MCC1595 MCC1495

Advance Information

MONOLITHIC FOUR-QUADRANT MULTIPLIER CHIP

... designed for uses where the output voltage is a linear product of two input voltages. Typical applications include: multiply, divide*, square root*, mean square*, phase detector, frequency doubler, balanced modulator/demodulator, electronic gain control.

The MCC1595 and MCC1495 employ phosphorsilicate passivation that protects the entire die surface area, including metalization interconnects. All dice have a minimum gold-backed thickness of 4000 Angstroms. The interconnecting metalization and bonding pads are of evaporated aluminum.

*When used with an operational amplifier.

- Excellent Linearity 0.5% typ Error on X-Input, 1% typ Error on Y-Input - MCC1595
- Excellent Linearity 1% typ Error on X-Input, 2% typ Error on Y-Input – MCC1495
- Adjustable Scale Factor, K
- Excellent Temperature Stability
- Wide Input Voltage Range ± 10 Volts

LINEAR FOUR-QUADRANT MULTIPLIER CHIP INTEGRATED CIRCUIT

MONOLITHIC SILICON EPITAXIAL PASSIVATED

Rating	Symbol	Value	Unit Vdc Vdc Vdc
Applied Voltage (V2-V1, V14-V1, V1-V9, V1-V12, V1-V4, V1-V8, V12-V7, V9-V7, V8-V7, V4-V7)	۷۵	30	
Differential Input Signal	V ₁₂ -V9 V4-V8	±(6+113 RX) ±(6+13 RY)	
Maximum Bias Current	/3 13	10 10	mA
Operating Temperature Range	TA	-55 to +125	°c
Junction Temperature Range	T.	-65 to +150	°c

This is advance information on a new introduction and specifications are subject to change without notice.

MCC1595, MCC1495 (continued)

Characteristic		Symbol	Min	Тур	Max	Unit
Linearity:				-	1	
Output Error in Percent of Full Scale:					1	%
$-10 < V_X < +10 (V_Y = \pm 10 V)$	MCC1495	ERX	-	1.0	-	
	MCC1595		-	0.5	-	
$-10 < V_{Y} < +10 (V_{X} = \pm 10 V)$	MCC1495 MCC1595	ERY	-	2.0 1.0	-	
Squaring Mode Error:						
Accuracy in Percent of Full Scale After		ESQ				%
Offset and Scale Factor Adjustment				0.75		
	MCC1495 MCC1595			0.75	1	
Scale Factor (Adjustable)				0.0		
2RL						
$(K = \frac{2R_L}{I_3R_XR_Y})$		ĸ		0.1	-	-
Input Resistance (f = 20 Hz)	MCC1495	RINX	-	20		Megohms
	MCC1595		-	35	-	
	MCC1495 MCC1595	RINY		20 35	1 -	
Differential Output Resistance (f = 20 Hz)		Ro		300	-	k Ohms
Input Bias Current						
$I_{bx} = \frac{(I_g + I_{12})}{2}, I_{by} = \frac{(I_4 + I_8)}{2}$	MCC1495		1500	2.0	12	μA
$I_{bx} = \frac{1}{2}$, $I_{by} = \frac{1}{2}$	MCC1595	Чbх		2.0	8.0	μΑ
	MCC1495	h	_	2.0	12	
	MCC1595	1 _I PA		2.0	8.0	
Input Offset Current						
19 - 1 ₁₂	MCC 1495	lioxI	-	0.4	2.0	μA
	MCC1595		-	0.2	1.0	
14 - 18	MCC 1495 MCC 1595	lioy	-	0.4	2.0 1.0	
Output Offset Current		Haal				μA
114-12	MCC 1495		-	20	100	
	MCC1595		-	10	50	
Frequency Response		0141-		3.0		мна
3.0 dB Bandwidth 3^{O} Relative Phase Shift Between V $_{\mathbf{X}}$ and V $_{\mathbf{Y}}$		BW3dB	-	750	_	kHz
1% Absolute Error Due to Input-Output Phase Shift		fφ	_	30	_	kHz
		f _e				
Common Mode Input Swing (Either input)	MCC 1495	CMV	_	±12	_	Vdc
	MCC1595		_	±12 ±13	-	
Common Mode Quiescent		V ₀₁	-	21	-	Vdc
Output Voltage		V ₀₂	-	21	-	
Differential Output Voltage Swing Capability		Vout	-	±14	-	Vpeak
Power Supply Sensitivity		S⁺ S⁻	-	5.0 10	_	mV/V
		17		6.0	7.0	mA
Power Supply Current						

See current MC1595/1495 data sheet for additional information

MCC1595/MCC1495 BONDING DIAGRAM

PACKAGING AND HANDLING

The MCC1595/MCC1495 is the Four-Quadrant Multiplier now available in die (chip) form. The phosphorsilicate passivation protects the metalization and active area of the die but care must be exercized when removing the dice from the shopping carrier to avoid scratching the bonding pads. A vacuum pickup is useful for the handling of dice. Tweezers are not recommended for this purpose.

The non-spill type shipping carrier consists of a compartmentalized tray and fitted cover. Die are placed in the carrier with geometry side up.

All dimensions are nominal and in mils $(10^{-3}$ inches). Die Dimensions Thickness = 8.0 Bonding Pads = 4.0×4.0