Octal D-Type Latch with 3-State Outputs

The MC74AC564/74ACT564 is a high-speed, low power octal flip-flop with a buffered common Clock (CP) and a buffered common Output Enable (\overline{OE}).

The information presented to the D inputs is stored in the flip-flops on the LOW-to-HIGH Clock (CP) transition.

The MC74AC564/74ACT564 device is functionally identical to the MC74AC574/74ACT574, but with inverted outputs.

- Inputs and Outputs on Opposite Sides of Package Allowing Easy Interface with Microprocessors
- Useful as Input or Output Port for Microprocessors
- Functionally Identical to MC74AC574/74ACT574 but with Inverted Outputs
- 3-State Outputs for Bus-Oriented Applications
- Outputs Source/Sink 24 mA
- 'ACT564 Has TTL Compatible Inputs

Figure 2. LOGIC SYMBOL

MC74AC564

MC74ACT564

OCTAL D-TYPE

LATCH WITH

3-STATE OUTPUTS

N SUFFIX

1

FUNCTIONAL DESCRIPTION

The MC74AC564/74ACT564 consists of eight edgetriggered flip-flops with individual D-type inputs and 3-state complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (\overline{OE}) LOW, the contents of the eight flip-flops are available at the outputs. When \overline{OE} is HIGH, the outputs go to the high impedance state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

FUNCTION TABLE

	Inputs		Internal	Outputs	Function				
ŌĒ	CP	D	Q	0	Function				
Н	Н	L	NC	Z	Hold		>		
н	н	н	NC	Z	Hold				
Н	Г	L	Н	Z	Load				
Н	Ъ	Н	L	Z	Load				
L	Г	L	Н	Н	Data Available			<u>^</u>	
L	Г	Н	L	L	Data Available				
L	н	L	NC	NC	No Change in Data			XU.	
L	Н	Н	NC	NC	No Change in Data			.C.	
L = LC X = Im Z = Hi = LC	DW Voltag Imaterial gh Impeo	lance GH Trans							
		00	(· .			-	06	07
				Please no	ote that this diagram is pro	ovided only for the understand	ing of logic		

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Figure 3. Logic Diagram

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
Vout	DC Output Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Sink/Source Current, per Pin	±50	mA
I _{CC}	DC V _{CC} or GND Current per Output Pin	±50	mA
T _{stg}	Storage Temperature	-65 to +150	°C

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.

RECOMMENDED OPERATING CONDITIONS

V _{in} , V _{out} D t _r , t _f // t _r , t _f // T _J Ju T _A C Iон C	Supply Voltage DC Input Voltage, Output Voltage (Ref. to GND) nput Rise and Fall Time (Note 1) AC Devices except Schmitt Inputs nput Rise and Fall Time (Note 2) ACT Devices except Schmitt Inputs Junction Temperature (PDIP) Operating Ambient Temperature Range Dutput Current — High	$\begin{array}{c} \mbox{'AC} \\ \mbox{'ACT} \\ \hline \mbox{V}_{CC} @ 3.0 \ V \\ \hline \mbox{V}_{CC} @ 4.5 \ V \\ \hline \mbox{V}_{CC} @ 5.5 \ V \\ \hline \mbox{V}_{CC} @ 5.5 \ V \\ \hline \mbox{V}_{CC} @ 5.5 \ V \\ \hline \end{array}$	2.0 4.5 0	5.0 5.0 150 40 25 10 8.0 25	6.0 5.5 V _{CC} 0 140 85	V V ns/V ns/V °C
V _{in} , V _{out} D t _r , t _f // t _r , t _f // T _J Ju T _A C Iон C	DC Input Voltage, Output Voltage (Ref. to GND) nput Rise and Fall Time (Note 1) AC Devices except Schmitt Inputs nput Rise and Fall Time (Note 2) ACT Devices except Schmitt Inputs Junction Temperature (PDIP) Dperating Ambient Temperature Range	$V_{CC} @ 3.0 V \\ V_{CC} @ 4.5 V \\ V_{CC} @ 5.5 V \\ V_{CC} @ 4.5 V \\ \end{array}$	0	150 40 25 10 8.0	V _{CC}	V ns/V ns/V
$\begin{array}{c} \text{Irr} \\ \text{tr}, \text{tf} \\ \hline \\ \text{tr}, \text{tf} \\ \hline \\ \text{T}_{\text{J}} \\ \hline \\ \text{T}_{\text{A}} \\ \hline \\ \hline \\ \text{IOH} \\ \hline \end{array} \begin{array}{c} \text{Irr} \\ \text{Irr} \\$	nput Rise and Fall Time (Note 1) AC Devices except Schmitt Inputs nput Rise and Fall Time (Note 2) ACT Devices except Schmitt Inputs Junction Temperature (PDIP)	$V_{CC} @ 4.5 V \\ V_{CC} @ 5.5 V \\ V_{CC} @ 4.5 V \\ \end{array}$	SE C	40 25 10 8.0	140	ns/V ns/V
^{т_г, t_f // t_г, t_f // T_J Ju T_A C I_{OH} C}	AC Devices except Schmitt Inputs nput Rise and Fall Time (Note 2) ACT Devices except Schmitt Inputs Junction Temperature (PDIP) Operating Ambient Temperature Range	$V_{CC} @ 4.5 V \\ V_{CC} @ 5.5 V \\ V_{CC} @ 4.5 V \\ \end{array}$	-40	40 25 10 8.0		ns/V
^{т_г, т_f // t_г, t_f // T_J Ju T_A С I_{OH} С}	AC Devices except Schmitt Inputs nput Rise and Fall Time (Note 2) ACT Devices except Schmitt Inputs Junction Temperature (PDIP) Operating Ambient Temperature Range	V _{CC} @ 5.5 V V _{CC} @ 4.5 V	-40	25 10 8.0		ns/V
t _r , t _f lr // T _J Ju T _A C I _{OH} C	nput Rise and Fall Time (Note 2) ACT Devices except Schmitt Inputs Junction Temperature (PDIP) Operating Ambient Temperature Range	V _{CC} @ 4.5 V	-40	10 8.0		
T _J Jı T _A C I _{OH} C	ACT Devices except Schmitt Inputs Junction Temperature (PDIP) Operating Ambient Temperature Range		-40	8.0		
^{т, т} ′́́́́ Т _Ј Ји Т _А С І _{ОН} С	ACT Devices except Schmitt Inputs Junction Temperature (PDIP) Operating Ambient Temperature Range	V _{CC} @ 5.5 V	-40)		
T _A С I _{OH} С	Operating Ambient Temperature Range	150	-40	25		°C
I _{OH} C		Nº O	-40	25	95	
	Dutput Current — High				65	°C
I _{OI} C					-24	mA
	Dutput Current — Low	2	2		24	mA
2. V _{in} from 0.8 V to	Dutput Current — Low 0 70% V _{CC} ; see individual Data Sheets for devices that differ from 0 2.0 V; see individual Data Sheets for devices that differ from	n the typical input r	ise and fall time	IS.		

DC CHARACTERISTICS

			74AC		74AC			
Symbol	Parameter	V _{CC} (V)	T _A = +25°C		T _A = -40°C to +85°C	Unit	Conditions	
			Тур	Guar	anteed Limits			
V _{IH}	Minimum High Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	2.1 3.15 3.85	2.1 3.15 3.85	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	3.0 4.5 5.5	1.5 2.25 2.75	0.9 1.35 1.65	0.9 1.35 1.65	V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$	
V _{OH}	Minimum High Level Output Voltage	3.0 4.5 5.5	2.99 4.49 5.49	2.9 4.4 5.4	2.9 4.4 5.4	V	l _{OUT} = -50 μA	
		3.0 4.5 5.5		2.56 3.86 4.86	2.46 3.76 4.76	V	*V _{IN} = V _{IL} or V _{IH} -12 mA I _{OH} -24 mA -24 mA	
V _{OL}	Maximum Low Level Output Voltage	3.0 4.5 5.5	0.002 0.001 0.001	0.1 0.1 0.1	0.1 0.1 0.1		l _{OUT} = 50 μA	
	C	3.0 4.5 5.5		0.36 0.36 0.36	0.44 0.44 0.44		$\label{eq:VIN} \begin{array}{c} {}^{\star} V_{IN} = V_{IL} \text{ or } V_{IH} \\ 12 \text{ mA} \\ I_{OL} \\ 24 \text{ mA} \\ 24 \text{ mA} \end{array}$	
I _{IN}	Maximum Input Leakage Current	5.5	S	±0.1	±1.0	μΑ	$V_{I} = V_{CC}, GND$	
I _{OZ}	Maximum 3-State Current	5.5	K S	±0.5	±5.0	μΑ		
I _{OLD}	†Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5			-75	mA	V _{OHD} = 3.85 V Min	
I _{CC}	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	V _{IN} = V _{CC} or GND	

* All outputs loaded; thresholds on input associated with output under test. † Maximum test duration 2.0 ms, one output loaded at a time. . ess than or equ

Note: I_{IN} and I_{CC} @ 3.0 V are guaranteed to be less than or equal to the respective limit @ 5.5 V V_{CC}.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

				74AC		74	AC		
Symbol	Parameter	V _{CC} * (V)	T, C	A = +25° L = 50 p	C F	T _A = - to +8 C _L = 5		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	3.3 5.0	75 95			60 85		MHz	3-3
t _{PLH}	Propagation Delay CP to O _n	3.3 5.0	3.5 2.0		14.0 10.5	3.5 2.0	15.5 11.5	ns	3-6
t _{PHL}	Propagation Delay CP to O _n	3.3 5.0	3.5 2.0		12.5 9.5	3.5 2.0	14.0 10.5	ns	3-6
t _{PZH}	Output Enable Time	3.3 5.0	2.5 2.0		11.5 9.0	2.5 2.0	12.5 9.5	ns	3-7
t _{PZL}	Output Enable Time	3.3 5.0	3.0 1.5		11.0 8.5	3.5 2.0	12.0 9.5	ns	3-8
t _{PHZ}	Output Disable Time	3.3 5.0	4.0 2.0		12.5 10.5	4.5 2.0	13.5 11.5	ns	3-7
t _{PLZ}	Output Disable Time	3.3 5.0	2.0 1.5		9.5 8.0	2.5 1.5	10.5 9.0	ns	3-8

AC OPERATING REQUIREMENTS

PLZ	Output Disable Time	5.0	1.5	8.0	1.5 9.0	113	0-0
Voltage Rang	ge 3.3 V is 3.3 V ±0.3 V. ge 5.0 V is 5.0 V ±0.5 V.				N ^N A10 ^F		
AC OPERA	ATING REQUIREMENTS		S	7486	7440		1
Symbol	Parameter	V _{CC} * (V)		74AC A = +25°C C _L = 50 pF	74AC T _A = -40°C to +85°C C _L = 50 pF	Unit	Fig. No.
			Тур	Guaranteed	d Minimum		
t _s	Setup Time, HIGH or LOW D _n to CP	3.3 5.0		2.5 2.0	3.0 2.5	ns	3-9
t _h	Hold Time, HIGH or LOW D _n to CP	3.3 5.0		2.0 2.0	2.0 2.0	ns	3-9
t _w	CP Pulse Width HIGH or LOW	3.3 5.0		6.0 4.0	7.0 5.0	ns	3-6
	je 3.3 V is 3.3 V ±0.3 V. je 5.0 V is 5.0 V ±0.5 V.						

DC CHARACTERISTICS

			74ACT T _A = +25°C		74ACT		Conditions	
Symbol	Parameter	V _{CC} (V)			T _A = -40°C to +85°C	Unit		
			Тур	Guar	anteed Limits			
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V	V _{OUT} = 0.1 V or V _{CC} – 0.1 V	
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V	I _{OUT} = -50 μA	
		4.5 5.5		3.86 4.86	3.76 4.76	V	$*V_{IN} = V_{IL} \text{ or } V_{IH}$ -24 mA I_{OH} -24 mA	
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V	Ι _{ΟUT} = 50 μΑ	
		4.5 5.5		0.36 0.36	0.44 0.44	vjC	*V _{IN} = V _{IL} or V _{IH} 24 mA I _{OL} 24 mA	
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μΑ	V _I = V _{CC} , GND	
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 V$	
I _{OZ}	Maximum 3-State Current	5.5		±0.5	±5.0	μΑ	$ \begin{array}{l} V_{I}\left(OE\right)=V_{IL},V_{IH}\\ V_{I}=V_{CC},GND\\ V_{O}=V_{CC},GND \end{array} $	
I _{OLD}	†Minimum Dynamic	5.5	\$	0	75	mA	V _{OLD} = 1.65 V Max	
I _{OHD}	Output Current	5.5		2	-75	mA	V _{OHD} = 3.85 V Min	
I _{CC}	Maximum Quiescent Supply Current	5.5	0	8.0	80	μΑ	V _{IN} = V _{CC} or GND	

* All outputs loaded; thresholds on input associated with output under test. † Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS (For Figures and Waveforms - See Section 3 of the ON Semiconductor FACT Data Book, DL138/D)

1

				74ACT		74 <i>A</i>	СТ		
Symbol	Parameter P	V _{CC} * (V)		_A = +25° _L = 50 p		T _A = - to +8 C _L = 5		Unit	Fig. No.
			Min	Тур	Max	Min	Max		
f _{max}	Maximum Clock Frequency	5.0	85			75		MHz	3-3
t _{PLH}	Propagation Delay CP to \overline{O}_n	5.0	2.0		10.5	1.5	11.5	ns	3-6
t _{PHL}	Propagation Delay CP to \overline{O}_n	5.0	1.5		9.5	1.5	10.5	ns	3-6
t _{PZH}	Output Enable Time	5.0	1.5		9.0	1.5	9.5	ns	3-7
t _{PZL}	Output Enable Time	5.0	1.5		8.5	1.0	9.5	ns	3-8
t _{PHZ}	Output Disable Time	5.0	1.5		10.5	1.5	11.5	ns	3-7
t _{PLZ}	Output Disable Time	5.0	1.5		8.0	1.0	8.5	ns	3-8

* Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

AC OPERATING REQUIREMENTS

				74ACT	74ACT		
Symbol	Parameter	V _{CC} * (V)	T, C	$ \begin{array}{c} = +25^{\circ}C & T_{A} = -40^{\circ}C \\ = 50 \text{ pF} & to +85^{\circ}C \\ C_{L} = 50 \text{ pF} \end{array} $		Unit	Fig. No.
			Тур	Guarantee	d Minimum		
t _s	Setup Time, HIGH or LOW D _n to CP	5.0		2.5	3.0	ns	3-9
t _h	Hold Time, HIGH or LOW D _n to CP	5.0		1.0	1.0	ns	3-9
tw	LE Pulse Width HIGH or LOW	5.0		3.0	3.5	ns	3-6

* Voltage Range 3.3 V is 3.3 V \pm 0.3 V. * Voltage Range 5.0 V is 5.0 V \pm 0.5 V.

CAPACITANCE

CAPACITA	NCE			•
Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	50	pF	V _{CC} = 5.0 V
	Input Capacitance Power Dissipation Capacitance	DBS ON EFOR		

OUTLINE DIMENSIONS

N SUFFIX PLASTIC DIP PACKAGE CASE 738–03 ISSUE E

OUTLINE DIMENSIONS

⊕ 0.010 (0.25) B M

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.150 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE

DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 (0.005) TOTAL IN EXCESS OF D DIMENSION AT MAXIMUM MATERIAL CONDITION.

demarks of why, rer ON Semiconductor and 💷 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Typical parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications interded to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

-A-

A A A A A A A A A A A A

ННН

Н

20X D

18X G

£

Η Η

⊕ 0.010 (0.25) M T A S B S

10

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative