a bit makes it an output.

M C C I Pin Contro l
P M C P A R Bit D D R M C Bit Port M C Signal M C C I Pin

— DDM7 PMC7 TXDA
— DDM6 PMC6 RXDA

— DDM5 PMC5 TXDB
— DDM4 PMC4 RXDB

PMCPA3 DDM3 PMC3 SS
— DDM2 PMC2 SCK

PMCPA1 DDM1 PMC1 MOSI
PMCPAO DDMO PMCO MISO

M O T O R O L A
123

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

7 . 3 S e r i a l P e r i p h e r a l I n t e r f a c e

The SPI submodule communicates with external devices through a synchronous serial bus. The
SPI is fully compatible with SPI systems found on other Motorola products, but has enhanced
capabilities. The SPI can perform full-duplex three-wire or half-duplex two-wire transfers.

7 . 3 . 1 S P I P i n s

The SPI uses four bidirectional pins. These pins can be configured for general-purpose I/O when
not needed for SPI application. When used for SPI functions, the pins should have pull-up
resistors. The following table shows SPI pin functions

S P I P i n F u n c t i o n

Pin Names Mode Funct ion
Master In Slave Out (MISO) Master

Slave
Provides serial input to the SPI
Provides serial output from the SPI

Master Out Slave In (MOSI) Master
Slave

Provides serial output from the SPI
Provides serial input to the SPI

Serial Clock (SCK) Master
Slave

Provides clock output from SPI
Provides clock input to SPI

Slave Select (SS) Master
Slave

Causes mode fault
Initiates serial transfer

7 . 3 . 2 S P I R e g i s t e r s

The programmer's model for the SPI consists of the MCCI global and pin control registers, the SPI
control register (SPCR), the SPI status register (SPSR), and the SPI data register (SPDR). All SPI
registers can be read and written by the CPU. SPCR must be initialized before the SPI is enabled
to ensure defined operation. The SPI is enabled by setting the SPE bit in SPCR. Reset values
are shown below each register.

S P C R — SPI Control Register $ Y F F C 3 8

15 14 13 12 11 10 9 8 7 0

SPE SPE WOMP MSTR CPOL CP HA LSBF SIZE SPBR

RESET:
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

SPCR contains parameters for configuring the SPI. The CPU has read and write access to all
control bits, but the MCCI has read access only to all bits except SPE. Writing a new value to
SPCR while the SPI is enabled disrupts operation. Writing the same value into SPCR while the
SPI is enabled has no effect on SPI operation.

SP1E — SPI Interrupt Enable
0 » SPI interrupts disabled
1 = SPI interrupts enabled

SPE —SPI Enable
0 = SPI is disabled. SPI pins can be used for general-purpose I/O.
1 = SPI is enabled. Pins allocated by PMCPAR are controlled by the SPI.

MOTOROLA
124

M C 6 8 H C 9 1 6 Y 1
M C 6 B H C 9 1 6 Y 1 T S / D

WOMP — Wired-OR Mode for SPI Pins
0 = Outputs have normal MOS drivers.
1 - Pins designated for output by DDRMC have open-drain drivers.

WOMP allows SPI pins to be connected for wired-OR operation, regardless of whether they are used
for general-purpose output or for SPI output. WOMP affects the pins whether the SPI is enabled or
disabled.

MSTR — Master/Slave Mode Select
0 = SPI is a slave device and only responds to externally generated serial data.
1 = SPI is system master and can initiate transmission to external SPI devices.

MSTR configures the SPI for either master or slave mode operation. This bit is cleared on reset and
can only be written by the CPU.

CPOL — Clock Polarity
0 = The inactive state value of SCK is logic level zero.
1 = The inactive state value of SCK is logic level one.

CPOL is used to determine the inactive state value of the serial clock (SCK). It is used with CPHA to
produce a desired clock/data relationship between master and slave devices.

CPHA — Clock Phase
0 = Data captured on the leading edge of SCK and changed on the following edge of SCK.
1 = Data is changed on the leading edge of SCK and captured on the following edge of SCK.

CPHA determines which edge of SCK causes data to change and which edge causes data to be
captured. CPHA is used with CPOL to produce a desired clock/data relationship between master and
slave devices. CPHA is set at reset

LSBF — Least Significant Bit First
0 = Serial data transfer starts with MSB
1 = Serial data transfer starts with LSB

SIZE — Transfer Data Size
0 = 8-bit data transfer
1 = 16-bit data transfer

SPBR —SPI Baud Rate
The SPI uses a modulus counter to derive SCK baud rate from the MCU system clock. Baud rate is
selected by writing a value from 2 to 255 into the SPBR field. Giving SPBR a value of zero or one
disables the baud rate generator. Use the following expressions to determine baud rate:

SCK Baud Rate =

SPBR Value =

System Clock Frequency
2 (SPBR Value)

or
System Clock Frequency

2 (SCK Baud Rate)

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
125

SPSR — SPI Status Register $ Y F F C 3 C

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPF WCOL 0 MODF 0 0 0 0 0 0 0 0 0 0 0 0

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SPSR contains SPI status information. Only the SPI can set the bits in this register. The CPU
reads the register to obtain status information and writes it to clear status flags.

SPIF —SPI Finished Flag
0 = SPI not finished
1 = SPI finished

WCOL — Write Collision
0 = No write collision occurred
1 = Write collision occurred

MODF — Mode Fault Flag
0 = Normal operation
1 = Another SPI node requested to become the network SPI master while the SPI was enabled

in master mode (SS input taken low).

S P D R — SPI Data Register $ Y F F C 3 E

15 8 7 0

LOWB UPPB

RESET:

U U U U U U U U U U U U U U U U

A write to SPDR initiates transmission or reception in the master device. At the completion of
transmission, the SPIF status bit is set in both master and slave devices. Received data is
buffered. SPIF must be cleared before a subsequent transfer of data from the shift register to the
buffer or overrun occurs. The byte or word that causes overrun is lost. Transmitted data is not
buffered. A write to SPDR places data directly into the shift register for transmission.

UPPB — Upper Byte
In 16-bit transfer mode, UPPB is used to access the most significant 8 bits of the data. Bit 15 of the
SPDR is the MSB of the 16-bit data.

LOWB — Lower Byte
In 8-bit transfer mode, data is accessed at the address of LOWB. MSB in 8-bit transfer mode is bit 7 of
the SPDR. In 16-bit transfer mode, LOWB holds the least significant 8 bits of the data.

M O T O R O L A
126

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

7 . 3 . 3 S P I O p e r a t i o n

The SPI operates in either master or slave mode. Master mode is used when the SPI originates
data transfers. Slave mode is used when an external device initiates serial transfers to the SPI.
Switching between the modes is controlled by MSTR in SPCR. Before entering either mode,
appropriate MCCI and SPI registers must be properly initialized.

In master mode, transmission parameters are set by writing to SPCR; the SPI is enabled by setting
SPE; then operation is initiated by writing data to SPDR. In slave mode, operation proceeds in
response to SS signal assertion by an external bus master. Slave operation is similar to that of
master mode.

Normally, the SPI bus performs synchronous bidirectional transfers. The serial clock on the SPI
bus master supplies the clock signal (SCK) to time the transfer of data. Four possible
combinations of clock phase and polarity can be specified by means of the CPHA and CPOL bits
in SPCR. Data can be transferred either LSB or MSB first, depending on the value of the LSBF bit
in SPCR. The number of bits transferred per command defaults to eight, but can be set to 16 bits
by setting the field in SPCR.

When the SPI finishes a transmission it sets the SPIF flag, clears SPE and stops. If the SPIE bit in
SPCR is set, an interrupt request is generated when SPIF is set.

Although the SPI inherently supports multimaster operation, no special arbitration mechanism is
provided. A mode fault flag (MODF) indicates a request for SPI master arbitration. System
software must provide arbitration.

Typically, SPI bus outputs are not open-drain unless multiple SPI masters are in the system. If
needed, the WOMP bit in SPCR can be set to provide wired-OR open-drain outputs. An external
pull-up resistor should be used on each output line. WOMP affects all SPI pins regardless of
whether they are assigned to the SPI or used as general-purpose I/O.

7 . 4 S e r i a l C o m m u n i c a t i o n I n t e r f a c e

There are two identical independent SCI systems in the MCCI, SCIA and SCIB. Each SCI system
is a full-duplex universal asynchronous receiver transmitter (UART). Each SCI system is fully
compatible with the SCI systems found on other Motorola devices, such as the M68HC11 and
M68HC05 Families. The following discussions apply to both SCIA and SCIB. Differences in
register addresses and pin names are noted.

7 . 4 . 1 S C I P i n s

A unidirectional transmit data pin (either TXDA or TXDB) and a unidirectional receive data pin
(either RXDA or RXDB) is associated with each SCI. Each pin can be used by the associated SCI
or for general-purpose I/O.

S C I p i n s a n d t h e i r f u n c t i o n s a r e i d e n t i f i e d in t h e f o l l o w i n g t a b l e .

Pin N a m e s M n e m o n i c s M o d e F u n c t i o n
Receive Data

A and B
RXDA, RXDB Receiver Disabled

Receiver Enabled
General-Purpose I/O

Serial Data Input to SCI
Transmit Data

A and B
TXDA, TXDB Transmitter Disabled

Transmitter Enabled
General-Purpose I/O

Serial Data Output from SCI

M C 6 B H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
127

7 . 4 . 2 S C I R e g i s t e r s

The SCI programming model includes the MCCI global and pin control registers, and eight SCI
registers. Each SCI contains four registers: two control registers, one status register, and one
data register.

All registers can be read or written at any t ime by the C P U . Rewrit ing the same value to any S C I
register does not disrupt operation; however, writing a different value into an S C I register when
the S C I is running may disrupt operation. To change register values, the receiver and transmitter
should be disabled with the transmitter allowed to finish first. The status flags in register S C S R
can be cleared at any time.

S C C R O A , S C C R O B — SCI Control Register 0 5 Y F F C 1 8 , $ Y F F C 2 8

15 13 12 0

NOT USED SCBR

RESET:

Each SCCRO contains the baud rate selection field. Baud rate must be set before the SCI is
enabled. The CPU can read and write this register at any time.

SCBR — Baud Rate
SCI baud rate is programmed by writing a 13-bit value to this field. Writing a value of zero to SCBR
disables the baud rate generator.

The SCI receiver operates asynchronously. An internal clock is necessary to synchronize the receiver
with an incoming data stream. The SCI baud rate generator produces a receiver sampling clock with a
frequency 16 times that of the expected baud rate of the incoming data. The SCI determines the
position of bit boundaries from transitions within the received waveform, and adjusts sampling points
to the proper positions within the bit period. Receiver sampling rate is always 16 times the frequency
of the SCI baud rate, which is calculated as follows:

SCI Baud Rate = ^ f ^ T T ' *
32 (SCBR Value)

where SCBR value is in the range {1, 2, 3,..., 8191}.

S C C R 1 A , S C C R 1 B — SCI Control Register 1 $ Y F F C 1 A , $ Y F F C 2 A

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 LOOPS WOMS ILT FT PE M WAKE TIE TCIE RIE ILIE IE RE RWU SBK

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Each SCCR1 contains SCI configuration parameters. The CPU can read and write this register at
any time. The SCI can modify RWU in some circumstances. Usually interrupts enabled by these
control bits are cleared by reading SCSR, then reading (receiver status bits) or writing (transmitter
status bits) SCDR.

SCCR1A/B15 — Not Implemented

M O T O R O L A
128

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

LOOPS — Loop Mode
0 = Normal SCI operation, no looping, feedback path disabled
1 = Test SCI operation, looping, feedback path enabled

LOOPS controls a feedback path on the data serial shifter. When loop mode is enabled, SCI
transmitter output is fed back into the receive serial shifter. TXD is asserted (idle line). Both transmitter
and receiver must be enabled before the SCI enters loop mode.

WOMS — Wired-OR Mode for SCI Pins
0 = If configured as an output, TXD is a normal CMOS output.
1 = If configured as an output, TXD is an open-drain output.

WOMS determines whether the TXD pin is an opennjrain output or a normal CMOS output. This bit is
used only when TXD is an output. If TXD is used as a general-purpose input pin, WOMS has no effect.

ILT — Idle-Line Detect Type
0 = Short idle-line detect (start count on first one)
1 = Long idle-line detect (start count on first one after stop bit(s))

PT — Parity Type
0 = Even parity
1 = Odd parity

When parity is enabled, PT determines whether parity is even or odd for both the receiver and the
transmitter.

PE — Parity Enable
0 - SCI parity disabled
1 = SCI parity enabled

PE determines whether parity is enabled or disabled for both the receiver and the transmitter. If the
received parity bit is not correct, the SCI sets the PF bit in SCSR.

When PE is set, the most significant bit (MSB) of the data field is used for the parity function, which
results in either seven or eight bits of user data, depending on the condition of M bit. The following
table lists the available choices.

M P E R e s u l t
0 0 8 Data Bits
0 1 7 Data Bits, 1 Parity Bit
1 0 9 Data Bits
1 1 8 Data Bits, 1 Parity Bit

M — Mode Select
0 = SCI frame: 1 start bit, 8 data bits, 1 stop bit (10 bits total)
1 = SCI frame: 1 start bit, 9 data bits, 1 stop bit (11 bits total)

WAKE — Wakeup by Address Mark
0 = SCI receiver awakened by idle-line detection
1 = SCI receiver awakened by address mark (last bit set)

TIE — Transmit Interrupt Enable
0 = SCI TDRE interrupts inhibited
1 = SCI TDRE interrupts enabled

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
129

TCIE — Transmit Complete Interrupt Enable
0 « SCI TC interrupts inhibited
1 = SCI TC interrupts enabled

RIE — Receiver Interrupt Enable
0 = SCI RDRF interrupts inhibited
1 = SCI RDRF interrupts enabled

ILIE — Idle-Line Interrupt Enable
0 = SCI IDLE interrupts inhibited
1 = SCI IDLE interrupts enabled

TE — Transmitter Enable
0 = SCI transmitter disabled (TXD pin can be used for general-purpose I/O)
1 = SCI transmitter enabled (TXD pin dedicated to SCI transmitter)

The transmitter retains control of the TXD pin until completion of any character transfer in progress
when TE is cleared.

RE — Receiver Enable
0 = SCI receiver disabled (status bits inhibited, RXD pin can be used for general-purpose I/O)
1 = SCI receiver enabled (RXD pin dedicated to SCI)

RWU — Receiver Wakeup
0 = Normal receiver operation (received data recognized)
1 = Wakeup mode enabled (received data ignored until awakened)

Setting RWU enables the wakeup function, which allows the SCI to ignore received data until
awakened by either an idle line or address mark (as determined by WAKE). When in wakeup mode,
the receiver status flags are not set and interrupts are inhibited. This bit is cleared automatically
(returned to normal mode) when the receiver is awakened.

SBK — Send Break
0 = Normal operation
1 = Break frame(s) transmitted after completion of current frame

SBK provides the ability to transmit a break code from the SCI. If the SCI is transmitting when SBK is
set, it will transmit continuous frames of zeros after it completes the current frame, until SBK is cleared.
If SBK is toggled (one to zero in less than one frame interval), the transmitter sends only one or two
break frames before reverting to idle line or beginning to send data.

S C S R A , S C S R B — SCI Status Register $ Y F F C 1 C , $ Y F F C 2 C

15 9 6 7 6 5 4 3 2 1 0

NOT USED TDRE TC RDRF RAF IDLE OR NF FE PF

RESET:

1 1 0 0 0 0 0 0 0

Each SCSR contains flags that show SCI operational conditions. These flags can be cleared
either by hardware or by a special acknowledgement sequence. The sequence consists of SCSR
read with flags set, followed by SCDR read (write in the case of TDRE and TC). A long-word read
can consecutively access both SCSR and SCDR. This action clears receive status flag bits that
were set at the time of the read, but does not clear TDRE or TC flags.

If an internal SCI signal for setting a status bit comes after the CPU has read the asserted status
bits, but before the CPU has written or read register SCDR, the newly set status bit is not cleared.

M O T O R O L A
130

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

SCSR must be read again with the bit set, and SCDR must be written or read before the status bit
is cleared.

Reading either byte of SCSR causes all 16 bits to be accessed. Any status bit already set in either
byte is cleared on a subsequent read or write of register SCDR.

TDRE — Transmit Data Register Empty Flag
0 = Register TDR still contains data to be sent to the transmit serial shifter.
1 = A new character can now be written to register TDR.

TDRE is set when the byte in register TDR is transferred to the transmit serial shifter. If TDRE is zero,
transfer has not occurred and a write to TDR overwrites the previous value. New data is not
transmitted if TDR is written without first clearing TDRE.

TC — Transmit Complete Flag
0 = SCI transmitter is busy.
1 = SCI transmitter is idle.

TC is set when the transmitter finishes shifting out all data, queued preambles (mark/idle line), or
queued breaks (logic zero). The interrupt can be cleared by reading SCSR when TC is set and then
writing the transmit data register (TDR) of SCDR.

RDRF — Receive Data Register Full Flag
0 = Register RDR is empty or contains previously read data.
1 = Register RDR contains new data.

RDRF is set when the content of the receive serial shifter is transferred to the RDR. If one or more
errors are detected in the received word, flag(s) NF, FE, and/or PF are set within the same clock cycle.

RAF — Receiver Active Flag
0 = SCI receiver is idle.
1 = SCI receiver is busy.

RAF indicates whether the SCI receiver is busy. It is set when the receiver detects a possible start bit
and is cleared when the chosen type of idle line is detected. RAF can be used to reduce collisions in
systems with multiple masters.

IDLE — Idle-Line Detected Flag
0 = SCI receiver did not detect an idle-line condition.
1 = SCI receiver detected an idle-line condition.

IDLE is disabled when RWU in SCCR1 is set. IDLE is set when the SCI receiver detects the idle-line
condition specified by ILT in SCCR1. If cleared, IDLE will not set again until after RDRF is set. RDRF is
set when a break is received, so that a subsequent idle line can be detected.

OR — Overrun Error Flag
0 = RDRF is cleared before new data arrives.
1 = RDRF is not cleared before new data arrives.

OR is set when a new byte is ready to be transferred from the receive serial shifter to the RDR, and
RDRF is still set. Data transfer is inhibited until OR is cleared. Previous data in RDR remains valid, but
data received during overrun condition (including the byte that set OR) is lost.

NF — Noise Error Flag
0 = No noise detected on the received data.
1 = Noise occurred on the received data.

NF is set when the SCI receiver detects noise on a valid start bit, on any data bit, or on a stop bit. It is
not set by noise on the idle line or on invalid start bits. Each bit is sampled three times. If all three
samples are not the same logic level, the majority value is used for the received data value, and NF is
set. NF is not set until an entire frame is received and RDRF is set.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
131

FE — Framing Error Flag
1 = Framing error or break occurred on the received data.
0 = No framing error on the received data

FE is set when the SCI receiver detects a zero where a stop bit was to have occurred. FE is not set
until the entire frame is received and RDRF is set. A break can also cause FE to be set. It is possible to
miss a framing error if RXD happens to be at logic level one at the time when the stop bit is expected.

PF — Parity Error Flag
1 = Parity error occurred on the received data.
0 = No parity error on the received data

PF is set when the SCI receiver detects a parity error. PF is not set until the entire frame is received
and RDRF is set.

SCDRA, SCDRB — SCI Data Register $YFFC1E, $YFFC2E

15 9 8 7 6 5 4 3 2 1 0

NOT USED R8/T8 R7/T7 R6/T6 R5/T5 R4/T4 R3/T3 R2/T2 R1/T1 RO/TO

RESET:

u u u u u u u u u

Each SCDR consists of two data registers at the same address. RDR is a read-only register that
contains data received by the SCI serial interface. The data comes into the receive serial shifter and is
transferred to RDR. TDR is a write-only register that contains data to be transmitted. The data is first
written to TDR, then transferred to the transmit serial shifter, where additional format bits are added
before transmission. R[7:0]/T[7:0] contain either the first eight data bits received when SCDR is read,
or the first eight data bits to be transmitted when SCDR is written. R8/T8 are used when the SCI is
configured for 9-bit operation. When the SCI is configured for 8-bit operation, R8/T8 have no
meaning or effect.

M O T O R O L A
132

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

8 S t a n d b y R A M a n d T P U E m u l a t i o n R A M
The two 2-Kbyte RAM modules in the MCU are structurally similar, but functionally different. The
TPURAM module has no external standby voltage (VSTBY) connection or power-loss flag (PDS),
but supports the use of custom TPU microcode. The STBRAM module, on the other hand, has a
V S T B Y connection and provides a power-loss flag and automatic switching to standby power when
VQD drops below a specified level, but does not support TPU microcode emulation.

8 . 1 O v e r v i e w

Both RAM modules consist of a control register block that is located at a fixed range of addresses
in MCU address space, and a 2-Kbyte array of fast (two bus cycle) static RAM that can be mapped
to any 2-Kbyte boundary in address space. TPURAM control registers are located at addresses
$YFFD00-YFFD3F, while STBRAM module control registers are located from $YFFB00-YFFB3F,
as shown in the address map. STBRAM control registers occupy the same addresses as
MC68HC16Y1 TPURAM control registers. MC68HC916Y1 TPURAM control register addresses
are located in different locations from the MC68HC16Y1 TPURAM control registers. Refer to 1 . 5
U s i n g t h e M C 6 8 H C 9 1 6 Y 1 t o E m u l a t e t h e M C 6 8 H C 1 6 Y 1 for more information.

Both modules respond to program and data space accesses. Data can be read or written in bytes,
words, or long words. Arrays must not be mapped so that array addresses overlap module control
register addresses, as overlap makes the registers inaccessible. When microcode emulation is
unnecessary, the TPURAM array can be mapped to form a contiguous extension of the STBRAM
array. While it is possible to map STBRAM over TPURAM while TPURAM is used for microcode
emulation, this is not recommended, as this effectively makes a wired-AND connection between
the module data bus lines, and can affect accesses to STBRAM.

8 . 2 R A M R e g i s t e r B l o c k s

RAM control registers occupy a 64-byte block. There are three control registers in the block: the
RAM module configuration register (STBRAMMCR, TRAMMCR), the RAM test register
(STBRAMTST, TRAMTST), and the RAM array base address register (STBRAMBAR, TRAMBAR).
The rest of the register block contains unimplemented register locations. Unimplemented
register addresses are read as zeros, and writes to them have no effect.

S T B R A M C o n t r o l R e g i s t e r A d d r e s s M a p

Address 15 8 7 0
$YFFB00 STBRAM MODULE CONFIGURATION REGISTER (STBRAMMCR)
$YFFB02 STBRAM TEST REGISTER (STBRAMTST)
$YFFB04 STBRAM BASE ADDRESS REGISTER (STBRAMBAR)

SYFFB06-
SYFFB3F

NOT IMPLEMENTED

T P U R A M C o n t r o l R e g i s t e r A d d r e s s M a p

Address 15 8 7 0
$YFFDOO TPURAM MODULE CONFIGURATION REGISTER (TRAMMCR)
$YFFD02 TPURAM TEST REGISTER (TRAMTST)
$YFFD04 TPURAM BASE ADDRESS REGISTER (TRAMBAR)

$YFFD06~
SYFFD3F

NOT IMPLEMENTED

Y » M111, where M is the logic state of the modmap (MM) bit in the SCIMCR.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

MOTOROLA
133

8 . 3 R A M R e g i s t e r s
Both STBRAM and TPURAM registers are described in the following paragraphs. Differences are
shown by shaded blocks in the diagrams, and are discussed under the appropriate mnemonic.

S T B R A M M C R , T R A M M C R - RAM Module Configuration Register $ Y F F B O O , $ Y F F D O O

15 14 13 12 11 9 8 7 0

STOP NOT USED m NOT USED RASP NOT USED

RESET:

0 U U

Bits in the module configuration register determine whether a RAM module is in low-power stop
mode or normal mode, indicate failure of standby RAM power, and determine in which address
space the array resides. Reads of unimplemented bits always return zeros. Writes do not affect
unimplemented bits.

STOP — Stop Control Bit
0 = RAM array operates normally.
1 = RAM array enters low-power stop mode.

This bit controls whether the RAM array is in low-power consumption mode or operating normally.
Reset state is zero, for normal operation. In stop mode, the array retains its contents, but cannot be
read or written by the CPU.

PDS — Standby Power Status Bit
0 = Loss of standby power
1 = No loss of standby power

The STBRAM array can be powered by a standby power source, VSTBY. while VQD to the
microcontroller is turned off. For STBRAMMCR only, PDS indicates when VSTBY has fallen below a
specified level for a specified period of time. To detect power loss, software must first set PDS, then
monitor its state during normal operation and following reset. PDS is not implemented in TRAMMCR,
and always reads zero.

RASP — RAM Array Space Field
0 = RAM array is placed in unrestricted space
1 = RAM array is placed in supervisor space.

This bit limits access to the RAM array in microcontrollers that support separate user and supervisor
operating modes. Because the CPU16 operates in supervisor mode only, RASP has no effect.

S T B R A M T S T , T R A M T S T — RAM Test Register $ Y F F B 0 2 , $ Y F F D 0 2

Test registers are used for factory test of the RAM modules.

S T B R A M B A R , T R A M B A R — RAM Base Address and Status Register $ Y F F B 0 4 , $ Y F F D 0 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDfl ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR ADDR NOT USED RAMDS
23 22 21 20 19 18 17 16 15 14 13 12 11

RESET:

0 0 0 0 0 0 0 0 0 0 0 0 0 1

STBRAMBAR and TRAMBAR specify an array base address in the system memory map.
STBRAMBAR and TRAMBAR can be written only once after reset, which prevents accidental
remapping of the array.

M O T O R O L A
1 3 4

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

STBRAMBAR[15:3], TRAMBAR[15:3) — RAM Array Base Address Field
This field specifies bits [23:11] of the array base address. To be accessed, the array must be enabled.
Because ADDR[23:20] are driven to the same logic state as ADDR19, addresses in the range
$080000 to $F7FFFF cannot be accessed by the CPU16. If a RAM array is mapped to these
addresses, the system must be reset before the array can be accessed.

RAMDS — RAM Array Disable Status Bit
0 = RAM array is enabled
1 = RAM array is disabled

RAMDS indicates whether an array is active or disabled. The array is disabled after reset. Writing a
valid base address into STBRAMBAR or TRAMBAR automatically clears the corresponding RAMDS
and enables the array.

8 . 4 R A M O p e r a t i o n

There are six RAM operating modes, as follows:

A RAM module is in normal mode when powered by VQQ. The array can be accessed by byte,
word, or long word. A byte or aligned word (high-order byte is at an even address) access only
takes one bus cycle or two system clocks. A long word or misaligned word access requires two
bus cycles.

Standby mode is intended to preserve RAM contents when VDD »S removed. In standby mode,
STB RAM contents are maintained by VSTBY- Circuitry within the STB RAM module detects the
change in VDD and switches to VSTBY with no loss of data. While STBRAM is powered by VSTBY.
access to the array is not guaranteed. TPURAM does not have standby power switching. When
VDD is removed, TPURAM content is lost.

Reset mode allows the CPU to complete a bus cycle before resetting. When a synchronous reset
occurs while a byte or word RAM access is in progress, the access is completed. When reset
occurs during the first word access of a long-word operation, only the first word access is
completed. When reset occurs during the second word access of a long word operation, the
entire access is completed. Data being read from or written to the RAM can be corrupted by
asynchronous reset.

The test mode functions in conjunction with the SCIM test functions. Test mode is used during
factory test of the MCU.

Setting the STOP bit in the appropriate RAMMCR switches a RAM module to low-power mode. In
low-power mode, the RAM array retains its contents, but cannot be read or written by the CPU.
Because the CPU16 always operates in supervisor mode, STOP can be read or written at any
time. STOP is set during reset. Stop mode is exited by clearing STOP. The RAM modules will
switch to standby mode while in low-power mode, provided operating constraints discussed
above are met.

The TPURAM array can emulate the microcode ROM in the TPU module. This provides a means
of developing custom TPU code. The TPU selects TPU emulation mode. While in TPU emulation
mode, the access timing of the TPURAM module matches the timing of the TPU microinstruction
ROM to ensure accurate emulation. Normal accesses through the 1MB are inhibited and the
control registers have no effect, allowing external RAM to emulate the TPURAM at the same
addresses. Refer to 4 T i m e P r o c e s s o r Un i t for more information. The STBRAM module
cannot be used for TPU microcode emulation.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
135

9 F l a s h E E P R O M
The 48-Kbyte flash electrically-erasable programmable read-only memory module (FLASH) serves
as nonvolatile, fast-access ROM-emulation memory. The module can be used for program code
that must either execute at high speed or is frequently executed, such as operating system
Kernels and standard subroutines, or it can be used for static data that is read frequently. The
module can also be configured to provide bootstrap vectors for system reset.

9.1 Overv iew

The Flash EEPROM module consists of a control-register block that occupies a fixed position in
MCU address space, and a 48-Kbyte EPROM array that can be placed in the lower 48 Kbytes of
any 64-Kbyte block in address space. The array can be configured to reside in both program and
data space, or in program space alone.

The EEPROM array can be read as either bytes, words, or long-words. The module responds to
back-to-back 1MB accesses, providing two-bus-cycle (four system clock) access for aligned long
words. The module can also be programmed to insert up to three wait states per access, to
accommodate migration from slower external development memory without re-timing the system.

Both the array and individual control bits are programmable and erasable under software control.
Program/erase voltage must be supplied through external Vpp pins. Programming is by byte or
aligned word only. The module supports bulk erase only. Hardware interlocks protect stored data
from corruption if the program/erase voltage to the flash EEPROM array is enabled accidently.

Flash EEPROM Address Map

A d d r e s s 15 8 7 0
$YFF820 FLASH EEPROM MODULE CONFIGURATION REGISTER (FEEMCR)
SYFF822 FLASH EEPROM TEST REGISTER (FEETST)
SYFF824 FLASH EEPROM BASE ADDRESS HIGH REGISTER (FEEBAH)
$YFF826 FLASH EEPROM BASE ADDRESS LOW REGISTER (FEEBAL)
$YFF828 FLASH EEPROM CONTROL REGISTER (FEECTL)
$YFF82A RESERVED
$YFF82C RESERVED
$YFF82E RESERVED
$YFF830 FLASH EEPROM BOOTSTRAP WORD 0 (FEEBSO)
SYFF832 FLASH EEPROM BOOTSTRAP WORD 1 (FEEBS1)
$YFF834 FLASH EEPROM BOOTSTRAP WORD 2 (FEEBS2)
$YFF836 FLASH EEPROM BOOTSTRAP WORD 3 (FEEBS3)
SYFF838 RESERVED
SYFF83A RESERVED
$YFF83C RESERVED
$YFF83E RESERVED

Y - M111, where M is the logic state of the modmap (MM) bit in the SCIMCR

MOTOROLA
136

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

Flash EEPROM module control registers in the MC68HC916Y1 occupy the same locations as
masked ROM module control registers in the MC68HC16Y1, and the FLASH module can be used
to emulate the MRM. However, the FLASH module does not provide the CSM memory emulation
mode chip-select line. For more information refer to 1 .5 U s i n g t h e M C 6 8 H C 9 1 6 Y 1 to
E m u l a t e t h e M C 6 8 H C 1 6 Y 1 . Holding pin DATA14 low during reset disables the 48-Kbyte
flash EEPROM module and places it in stop mode.

9 . 2 F l a s h E E P R O M C o n t r o l B l o c k
The flash EEPROM control block contains five registers: a module configuration register
(FEEMCR), a test register (FEETST), two array base address registers (FEEBAH and FEEBAL),
and a control register (FEECTL). Four additional words in the control block can contain bootstrap
information when the flash EEPROM is used as bootstrap memory.

Each register in the control block has an associated shadow register that is physically located in a
spare flash EEPROM row. During reset, fields within the registers are loaded with default reset
information from the shadow registers. Shadow registers are programmed or erased in the same
manner as a location in the flash EEPROM array, using the address of the corresponding control
registers. When a shadow register is programmed, the data is not written to the corresponding
control register — the new data is not copied into the control register until the next reset. The
contents of shadow registers are erased whenever the flash EEPROM array is erased.

Configuration information is specified and programmed independently of the flash EEPROM
array. After reset, registers in the control block that contain writable bits can be modified. Writes to
these registers do not affect the associated shadow register. Certain registers can be written only
when the LOCK bit in the FEEMCR is disabled or when the STOP bit in the FEEMCR is set.
These restrictions are noted in the individual register descriptions.

9 . 3 F l a s h E E P R O M A r r a y
The base address registers specify the base address of the flash EEPROM array. A default reset
base address can be programmed into the base address shadow register. The array base address
must be on a 64-Kbyte boundary. Because ADDR[23:20] are driven to the same logic state as
ADDR19, addresses in the range $080000 to $F7FFFF cannot be accessed by the CPU16. If the
flash EEPROM array is mapped to these addresses, the system must be reset before the array
can be accessed.

Avoid using a base address value that causes the array to overlap control registers. Should a
portion of the array overlap the flash EEPROM register block, the registers remain accessible, but
accesses to that portion of the array are ignored. However, should the array overlap the control
block of another module, those registers may become inaccessible.

9 . 4 F l a s h E E P R O M R e g i s t e r s
In the following register diagrams, the notation "SB" for reset state indicates that a bit assumes the
value of its associated shadow bit during reset.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
137

FEEMCR — Flash EEPROM Module Configuration Register $ Y F F 8 2 0

15 14 13 12 11 10 9 8 7 6 5 0

STOP FRZ 0 BOOT LOCK 0 ASPC WArT NOT USED

RESET;

SB 0 0 S8 S8 0 SB SB

This register can be written only when the control block is not write-locked (when LOCK = 0). All
active fields and bits take values from the associated shadow register during reset.

STOP — Stop Mode Control
0 » Normal operation
1 « Low-power stop operation

STOP can be set by the processor or by reset if the STOP shadow bit is set. The EEPROM array is
inaccessible during low-power stop. The array can be re-enabled by clearing STOP. If STOP is set
during programming or erasing, program/erase voltage is automatically turned off. However, the
enable programming/erase bit (ENPE) remains set — if STOP is cleared, program/erase voltage is
automatically turned back on unless ENPE is cleared.

FRZ — Freeze Mode Control
0 = Disable program/erase voltage while FREEZE is asserted
1 = Allow ENPE bit to turn on the program/erase voltage while FREEZE signal is asserted

BOOT — Boot Control
0 - Flash EEPROM module control words respond to bootstrap vector addresses
1 « Flash EEPROM module control words do not respond to bootstrap vector addresses

On reset, the BOOT bit takes on the default value stored in the shadow register. If BOOT = 0 and
STOP = 0, the module responds to program space accesses of 1MB addresses $000000 to $000006
following reset, and the contents of FEEBS[3:01 are used as bootstrap vectors. After address
$000006 is read, the module responds normally to control block or array addresses only.

LOCK — Lock Registers
0 s Write-locking disabled
1 = Write-locked registers protected

If the reset state of the LOCK is zero, it can be set once to protect the registers after initialization.
When set, LOCK cannot be cleared until reset occurs.

ASPC — Flash EEPROM Array Space
Because the CPU16 operates only in supervisory mode, ASPC determines whether accesses are
restricted to program space, or whether accesses are made to both program and data space. In
systems with restricted access levels, ASPC also determines whether accesses are restricted to
supervisor space. The field can be written only if LOCK = 0 and STOP = 1. During reset, ASPC takes
on the default value programmed into the associated shadow register.

A S P C [1 : 0] Type of A c c e s s
XO Program and data
X1 Program only

ASPC assigns the flash EEPROM array to supervisor or user space, and to program or data space.

M O T O R O L A
138

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

WAIT — Wait States
The WAIT field specifies the number of wait states inserted during accesses to the flash EEPROM
module. A wait state has the duration of one system clock cycle. This field affects both control block
and array access.

W A I T [1 : 0] Wa i t S t a t e s C l o c k s / T r a n s f e r
00 1 3
01 2 4
10 3 5
11 0 2

The value of the WAIT field is compatible with the lower two bits of the DSACK field in the SCIM
chip select option registers.

FEETST — Flash EEPROM Test Register $Y F F 8 2 2

This register is used for factory test purposes only.

F E E B A H — Flash EEPROM Base Address High Register $ Y F F 8 2 4

15 8 7 6 5 4 3 2 1 0

NOT USED ADDR ADDR ADDR ADDR ADQR ADDR ADDR ADDR
23 22 21 20 19 18 17 16

RESET:

SHADOW BIT DEFAULT VALUE

FEEBAH contains the 16 high-order bits of the flash EEPROM array base address. During reset,
FEEBAH takes on the default value programmed into the associated shadow register. After reset,
if LOCK = 0 and STOP = 1, software can write to FEEBAH and FEEBAL to relocate the flash
EEPROM array. Because ADDR[23:20] are driven to the same logic state as ADDR19, addresses
in the range $080000 to $F7FFFF cannot be accessed by the CPU16. If the flash EEPROM array
is mapped to these addresses, the system must be reset before the array can be accessed.

F E E B A L — Flash EEPROM Base Address Low Register $ Y F F 8 2 6

15 o

NOT USED

Because the flash EEPROM array in the MC68HC916Y1 is mapped to 64-Kbyte boundaries,
FEEBAL is not used. It cannot be written, and always reads all zeros.

F E E C T L — Flash EEPROM Control Register $ Y F F 8 2 8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 VFPE ERAS LAT ENPE

RESET:

0 0

FEECTL contains the bits needed to control the programming and erasure of the flash EEPROM.
This register is accessible in supervisor mode only.

MC68HC916Y1 MOTOROLA
MC68HC916Y1TS/D 139

VFPE — Verify Program/Erase
0 = Normal read cycles
1 = Invoke program verify circuit

This bit invokes a special program-verify circuit. During programming sequences (ERAS = 0). VFPE is
used in conjunction with the LAT bit to determine when programming of a location is complete. If
VFPE and LAT are both set, a bit-wise exclusive-OR of the latched data with the data in the location
being programmed occurs when any valid flash EEPROM location is read. If the location is completely
programmed, a value of zero is read. Any other value indicates that the location is not fully
programmed. When VFPE is cleared, normal reads of valid flash EEPROM locations occur.

ERAS — Erase Control
0 = Flash EEPROM configured for programming
1 = Flash EEPROM configured for erasure

Asserting ERAS causes all locations in the array and all flash EEPROM control bits in the control block
to be configured for erasure at the same time.

When the LAT bit is set, ERAS also determines whether a read returns the value of the addressed
location (ERAS = 1) or the location being programmed (ERAS = 0).

The value of ERAS cannot be changed if the program/erase voltage is turned on (ENPE « 1).

LAT — Latch Control
0 = Programming latches disabled
1 = Programming latches enabled

When LAT is cleared, the flash EEPROM address and data buses are connected to the 1MB address
and data buses and the flash EEPROM is configured for normal reads. When LAT is set, the flash
EEPROM address and data buses are connected to parallel internal latches and the flash EEPROM
array is configured for programming or erasing.

Once LAT is set, the next write to a valid flash EEPROM module address causes the programming
circuitry to latch both address and data — unless control register shadow bits are to be programmed,
the write must be to an array address.

The value of LAT cannot be changed when program/erase voltage is turned on (ENPE = 1).

ENPE — Enable Programming/Erase
0 = Disable program/erase voltage
1 = Apply program/erase voltage

ENPE can be set only after LAT has been set and a write to the data and address latches has
occurred. ENPE remains cleared if these conditions are not met. While ENPE is set, the LAT, VFPE,
and ERAS bits cannot be changed, and attempts to read a flash EEPROM array location in the flash
EEPROM module are ignored.

F E E B S [3 : 0] — Flash EEPROM Bootstrap Words $ Y F F 8 3 0 - $ Y F F 8 3 7

15 0

BOOTSTRAP VECTOR

RESET:

PROGRAMMED VALUE

These words can be used as system bootstrap vectors. When the BOOT bit in FEEMCR = 1 during
reset, the flash EEPROM module responds to program space accesses of 1MB addresses $000000 to
$ 0 0 0 0 0 6 after reset. When BOOT = 0, the flash EEPROM module responds only to normal array and
register accesses. FEEBS[3:0] can be read at any time, but the values in the words can only be
changed by programming the appropriate location.

M O T O R O L A
1 4 0

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

9 . 5 F l a s h E E P R O M O p e r a t i o n

The following paragraphs describe flash EEPROM module reset, using the module for system
bootstrap, normal operation, and array programming/erasing.

9 . 5 . 1 R e s e t O p e r a t i o n

Reset initializes all flash EEPROM control registers. Some bits have fixed default values, and
some take on values that are programmed into the associated flash EEPROM shadow registers.

When the state of the STOP shadow bit is zero, the STOP bit in FEEMCR is cleared during
reset, and the module responds to accesses in the range specified by FEEBAH. When the
BOOT bit is cleared, the module also responds to bootstrap vector accesses.

When the state of the STOP shadow bit is one, the STOP bit in FEEMCR is set during reset
and the flash EEPROM array is disabled. The module does not respond to array or bootstrap
vector accesses until the STOP bit is cleared. This allows an external device to respond to
accesses to the flash EEPROM array address space or to bootstrap accesses. The erased
state of the shadow bits is one — an erased module comes out of reset in STOP mode.

9 . 5 . 2 B o o t s t r a p O p e r a t i o n

The CPU 16 begins bootstrap operation by fetching initial values for its internal registers from 1MB
addresses $000000 through $000006 in program space. These are the addresses of the
bootstrap vectors in the exception vector table. If the BOOT and STOP bits in FEEMCR are
cleared during reset, the flash EEPROM module is configured to respond to bootstrap vector
accesses. Vector assignments are as follows:

E E P R O M
Bootst rap W o r d

1MB Vector
A d d r e s s

M C U
Reset Vector C o n t e n t

FEEBS0 $000000 Initial ZK, SK, and PK
FEEBS1 $000002 Initial PC
FEEBS2 $000004 Reset — Initial SP
FEEBS3 $000006 Initial IZ

As soon as address $000006 has been read, flash EEPROM operation returns to normal, and the
module no longer responds to bootstrap vector accesses.

9 . 5 . 3 N o r m a l O p e r a t i o n

The flash EEPROM module performs byte or aligned-word accesses in one bus cycle. Long-word
reads or writes require an additional bus cycle. The WAIT field in FEEMCR can be used to insert
wait states.

The module checks function codes to verify address-space access type. Array accesses are
defined by the state of ASPC in FEEMCR. When the flash EEPROM module is configured for
normal operation, the array responds to read accesses only; write operations are ignored.

Accesses to an address in the 64-Kbyte block defined by the base address registers that does
not fall within the array (the upper 16 Kbytes of the block) are driven externally, allowing an
external device to fill the entire address space defined by the base address.

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
141

9 . 5 . 4 P r o g r a m / E r a s e O p e r a t i o n
An unprogrammed flash EEPROM bit has a logic state of one. A bit must be programmed to
change its state from one to zero. Erasing a bit returns it to the state of one. Programming or
erasing the flash EEPROM requires a series of control register writes and a write to a set of
programming latches. The same procedure is used to program array locations and control
registers that contain flash EEPROM bits. Programming is restricted to a single byte or aligned
word at a time. The entire flash EEPROM array and the shadow register bits are erased at the
same time.

N O T E
In order to program the array, programming voltage must be applied to the VPP
pin. Vpp > (VDD - 0.3 V) must be applied at all times or damage to the FLASH
module can occur.

9 . 5 . 4 . 1 I n t e l l i g e n t P r o g r a m m i n g a n d E r a s i n g

Intelligent programming and erasing procedures verify the flash EEPROM array as it is being
altered. This ensures accurate results and provides the longest possible life expectancy for the
module. The user must stop the programming or erase sequence at periods of tppu ise or tepuise
to determine whether a sequence was executed successfully. The tppu ise ortepulse values must
be recalculated after each pulse for optimum performance. After a location reaches the proper
value, the programming/erasure cycle must continue for a short period (tpmargin or t8margin) to
ensure that the value is made permanent. Use the following procedures for programming and
erasing the flash EEPROM.

9 . 5 . 4 . 2 P r o g r a m m i n g S e q u e n c e
1. Turn on Vfp (apply Vfp to VFpE48K pin).
2. Clear ERAS and set LAT and VFPE bits in FEECTL to set program mode, enable

programming address and data latches, and invoke special verification read circuitry. Set
initial value of tppuise to t p m j n .

3. Write new data to the desired address. This causes the address and data of the location to
be programmed to be latched in the programming latches.

4. Set ENPE to apply programming voltage.
5. Delay long enough for one programming pulse to occur (tppu|Se)-
6. Clear ENPE to remove programming voltage.
7. Delay while high voltage is turning off (Wpr0g)-
8. Read the EEPROM location just programmed. If the value read is all zeros, proceed to step

9. If not, calculate a new value for t p p u | s e and repeat steps 4 through 7 until either the
location is verified or the total programming time (t p r 0 g m a x) has been exceeded. If t p r 0 g m a x

has been exceeded, the location may be bad and should not be used.
9. If the flash EEPROM location is programmed, calculate tpmargin and repeat steps 4 through

7. If the flash EEPROM location does not remain programmed, the flash EEPROM location is
bad.

10. Clear VFPE and LAT.
11. If there are more locations to program, repeat steps 2 through 10.
12. Turn off VFP (reduce voltage on VFPE4SK P«n to V0D)-
13. Read the entire array to verify that all locations are correct. If any locations are incorrect, the

flash EEPROM module is bad.

M O T O R O L A
142

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

9 . 5 . 4 . 3 E r a s u r e S e q u e n c e
1 . T u r n o n V f p (a p p l y V ^ t o V F p E 4 8 K p in) .
2. Set LAT, VFPE, and ERAS bits to configure flash EEPROM for erasure. Set initial value of

tepulse to temin-
3. Write to any valid address in the control block or array. This allows the erase voltage to be

turned on. The data written and the address written to are of no consequence.
4. Set ENPE to apply programming voltage.
5 . D e l a y l o n g e n o u g h fo r o n e e r a s e p u l s e t o o c c u r (t G p u | S e) .
6. Clear ENPE to remove programming voltage.
7. Delay while high voltage is turning off (tvprog)-
8. Read the entire array and control block to ensure that flash EEPROM is erased.
9. If all of the flash EEPROM locations are not erased, calculate a new value for tepulse and

repeat steps 4 through 8 until either the remaining locations are erased or the maximum
erase time (terase) h a s been exceeded. If terase has been exceeded, the location may be
bad and should not be used.

1 0 . If all flash EEPROM locations are erased, calculate temargin and repeat steps 4 through 8 . If
all flash EEPROM locations do not remain erased, the flash EEPROM module may be bad.

11. Clear LAT, ERAS, and VFPE to allow normal access to the flash EEPROM.
12. Turn off Vfp (reduce voltage on VFPe48k pin to VDo).

M C 6 8 H C 9 1 6 Y 1
M C 6 8 H C 9 1 6 Y 1 T S / D

M O T O R O L A
1 4 3

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. 'Typical" parameters can and do vary in different
applications. All operating parameters, including "Typjcals" must be validated for each customer application by customer's technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and (g) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

Literature Distribution Centers:
USA: Motoro la Li terature Distr ibution; P.O. Box 20912 ; Phoenix , Ar izona 85036.
E U R O P E : Motoro la Ltd.; European Li terature Cent re ; 88 Tanners Drive, Blakelands, Mi l ton Keynes, MK14 5BP, England.
JAPAN: N ippon Motoro la Ltd.; 4-32-1, N ish i -Gotanda, Sh inagawa-ku , Tokyo 141 Japan.
ASIA-PACIFIC: Motoro la Semiconductors H.K. Ltd.; Si l icon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate,

Tai Po, N.T., Hong Kong,

® MOTOROLA
1ATX3I3T2--0 PRINTFD IN USA 4/91 IMPERIAL LIT MO 91079 18,000 MCU YGACAA

MC68HC916Y1TS/D

