Dual 2-to-4 Decoder/ Demultiplexer The MC74VHC139 is an advanced high speed CMOS 2-to-4 decoder/ demultiplexer fabricated with silicon gate CMOS technology. It achieves high speed operation similar to equivalent Bipolar Schottky TTL while maintaining CMOS low power dissipation. When the device is enabled (\overline{E} = low), it can be used for gating or as a data input for demultiplexing operations. When the enable input is held high, all four outputs are fixed high, independent of other inputs. The internal circuit is composed of three stages, including a buffer output which provides high noise immunity and stable output. The inputs tolerate voltages up to $7~\rm V$, allowing the interface of $5~\rm V$ systems to $3~\rm V$ systems. - High Speed: $t_{PD} = 5.0 \text{ ns}$ (Typ) at $V_{CC} = 5 \text{ V}$ - Low Power Dissipation: $I_{CC} = 4 \mu A$ (Max) at $T_A = 25^{\circ}C$ - High Noise Immunity: $V_{NIH} = V_{NIL} = 28\% V_{CC}$ - Power Down Protection Provided on Inputs - Balanced Propagation Delays - Designed for 2 V to 5.5 V Operating Range - Low Noise: V_{OLP} = 0.8 V (Max) - Pin and Function Compatible with Other Standard Logic Families - Latchup Performance Exceeds 300 mA - ESD Performance: Human Body Model > 2000 V; Machine Model > 200 V - Chip Complexity: 100 FETs or 25 Equivalent Gates - These Devices are Pb-Free and are RoHS Compliant # ON Semiconductor® http://onsemi.com # SOIC-16 D SUFFIX CASE 751B TSSOP-16 DT SUFFIX CASE 948F A = Assembly Location WL, L = Wafer Lot YY, Y = Year WW, W = Work Week ## PIN ASSIGNMENT # **ORDERING INFORMATION** See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet. **Table 1. FUNCTION TABLE** | Inputs | | | Outputs | | | | |--------|----|----|---------|-----------|-----------|------------| | E | A1 | A0 | Y0 | <u>Y1</u> | <u>Y2</u> | <u></u> 73 | | Н | Х | Х | Н | Н | Н | Н | | L | L | L | L | Н | Н | Н | | L | L | Н | Н | L | Н | Н | | L | Н | Ĺ | Н | Н | L | Н | | L | Н | Н | Н | Н | Н | L | Figure 1. Logic Diagram Figure 2. Expanded Logic Diagram (1/2 of Device) Figure 3. Input Equivalent Circuit Figure 4. IEC Logic Diagram #### **MAXIMUM RATINGS** | Symbol | Paramete | r | Value | Unit | |------------------|---|-------------------------------|--------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +7.0 | V | | V _{in} | DC Input Voltage | -0.5 to +7.0 | V | | | V _{out} | DC Output Voltage | -0.5 to V _{CC} + 0.5 | V | | | I _{IK} | Input Diode Current | -20 | mA | | | lok | Output Diode Current | ±20 | mA | | | l _{out} | DC Output Current, per Pin | ±25 | mA | | | I _{CC} | DC Supply Current, V _{CC} and GN | ±75 | mA | | | P _D | Power Dissipation in Still Air, | 500
450 | mW | | | T _{stg} | Storage Temperature | | -65 to +150 | °C | $\begin{array}{l} \text{range GND} \leq (V_{\text{in}} \, \text{or} \, V_{\text{out}}) \leq V_{\text{CC}}. \\ \text{Unused inputs must always be} \\ \text{tied to an appropriate logic voltage} \\ \text{level (e.g., either GND or } V_{\text{CC}}). \\ \text{Unused outputs must be left open.} \end{array}$ This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied, damage may occur and reliability may be affected. †Derating - SOIC Packages: - 7 mW/°C from 65° to 125°C TSSOP Package: - 6.1 mW/°C from 65° to 125°C # RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Min | Max | Unit | | |---------------------------------|--|---|-----|-----------------|------| | V _{CC} | DC Supply Voltage | 2.0 | 5.5 | V | | | V _{in} | DC Input Voltage | | 0 | 5.5 | V | | V _{out} | DC Output Voltage | | 0 | V _{CC} | V | | T _A | Operating Temperature | | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time
(Figure 3) | V _{CC} = 3.3 V ±0.3V
V _{CC} =5.0 V ±0.5V | 0 | 100
20 | ns/V | The θ_{JA} of the package is equal to 1/Derating. Higher junction temperatures may affect the expected lifetime of the device per the table and figure below. # DEVICE JUNCTION TEMPERATURE VERSUS TIME TO 0.1% BOND FAILURES | Junction
Temperature (°C) | Time, Hours | Time, Years | |------------------------------|-------------|-------------| | 80 | 1,032,200 | 117.8 | | 90 | 419,300 | 47.9 | | 100 | 178,700 | 20.4 | | 110 | 79,600 | 9.4 | | 120 | 37,000 | 4.2 | | 130 | 17,800 | 2.0 | | 140 | 8,900 | 1.0 | Figure 5. Failure Rate vs. Time Junction Temperature # DC ELECTRICAL CHARACTERISTICS | | | | Vcc | Т | A = 25° | С | T _A = ≤ | 85°C | T _A = ≤ | 125°C | | |-----------------|--|---|--------------------------|----------------------------|-------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|------| | Symbol | Parameter | Test Conditions | (V) | Min | Тур | Max | Min | Max | Min | Max | Unit | | V _{IH} | Minimum
High-Level Input
Voltage | | 2.0
3.0
4.5
5.5 | 1.5
2.1
3.15
3.85 | | | 1.5
2.1
3.15
3.85 | | 1.5
2.1
3.15
3.85 | | V | | V _{IL} | Maximum
Low-Level Input
Voltage | | 2.0
3.0
4.5
5.5 | | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | | 0.5
0.9
1.35
1.65 | V | | V _{OH} | Minimum High-Level Output Voltage VIN = VIH or VII | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OH} = -50 \mu A$ | 2.0
3.0
4.5 | 1.9
2.9
4.4 | 2.0
3.0
4.5 | | 1.9
2.9
4.4 | | 1.9
2.9
4.4 | | V | | | VIN = VIH OI VIL | | 3.0
4.5 | 2.58
3.94 | | | 2.48
3.80 | | 2.34
3.66 | | | | V _{OL} | Maximum Low-Level Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$ $I_{OL} = 50 \mu A$ | 2.0
3.0
4.5 | | 0.0
0.0
0.0 | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | | 0.1
0.1
0.1 | V | | | $V_{IN} = V_{IH}$ or V_{IL} | $\begin{aligned} V_{IN} &= V_{IH} \text{ or } V_{IL} \\ I_{OL} &= 4 \text{ mA} \\ I_{OL} &= 8 \text{ mA} \end{aligned}$ | 3.0
4.5 | | | 0.36
0.36 | | 0.44
0.44 | | 0.52
0.52 | | | I _{IN} | Maximum Input
Leakage Current | V _{IN} = 5.5 V or GND | 0 to
5.5 | | | ± 0.1 | | ± 1.0 | | ± 1.0 | μΑ | | Icc | Maximum
Quiescent Supply
Current | V _{IN} = V _{CC} or GND | 5.5 | | | 4.0 | | 40.0 | | 40.0 | μΑ | # AC ELECTRICAL CHARACTERISTICS (Input $t_f = t_f = 3.0$ ns) | | | | T _A = 25°C | | $T_A = 25^{\circ}C$ $T_A = -40 \text{ to } 85^{\circ}C$ $T_A = -55 \text{ to } 125^{\circ}C$ | | T _A = - 55 to 125°C | | | | |--|---|---|-----------------------|------------|--|------------|--------------------------------|------------|--------------|------| | Symbol | Parameter | Test Conditions | Min | Тур | Max | Min | Max | Min | Max | Unit | | t _{PLH} ,
t _{PHL} | Maximum
Propagation Delay,
A to Y | $V_{CC} = 3.3 \pm 0.3 \ VC_L = 15 \ pF$
$C_L = 50 \ pF$ | | 7.2
9.7 | 11.0
14.5 | 1.0
1.0 | 13.0
16.5 | 1.0
1.0 | 13.0
16.5 | ns | | | Aloi | $V_{CC} = 5.0 \pm 0.5 \text{ VC}_{L} = 15 \text{ pF}$ $C_{L} = 50 \text{ pF}$ | | 5.0
6.5 | 7.2
9.2 | 1.0
1.0 | 8.5
10.5 | 1.0
1.0 | 8.5
10.5 | | | t _{PLH} ,
t _{PHL} | Maximum
Propagation Delay,
E to Y | $V_{CC} = 3.3 \pm 0.3 \ VC_L = 15 \ pF$
$C_L = 50 \ pF$ | | 6.4
8.9 | 9.2
12.7 | 1.0
1.0 | 11.0
14.5 | 1.0
1.0 | 11.0
14.5 | ns | | | L 10 1 | $V_{CC} = 5.0 \pm 0.5 \text{ VC}_{L} = 15 \text{ pF}$ $C_{L} = 50 \text{ pF}$ | | 4.4
5.9 | 6.3
8.3 | 1.0
1.0 | 7.5
9.5 | 1.0
1.0 | 7.5
9.5 | | | C _{IN} | Maximum Input
Capacitance | | | 4 | 10 | | 10 | | 10 | pF | | | | Typical @ 25°C, V _{CC} = 5.0 V | | |----------|-----------------------------------|---|----| | C_{PD} | Power Dissipation Capacitance (1) | 26 | pF | C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}/2 (per decoder). C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. # **SWITCHING WAVEFORMS** Figure 6. Figure 7. *Includes all probe and jig capacitance Figure 8. Test Circuit # **ORDERING INFORMATION** | Device | Package | Shipping [†] | |-----------------|-----------------------|-----------------------| | MC74VHC139DR2G | SOIC-16
(Pb-Free) | 2500 / Tape & Reel | | MC74VHC139DTR2G | TSSOP-16
(Pb-Free) | 2500 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # **PACKAGE DIMENSIONS** SOIC-16 CASE 751B-05 ISSUE K - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION. SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIN | IETERS | INC | HES | | |-----|--------|---------|-----------|-------|--| | DIM | MIN | MIN MAX | | MAX | | | Α | 9.80 | 10.00 | 0.386 | 0.393 | | | В | 3.80 | 4.00 | 0.150 | 0.157 | | | С | 1.35 | 1.75 | 0.054 | 0.068 | | | D | 0.35 | 0.49 | 0.014 | 0.019 | | | F | 0.40 | 1.25 | 0.016 | 0.049 | | | G | 1.27 | BSC | 0.050 BSC | | | | J | 0.19 | 0.25 | 0.008 | 0.009 | | | K | 0.10 | 0.25 | 0.004 | 0.009 | | | M | 0° | 7° | 0° | 7° | | | P | 5.80 | 6.20 | 0.229 | 0.244 | | | R | 0.25 | 0.50 | 0.010 | 0.019 | | # **SOLDERING FOOTPRINT** ## PACKAGE DIMENSIONS # TSSOP-16 CASE 948F-01 **ISSUE B** #### NOTES: - DIMENSIONING AND TOLERANCING PER - ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH. PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT - EXCEED 0.15 (0.006) PER SIDE. 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 (0.010) PER SIDE. 5. DIMENSION K DOES NOT INCLUDE - DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL CONDITION. - TERMINAL NUMB REFERENCE ONLY. TERMINAL NUMBERS ARE SHOWN FOR - DIMENSION A AND B ARE TO BE | DETE I | RMINED
MILLIN | AT DATU
IETERS | INC | E -W
HES | |-------------------|------------------|-------------------|-----------|-------------| | DIM | MIN | MAX | MIN | MAX | | Α | 4.90 | 5.10 | 0.193 | 0.200 | | В | 4.30 | 4.50 | 0.169 | 0.177 | | С | | 1.20 | | 0.047 | | D | 0.05 | 0.15 | 0.002 | 0.006 | | F | 0.50 | 0.75 | 0.020 | 0.030 | | G | 0.65 | BSC | 0.026 | BSC | | Н | 0.18 | 0.28 | 0.007 | 0.011 | | J | 0.09 | 0.20 | 0.004 | 0.008 | | J1 | 0.09 | 0.16 | 0.004 | 0.006 | | K | 0.19 | 0.30 | 0.007 | 0.012 | | K1 | 0.19 | 0.25 | 0.007 | 0.010 | | L | 6.40 BSC | | 0.252 BSC | | | М | 0 ° | 8 ° | 0° | 8 ° | #### **SOLDERING FOOTPRINT** ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) and the series are injected to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative