Octal 3-State Inverting Transciever

The MC74ACT640 octal bus transceiver is designed for asynchronous two-way communication between data buses. The device transmits data from bus \overline{A} to bus B when T/\overline{R} = HIGH, or from bus \overline{B} to bus A when T/\overline{R} = LOW. The enable input can be used to disable the device so the buses are effectively isolated.

Features

- Bidirectional Data Path
- A and B Outputs Sink 24 mA/Source -24 mA
- TTL Compatible Inputs
- These are Pb–Free Devices

Figure 1. Pinout: 20–Lead Packages Conductors

(Top View)

PIN ASSIGNMENT				
PIN	FUNCTION			
A ₀ -A ₇	Side A Inputs or 3-State Outputs			
ŌĒ	Output Enable Input			
T/R	Transmit/Receive Input			
B ₀ -B ₇	Side B Inputs or 3-State Outputs			

TRUTH TABLE

OE	T/R	Applied Inputs	Valid Direction I/P→O/P	Output
Н	Х	Х	Х	Х
L	н	н	A to B	L
L	н	L	Ā to B	Н
L	L	н	B to A	L
L	L	L	B to A	н

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

ON Semiconductor®

www.onsemi.com

SOIC-20W DW SUFFIX CASE 751D

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

DEVICE MARKING INFORMATION

See general marking information in the device marking section on page 5 of this data sheet.

© Semiconductor Components Industries, LLC, 2015 March, 2015 – Rev. 4

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
V _{IN}	DC Input Voltage (Referenced to GND)	–0.5 to V _{CC} +0.5	V
V _{OUT}	DC Output Voltage (Referenced to GND) (Note 1)	–0.5 to V _{CC} +0.5	V
Ι _{ΙΚ}	DC Input Diode Current	±20	mA
I _{OK}	DC Output Diode Current	±50	mA
I _{OUT}	DC Output Sink/Source Current	±50	mA
I _{CC}	DC Supply Current, per Output Pin	±50	mA
I _{GND}	DC Ground Current, per Output Pin	±100	mA
T _{STG}	Storage Temperature Range	-65 to +150	°C
ΤL	Lead temperature, 1 mm from Case for 10 Seconds	260	°C
TJ	Junction Temperature Under Bias	140	°C
θ_{JA}	Thermal Resistance (Note 2)	65.8	°C/W
MSL	Moisture Sensitivity	Level 1	
F _R	Flammability Rating Oxygen Index: 30% – 35%	UL 94 V–0 @ 0.125 in	
V _{ESD}	ESD Withstand Voltage Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	> 2000 > 200 > 1000	V
I _{Latchup}	Latchup Performance Above V _{CC} and Below GND at 85°C (Note 6)	±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. I_{OUT} absolute maximum rating must be observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

3. Tested to EIA/JESD22-A114-A.

4. Tested to EIA/JESD22-A115-A.

5. Tested to JESD22-C101-A.

6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Тур	Max	Unit
V _{CC}	DC Input Voltage (Referenced to GND)	4.5		5.5	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GND)	0		V _{CC}	V
T _A	Operating Temperature, All Package Types	-40	25	+85	°C
t _r , t _f	Input Rise and Fall Time (Note 8) $V_{CC} = 4.1$ $V_{CC} = 5.1$	5 V 0 5 V 0	10 8.0	10 8.0	ns/V
I _{ОН}	Output Current – High			-24	mA
I _{OL}	Output Current – Low			24	mA

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.
Unused Inputs may not be left open. All inputs must be tied to a high voltage level or low logic voltage level.
V_{in} from 0.8 V to 2.0 V; refer to individual Data Sheets for devices that differ from the typical input rise and fall times.

DC CHARACTERISTICS

		Vcc	T _A = -	⊦25°C	T _A = -40°C to +85°C		
Symbol	Parameter	(V)	Typ Guaranteed Limits		nteed Limits	Unit	Conditions
V _{IH}	Minimum High Level Input Voltage	4.5 5.5	1.5 1.5	2.0 2.0	2.0 2.0	V V	V _{OUT} = 0.1 V or V _{CC} - 0.1 V
V _{IL}	Maximum Low Level Input Voltage	4.5 5.5	1.5 1.5	0.8 0.8	0.8 0.8	V V	$V_{OUT} = 0.1 V$ or $V_{CC} - 0.1 V$
V _{OH}	Minimum High Level Output Voltage	4.5 5.5	4.49 5.49	4.4 5.4	4.4 5.4	V V	I _{OUT} = -50 μA
		4.5 5.5		3.86 4.86	3.76 4.76	V V	$V_{IN} = V_{IL} \text{ or } V_{IH} -24 \text{ mA}$ $V_{OH} -24 \text{ mA}$
V _{OL}	Maximum Low Level Output Voltage	4.5 5.5	0.001 0.001	0.1 0.1	0.1 0.1	V V	I _{OUT} = 50 μA
		4.5 5.5		0.36 0.36	0.44 0.44	V V	$V_{IN} = V_{IL} \text{ or } V_{IH} -24 \text{ mA}$ $V_{OH} -24 \text{ mA}$
I _{IN}	Maximum Input Leakage Current	5.5		±0.1	±1.0	μA	$V_{I} = V_{CC}, GND$
ΔI_{CCT}	Additional Max. I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1 V$
I _{OZ}	Maximum 3–State Current	5.5		±0.5	±5.0	μΑ	$ \begin{array}{l} V_{I}\left(OE\right) = V_{IL}, V_{IH} \\ V_{I} = V_{CC}, GND \\ V_{O} = V_{CC}, GND \end{array} $
I _{OLD} I _{OHD}	†Minimum Dynamic Output Current	5.5 5.5			75 –75	mA mA	V _{OLD} = 1.65 V Max
I _{CC}	Maximum Quiescent Supply Current	5.5		8.0	80	μΑ	$V_{IN} = V_{CC}$ or GND

*All outputs loaded; thresholds on input associated with output under test. †Maximum test duration 2.0 ms, one output loaded at a time.

AC CHARACTERISTICS $t_r = t_f = 3.0$ ns (For Figures and Waveforms, See Figures 2 and 3.)

			V _{CC} *	T _A = + C _L = +	⊦25°C 50 pF	T _A = -40°C C _L = 5	C to +85°C 50 pF	
Symbol	Para	(V)	Min	Max	Min	Max	Unit	
t _{PLH}	Propagation Delay	An to Bn or Bn to An	5.0	1.5	8.0	1.0	8.5	ns
t _{PHL}	Propagation Delay	An to Bn or Bn to An	5.0	1.5	8.0	1.0	9.0	ns
t _{PZH}	Output Enable Time	OE to An or Bn	5.0	1.5	10.0	1.0	11.0	ns
t _{PZL}	Output Enable Time	OE to An or Bn	5.0	1.5	10.0	1.0	11.0	ns
t _{PHZ}	Output Disable Time	T/\overline{R} or \overline{OE} to An or Bn	5.0	1.5	10.0	1.0	11.0	ns
t _{PLZ}	Output Disable Time	T/\overline{R} or \overline{OE} to An or Bn	5.0	1.5	10.0	1.0	11.0	ns

*Voltage Range 5.0 V is 5.0 V ± 0.5 V

CAPACITANCE

Symbol	Parameter	Value Typ	Unit	Test Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0 V$
C _{I/O}	Input/Output Capacitance	15	pF	V _{CC} = 5.0 V
C _{PD}	Power Dissipation Capacitance	45	pF	V _{CC} = 5.0 V

SWITCHING WAVEFORMS

*Includes all probe and jig capacitance

Figure 4. Test Circuit

ORDERING INFORMATION

Device	Package	Shipping [†]
MC74ACT640DWG	SOIC-20 (Pb-Free)	38 Units / Rail
MC74ACT640DWR2G	SOIC-20 (Pb-Free)	1000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

MARKING DIAGRAMS

SOIC-20W

WL = Wafer Lot YY, Y = Year WW = Work Week G = Pb-Free Package	YY, Y WW	= Year = Work Week
---	-------------	-----------------------

PACKAGE DIMENSIONS

SOIC-20W DW SUFFIX CASE 751D-05 ISSUE G

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.

- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
- 3. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSION.
- MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
 DIMENSION B DOES NOT INCLUDE DAMBAR
 PROTRUSION, ALLOWABLE PROTRUSION
 SHALL BE 0.13 TOTAL IN EXCESS OF B
 DIMENSION AT MAXIMUM MATERIAL
 CONDITION.

	MILLIMETERS					
DIM	MIN	MAX				
Α	2.35	2.65				
A1	0.10	0.25				
В	0.35	0.49				
С	0.23	0.32				
D	12.65	12.95				
Е	7.40	7.60				
е	1.27	BSC				
Н	10.05	10.55				
h	0.25	0.75				
L	0.50	0.90				
θ	0 °	7 °				

ON Semiconductor and the use are egistered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdt/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product screate a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC for any such unintended or unauthorized applications harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILC is an Equal Opportunity/Affirmative Action Employer. This literature is subj

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative