Triple 3-Input NAND Gate # **High-Performance Silicon-Gate CMOS** The MC74HC10A is identical in pinout to the LS10. The device inputs are compatible with Standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs. #### **Features** - Output Drive Capability: 10 LSTTL Loads - Outputs Directly Interface to CMOS, NMOS and TTL - Operating Voltage Range: 2 to 6 V - Low Input Current: 1 μA - High Noise Immunity Characteristic of CMOS Devices - In Compliance With the Requirements Defined JEDEC Standard No. 7 A - Chip Complexity: 36 FETs or 9 Equivalent Gates - These are Pb-Free Devices ## **LOGIC DIAGRAM** # **PIN ASSIGNMENT** | _ | | | _ | |-------|-----|----|-----------------| | A1 [| 1 ● | 14 | v _{cc} | | B1 [| 2 | 13 |] C1 | | A2 [| 3 | 12 |] Y1 | | B2 [| 4 | 11 |] C3 | | C2 [| 5 | 10 |] вз | | Y2 [| 6 | 9 |] A3 | | GND [| 7 | 8 |] Y3 | | | | | | # ON Semiconductor® http://onsemi.com ## MARKING DIAGRAMS SOIC-14 D SUFFIX CASE 751A TSSOP-14 DT SUFFIX CASE 948G A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week G or = Pb-Free Package (Note: Microdot may be in either location) # **FUNCTION TABLE** | Inputs | | Output | |--------|---|--------| | А В | | Υ | | L | L | Н | | L | Н | Н | | Н | L | Н | | Н | Н | L | ## **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet. ### **MAXIMUM RATINGS*** | Symbol | Parameter | Value | Unit | |------------------|---|----------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | - 0.5 to + 7.0 | V | | V _{in} | DC Input Voltage (Referenced to GND) | $-$ 0.5 to V $_{CC}$ + 0.5 | V | | V _{out} | DC Output Voltage (Referenced to GND) | $-$ 0.5 to V $_{CC}$ + 0.5 | V | | I _{in} | DC Input Current, per Pin | ± 20 | mA | | l _{out} | DC Output Current, per Pin | ± 25 | mA | | I _{CC} | DC Supply Current, V _{CC} and GND Pins | ± 50 | mA | | P _D | Power Dissipation in Still Air SOIC Package† TSSOP Package† | 500
450 | mW | | T _{stg} | Storage Temperature | - 65 to + 150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 Seconds (SOIC or TSSOP Package) | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. †Derating — SOIC Package: -7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C ## **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | | | Max | Unit | |------------------------------------|---|----------------|------------------|---------------------------|------| | V _{CC} | DC Supply Voltage (Referenced to GND) | | | 6.0 | V | | V _{in} , V _{out} | DC Input Voltage, Output Voltage (Referenced to GND) | | | V _{CC} | V | | T _A | Operating Temperature, All Package Types | | | + 125 | °C | | t _r , t _f | Input Rise and Fall Time $ V_{CC} = 2 $ (Figure 1) $ V_{CC} = 3 $ $ V_{CC} = 4 $ $ V_{CC} = 4 $ | 3.0 V
4.5 V | 0
0
0
0 | 1000
600
500
400 | ns | This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} . Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open. # DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND) | | | | | Guaranteed Limit | | mit | | |-----------------|---|--|--------------------------|---------------------------|---------------------------|---------------------------|------| | Symbol | Parameter | Test Conditions | V _{CC}
V | – 55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | V _{IH} | Minimum High-Level Input
Voltage | $V_{out} = 0.1 \text{ V or } V_{CC} - 0.1 \text{ V}$
$ I_{out} \le 20 \mu\text{A}$ | 2.0
3.0
4.5
6.0 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | 1.5
2.1
3.15
4.2 | V | | V _{IL} | Maximum Low-Level Input
Voltage | V_{out} = 0.1 V or V_{CC} – 0.1 V $ I_{out} \le 20 \mu A$ | 2.0
3.0
4.5
6.0 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | 0.5
0.9
1.35
1.8 | ٧ | | V _{OH} | Minimum High-Level Output
Voltage | $V_{in} = V_{IH} \text{ or } V_{IL}$
$ I_{out} \le 20 \ \mu\text{A}$ | 2.0
4.5
6.0 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | 1.9
4.4
5.9 | V | | | | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & & I_{out} \leq 2.4 \text{ mA} \\ & & I_{out} \leq 4.0 \text{ mA} \\ & & I_{out} \leq 5.2 \text{ mA} \end{aligned} $ | 3.0
4.5
6.0 | 2.48
3.98
5.48 | 2.34
3.84
5.34 | 2.20
3.70
5.20 | | | V _{OL} | Maximum Low-Level Output
Voltage | $ V_{in} = V_{IH} $
$ I_{out} \le 20 \mu A$ | 2.0
4.5
6.0 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | 0.1
0.1
0.1 | V | | | | $ \begin{aligned} V_{in} = V_{IH} \text{ or } V_{IL} & & I_{out} \leq 2.4 \text{ mA} \\ & & I_{out} \leq 4.0 \text{ mA} \\ & & I_{out} \leq 5.2 \text{ mA} \end{aligned} $ | 3.0
4.5
6.0 | 0.26
0.26
0.26 | 0.33
0.33
0.33 | 0.40
0.40
0.40 | | | I _{in} | Maximum Input Leakage Current | V _{in} = V _{CC} or GND | 6.0 | ± 0.1 | ± 1.0 | ± 1.0 | μΑ | | I _{CC} | Maximum Quiescent Supply
Current (per Package) | $V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$ | 6.0 | 1 | 10 | 40 | μΑ | # $\label{eq:characteristics} \textbf{AC ELECTRICA}_{L} \ \textbf{CHARACTERISTICS} \ (C_L = 50 \ \text{pF, Input} \ t_r = t_f = 6 \ \text{ns})$ | | | | Gu | Guaranteed Limit | | | |--------------------|---|----------------------|-----------------|------------------|---------|------| | Symbol | Parameter | v _{cc}
v | – 55 to
25°C | ≤ 85 °C | ≤ 125°C | Unit | | t _{PLH} , | Maximum Propagation Delay, Input A, B, or C to Output Y | 2.0 | 95 | 120 | 145 | ns | | t _{PHL} | (Figures 1 and 2) | 3.0 | 45 | 60 | 75 | | | | | 4.5 | 19 | 24 | 29 | | | | | 6.0 | 16 | 20 | 25 | | | t _{TLH} , | Maximum Output Transition Time, Any Output | 2.0 | 75 | 95 | 110 | ns | | t _{THL} | (Figures 1 and 2) | 3.0 | 30 | 40 | 55 | | | | | 4.5 | 15 | 19 | 22 | | | | | 6.0 | 13 | 16 | 19 | | | C _{in} | Maximum Input Capacitance | _ | 10 | 10 | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|---|---|----| | C_{PD} | Power Dissipation Capacitance (Per Gate)* | 25 | pF | ^{*}Used to determine the no–load dynamic power consumption: $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$. Figure 1. Switching Waveforms *Includes all probe and jig capacitance Figure 2. Test Circuit EXPANDED LOGIC DIAGRAM (1/3 OF THE DEVICE) ## **ORDERING INFORMATION** | Device | Package | Shipping [†] | |----------------|-----------------------|-----------------------| | MC74HC10ADTG | TSSOP-14
(Pb-Free) | 96 Units/Tube | | MC74HC10ADG | SOIC-14
(Pb-Free) | 55 Units/Rail | | MC74HC10ADR2G | SOIC-14
(Pb-Free) | 2500/Tape & Reel | | MC74HC10ADTR2G | TSSOP-14* | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. ^{*}This package is inherently Pb-Free. # PACKAGE DIMENSIONS # TSSOP-14 CASE 948G-01 **ISSUE B** #### NOTES: - OTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. TERMINAL NUMBERS ARE SHOWN FOR - 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY. - DIMENSION A AND B ARE TO BE | ᄔ | HMINEL |) AL DA | IUM PL | ANL -W | |-----|----------|---------|-----------|--------| | | MILLIN | IETERS | INC | HES | | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | - | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 BSC | | 0.026 BSC | | | Н | 0.50 | 0.60 | 0.020 | 0.024 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | Κ | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 | BSC | 0.252 BSC | | | М | 0 ° | 8 ° | 0 ° | 8 ° | # **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **PACKAGE DIMENSIONS** # #### NOTES: - 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE - DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. - 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. - 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0,127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | INC | HES | |-----|-------------|------|-------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 8.55 | 8.75 | 0.337 | 0.344 | | В | 3.80 | 4.00 | 0.150 | 0.157 | | С | 1.35 | 1.75 | 0.054 | 0.068 | | D | 0.35 | 0.49 | 0.014 | 0.019 | | F | 0.40 | 1.25 | 0.016 | 0.049 | | G | 1.27 | BSC | 0.050 | BSC | | J | 0.19 | 0.25 | 0.008 | 0.009 | | K | 0.10 | 0.25 | 0.004 | 0.009 | | M | 0 ° | 7° | 0 ° | 7° | | Р | 5.80 | 6.20 | 0.228 | 0.244 | | R | 0.25 | 0.50 | 0.010 | 0.019 | ### **SOLDERING FOOTPRINT*** DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative