QE128 Quick Reference User Guide

oV o
(578 2
% .0‘
; " ’ ’0.

Solutions
optimized for low power

Devices Supported:
MCF51QE128
MC9S08QE128

Document Number: QE128QRUG
Rev. 1.0
10/2007

freescale:

semiconductor

How to Reach Us:

Home Page:
www.freescale.com

E-mail:
support@freescale.com

USA/Europe or Locations Not Listed:
Freescale Semiconductor

Technical Information Center, CH370
1300 N. Alma School Road

Chandler, Arizona 85224
+1-800-521-6274 or +1-480-768-2130
support@freescale.com

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064, Japan

0120 191014 or +81 3 5437 9125
support.japan @freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center

2 Dai King Street

Tai Po Industrial Estate

Tai Po, N.T., Hong Kong

+800 26668334
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
P.O. Box 5405

Denver, Colorado 80217

1-800-441-2447 or 303-675-2140

Fax: 303-675-2150

LDCForFreescaleSemiconductor @ hibbertgroup.com

Information in this document is provided solely to enable system and
software implementers to use Freescale Semiconductor products. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.

Freescale Semiconductor reserves the right to make changes without further
notice to any products herein. Freescale Semiconductor makes no warranty,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale Semiconductor assume any liability
arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as components in systems intended for surgical implant into the bodly,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended
or unauthorized application, Buyer shall indemnify and hold Freescale
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was negligent
regarding the design or manufacture of the part.

R £

Z “freescale"

semiconductor

Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. All other product or service names are the property of their
respective owners.

© Freescale Semiconductor, Inc. 2007. All rights reserved.

QE128QRUG
Rev. 1.0
10/2007

2.1
2.2

2.3

3.1
3.2
3.3

4.1
4.2

4.3

5.1
5.2
5.3

Chapter 1
QE Peripheral Module Quick Reference User Guide

Chapter 2
QE MCUs 8-bit and 32-bit Comparison

OV IV, . o 1-1
Cores CompPariSONttt e 1-1
2.2 VA COre .o 1-1
222 QE SO8 COret iiie 1-10
2.2.3 ColdFire V1 or9S08QE. 1-12
Features Comparisono e 1-18
2.3.1 On-Chip Memory Comparison.ttt 1-18
2.3.2 Power-Saving Modes and Power-Saving Features Comparison 1-18
2.3.3 Package Comparison 1-18
2.3.4 Clock CompariSONnttt e 1-19
2.3.5 System ComparisSon e 1-19
2.3.6 Input/Output Comparison. e 1-19
2.3.7 Development Support Comparisont 1-20
2.3.8 Peripherals Comparison 1-20

Chapter 3

How to Load the QRUG Examples?

OV VI . 1-1
Steps to programming the MCU using Multilink 1-1
Steps to programming the MCU Using In-Circuit BDM. 1-6

Chapter 4

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

OV IV W . 1-1
KBl project for EVB. 1-1
421 Codeexampleandexplanation........... i, 1-1
4.2.2 Hardware Implementation 1-3
KBI project for Demo board 1-5
4.3.1 Code example and explanation. i, 1-5
4.3.2 Hardware Implementation, 1-6

Chapter 5

Using the Internal Clock Source (ICS) for the QE Microcontrollers

OV IV W . 1-1
Code Example and Explanation. 1-1
Hardware Implementation 1-4

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor -1

Chapter 6
Using the Inter-Integrated Circuit (IIC) for the QE Microcontrollers

B.1 OVEIVIEW . .o 1-1

6.2 Code Example and Explanation. e 1-1

6.2.1 lIC Master Project 1-2

6.2.2 lIC Slave Project 1-6

6.3 Hardware Implementation e 1-7
Chapter 7

Using the Analog Comparator (ACMP) for the QE Microcontrollers

7.1 OVEIVIBW. . o o 1-1

7.2 ACMP project for EVB 1-2

7.21 Code Example and Explanation 1-2

7.2.2 Hardware Implementation 1-4

7.3 ACMP project for Demo board e 1-5

7.3.1 Code Example and Explanation 1-5

7.3.2 Hardware Inplementation. 1-6
Chapter 8

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

8.1 OVEIVIBW. . o o 1-1

8.2 ADC project for EVB. 1-2

8.2.1 Code Example and Explanation 1-2

8.2.2 Hardware Implementation 1-4

8.3 ADC projectforDemo board 1-5

8.3.1 Code Example and Explanation 1-5

8.3.2 Hardware Implementation 1-6
Chapter 9

Using the Real Time Counter (RTC) for the QE Microcontrollers

0.1 OVEIVIBW . oo 1-1

9.2 RTCoprojectfor EVB. 1-1

9.2.1 Code Example and Explanation i .. 1-1

9.2.2 Hardware Implementation 1-3

9.3 RTC project for Demo board e 1-4

9.3.1 Code Example and Explanation 1-4

9.3.2 Hardware Implementation 1-5
Chapter 10

Using the Serial Communications Interface (SCI) for the QE Microcontrollers

101 OVeIVIBW . .o e 1-1

10.2 SClprojectfor EVB 1-1

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

10.2.1 Code Example and Explanation 1-1

10.2.2 Hardware Implementation 1-3

10.3 SCl projectforDemo board 1-4

10.3.1 Code Example and Explanation 1-4

10.3.2 Hardware Implementation 1-5
Chapter 11

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

111 OVeIVIBW . . e 1-1
11.2 SPIproject for EVB. e 1-1
11.2.1 Code Example and Explanation 1-1
11.2.2 Hardware Implementation 1-5
11.3 SPI projectforDemo board 1-6
11.3.1 Code Example and Explanation 1-6
11.3.2 Hardware Implementation 1-9

Chapter 12
Generating PWM Signals Using Timer/Pulse-Width Modulator (TPM) Module
for the QE Microcontrollers

12,1 OVEIVIBW. . . oo e 1-1
12.2 PWM project for EVB 1-2
12.2.1 Code Example and Explanation 1-2
12.2.2 Hardware Implementation 1-4
12.3 PWM project forDemo board. 1-5
12.3.1 Code Example and Explanation 1-5
12.3.2 Hardware Implementation 1-6
Chapter 13

Using the Output Compare function with the Timer/Pulse-Width Modulator
(TPM) module for the QE Microcontrollers

18,1 OVEIVIBW . . 1-1

13.2 TPM Projectfor EVB 1-2

13.2.1 Code Example and Explanation i 1-2

13.2.2 Hardware Implementation 1-4

13.3 TPM project for Demo board 1-5

13.3.1 Code Example and Explanation 1-5

13.8.2 Hardware Implementation 1-6
Chapter 14

Using the Rapid General Purpose I/0 (RGPIO) for the MCF51QE128 Micro-

controllers

14,1 OVEIVIBW. . . it 1-1

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor -3

N

14.2 Code Example and Explanation. 1-1
14.3 Simulation Stepso 1-2
14.4 Hardware Implementation 1-7

QE128 Quick Reference User Guide, Rev. 1.0

-4 Freescale Semiconductor

Chapter 1

QE Peripheral Module Quick Reference User Guide

A Compilation of Demonstration Firmware for QE Modules

This document is a brief description of the QE128 microcontroller unit (MCU) in an 8-bit version and

32-bit version. There is also useful information about core differences.

This document is a compilation of code examples and quick reference materials that have been created to
help users speed the development of their applications. Each section in this document contains an example
that works with an evaluation board (EVB) and Demo board with both 8-bit and 32-bit cores versions.
These examples were developed using CodeWarrior™ 6.0 version. Consult the device reference manual
for specific part information.

Revision History

NOTE

» The provided examples were made to be used with the MC9S08QE128
and MCF51QE128 in an 80-pin and 64-bit package, but could be easily
migrated to a different QE device, pay attention to the used pins.

» All the example projects were developed in two different boards:
EVBQE128 STARTER KIT and DEMO board, no extra hardware is
needed except for the ACMP module, SPI, and IIC.

Revision i Page

Date Level Description Number(s)
25-Jun-07 0 Initial public release. N/A
19-Oct-07 1.0 Changes in template, function names and other minor corrections. N/A

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

1-1

N

QE Peripheral Module Quick Reference User Guide

QE128 Quick Reference User Guide, Rev. 1.0

1-2 Freescale Semiconductor

Chapter 2
QE MCUs 8-bit and 32-bit Comparison

2.1 Overview

This is a brief explanation of MCU architectures. It has helpful information about cores, addressing modes
and exception processing. The intention of this section is to provide an overview of the S08 and V1 Core.
Further information can be found in reference manuals at www.freescale.com.

2.2 Cores Comparison

2.2.1 V1 core

The MCF51QE128, MCF51QE96, MCF51QEG64 are members of the low-cost, low-power, high
performance ColdFire® V1 core (version 1) family of 32-bit MCUs. Figure 2-1 shows the ColdFire V1
core platform block diagram.
The ColdFire V1 core features are:

* Implements Instruction Set Revision C (ISA_C).

» Supports up to 30 peripheral interrupts and seven software interrupts.

* Built upon lowest-cost ColdFire V2 core microarchitecture.

» Two independent decoupled 2-stage pipelines.

* Debug architecture remapped into S08's single-pin BDM interface.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 2-1

http://www.freescale.com

| V1 ColdFire
| core

IAG

IA Generation

Instruction

Y

A

Fetch Cycle

o

FIFO
Instruction
Buffer

Y

DSOC

Decode & Select,
Operand Fetch

Platform

Y

Y

Address,
Attributes

A

AGEX

Address

3|
> o

<

Read Data

Local

Bus
Controller

A

Generation,
Execute

|
|
|
|
|
|
|
|
|
|
|
|
|
|
| OEP
|
|
|
|
|
|
|
|
|
|
|
[
|

BDC/Debug

On-Platform Bus

>

Write Data

Y

l

l

l

Flash
Controller

RAM
Controller

RGPIO
Controller

Peripheral
Bridge

Off-Platform
Flash Array

Off-Platform
SRAM Array

_____ -
i Peripheral Bus

Pins
Figure 2-1. ColdFire V1 Core Platform Block Diagram
QE128 Quick Reference User Guide, Rev. 1.0
2-2 Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

The ColdFire V1 core has two programming models, the user and supervisor. First, is the user
programming model which is the same as the M68000 family microprocessors and consists of the
following registers:

» 16 general-purpose 32-bit registers (D0-D7, A0-A7)

» 32-bit program counter (PC)

» 8-bit condition code register (CCR)

Data Registers Address Registers
31 31

DO A0

D1 Al

D2 A2

D3 A3

D4 A4

D5 A5

D6 A6

D7 A7 SP
PC
CCR

Figure 2-2. User Programming Model Registers

Data registers (D0-D7) -- These registers are used for bit, byte, word or longword operations. It can also
be used as index registers for effective address (<ea>) calculations.

31 30 29 28‘27 26 25 24‘23 22 21 20‘19 18 17 16‘15 14 13 12‘11 10 9 8 ‘7 6 5 4 ‘3 2 1 0

0

Data

Figure 2-3. Data Registers (D0-D7)

Address registers (A0-Ab6) -- These registers can be used as software stack pointers, index registers or
based address registers. They can also be used as data operation
storage,word and longword operations.

31 30 29 28‘27 26 25 24’23 22 21 20’19 18 17 16‘15 14 13 12‘11 10 9 8‘ 7 6 5 4‘ 3 2 1 0

)

Address

Figure 2-4. Address Registers (A0-A6)

AT -- Is a user stack pointer and is treated specifically by CPU.

Program counter (PC) -- This register contains the address of the currently executing instruction. The
PC increments its value or can be loaded with a new one when an instruction
is executing or when an exception occurs.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 2-3

QE MCUs 8-bit and 32-bit Comparison

3130292827262524232221201918171615141312‘11 10 9 8‘7 6 5 4/3 2 1 0

0

Address

Figure 2-5. Program Counter Register (PC)

Condition code register (CCR) -- This register reflects the result of most instruction flags. It is used to
evaluate the instructions of the conditional branches.

7 6 5 4 3 2 1 0
R
X N Z \ C
W
Figure 2-6. Condition Code Register (CCR)
Table 2-1. CCR Field Descriptions
Field Description
7-5 Reserved, must be cleared.
4 Extend condition code bit. Set to the C-bit value for arithmetic operations; otherwise not affected or set to a specified
X result.
3 Negative condition code bit. Set if most significant bit of the result is set; otherwise cleared.
N
2 Zero condition code bit. Set if result equals zero; otherwise cleared.
4
1 Overflow condition code bit. Set if an arithmetic overflow occurs implying the result cannot be represented in operand
\Y size; otherwise cleared.
0 Carry condition code bit. Set if a carry out of the operand msb occurs for an addition, or if a borrow occurs in a
C subtraction; otherwise cleared.

Second, is the supervisor programming model. This is intended to be used only by system control software
to implement restricted operating system functions: 1/0O control, and memory management. In the
supervisor programming model all registers and features of the ColdFire processors can be accessed and
modified. This consists of registers available in user mode and the following control registers:

» 16-bit status register (SR).

» 32-bit supervisor stack pointer (SSP).

» 32-bit vector base register (VBR).

» 32-bit CPU configuration register (CPUCR).

Status register (SR) — This is a 16-bit register. It stores the processor status and includes the condition
code register (CCR). When it is used in user mode only the lower 8-bit can
be accessed. When used in supervisor mode the registers can be accessed.
If a supervisor instruction is executed in user mode it generates a privilege
violation exception. Figure 2-8 shows the SR behavior in a state machine.

QE128 Quick Reference User Guide, Rev. 1.0

2-4 Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

System Byte Condition Code Register (CCR)
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0 0 0 0 0
T S M | X N z Vv C
w
Figure 2-7. Status Register (SR)
Table 2-2. SR Field Descriptions

Field Description

15 Trace enable. When set, the processor performs a trace exception after every instruction.

T

14 Reserved, must be cleared.

13 Supervisor/user state.

S 0 User mode

1 Supervisor mode

12 Master/interrupt state. Bit is cleared by an interrupt exception and software can set it during execution of the RTE or

M move to SR instructions.

11 Reserved, must be cleared.
10-8 |Interrupt level mask. Defines current interrupt level. Interrupt requests are inhibited for all priority levels less than or

| equal to current level, except edge-sensitive level 7 requests, which cannot be masked.
7-0 Refer to MCF51QE128 Reference Manual.
CCR

Reset

Exception

Supervisor User Mode
Mode SR[S] =1 SR[S] =0

Rte, move-to-sr with
Rte, move-to-sr with sr_operand[13] =0
sr_operand[13] =1

Figure 2-8. Processor Status State Machine

Supervisor stack pointer (SSP) -- This ColdFire architecture supports two independent stack pointers,

AT registers. Each operating mode has its own stack pointer, SSP and user
stack pointer (USP). The hardware implementation of these two registers do
not identify one as SSP and the other as USP. Instead, the hardware uses one
32-bit register as the active A7 and the other as, OTHER_A7.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 2-5

QE MCUs 8-bit and 32-bit Comparison

31 302928272625242322212019181716‘15141312‘11 10 9 8‘7 6 5 4/3 2 1 0

0

Address

Figure 2-9. Stack Pointer Registers (A7 and OTHER_A7)

Vector base register (VBR) -- This register defines the base address of the exception vector table in the
memory. It has two different possible values: 0x(00)00_0000 exception
vector table based on the flash, and 0x(00)80_0000 exception vector table
based on the RAM. At reset the VBR is cleared. The VBR is located at the
base of the exception table at the address 0x(00)00_0000 in the flash.

31 30 29 28|27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8
o(ofjofofojojo0|0 Base ojo|jo|ofOfOfOf0Of0O|0O|0O]|O
W Address

o |o

By}

[«R RN
[«
[@RFe]
o|s
O|w
ofn
o

Figure 2-10. Vector Base Register (VBR)

CPU configuration register (CPUCR) -- With this register you can configure some cores into supervisor
mode. Certain hardware features can be enabled or disabled based on the
state of the CPUCR.

31 30 29 28 27 26 25 24|23 22 21 20|19 18 17 16|15 14 13 12|11 10 9 8

-

R 0 ojojojoj0|0O|O|OfjO|O|O|O|O|lO|O|O|O|O|O|O|O|O|O|O]|O
ARD|IRD |IAE |IME|BWD — FSD

Figure 2-11. CPU Configuration Register

2211 Addressing Modes

The ColdFire V1 core counts with 12 different addressing modes. The addressing modes and syntax are
shown in Table 2-3:

Table 2-3. Addressing Modes and Syntax

Addressing modes Syntax
Register Direct. op.sz' Ry,Rx
Address Register Indirect. op.sz (Ax),Rx
Address Register Indirect with Post-increment. op.sz (Ax)+,Rx
Address Register Indirect Pre-decrement. op.sz -(Ay),Rx
Address Register Indirect with Displacement. op.sz d16(Ay),Rx
Address Register Indirect with Scaled Index and Displacement. op.sz d8(Ay,Xi*SF),Rx
Program Counter Indirect with Displacement. op.sz d16(PC),Rx
Program Counter Indirect with Scaled Index and Displacement. op.sz d8(PC,Xi*SF),Rx)

QE128 Quick Reference User Guide, Rev. 1.0

2-6 Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

Table 2-3. Addressing Modes and Syntax

Addressing modes

Syntax

Absolute Short Addressing.

0p.sz Xxx.w,Rx

Absolute Long Addressing.

op.sz xxx.{I},Rx

Immediate Byte, Word.

op.{b,w}? #imm,Rx

Immediate Long.

op.l#mm?3,Rx

1 op.sz - operand size(size is 1 for byte, 2 for word, 4 for long).

2
op.! - operand long.

op.{b,w} - operand {byte,word}.

This is a syntax for a V1 core example:

221.2 Exception Pro

Exception processing is defined as processor-detected conditions that force an instruction stream
discontinuity because of a program or system error: a system call, a debug, or an 1/O interrupt. The

Source Destination
#0x55 Rx
cessing

ColdFire V1 core uses a reduced version of the interrupt controller from other ColdFire processors. This
hardware implementation is available only for a 32-bit MCU.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

2-7

|
y

'
A

QE MCUs 8-bit and 32-bit Comparison

The processor performs the following operations to process an exception:

(i)

Saves a copy of the SR.
Forces:
SR[S]=1
SR[T]=0
If an interrupt forces
SR[M]=0
then sets
SR[I]=to the level of
the interrupt

Saves the content at the
time of the exception by
storing a 64-bit
exception stack frame
(including the saved SR)
on the top of the
supervisor stack.

Y

v

Calculates the vector for
all internal exceptions.
For interrupts, the CPU
uses the vector number
supplied by the interrupt
controller or performs an
interrupt acknowledge
(IACK) cycle to retrieve
the 1/0O vector number.

Interrupts are treated as lowest-priority exception type. CPU samples for halts and interrupts once per
instruction. The first instruction in ISR does not sample. Interrupts are guaranteed to be recoverable

exceptions.

31 30 29 28

v
®

The processor fetches a
32-bit vector address
from the exception
vector table @ (VBR +
vector_number x 4). The
address defines the first
instruction of the
exception handler or
interrupts service routine
(ISR). Control is then
passed to the exception
handler at this address.

Figure 2-12. Processor Operations Process

27 26 25 24‘23 22 21 20‘19 18 17 16

Format

FS[3:2] ‘ Vector

|FS[1:O]

Program Counter

ColdFire architecture reserves 64 entries for processor exceptions and the remaining 192 entries for 1/0
interrupts. The ColdFire V1 core architecture only uses a relatively small number of the 1/0 interrupt
vector. Table 2-4 shows the ColdFire V1 core processor with the exception of the vector table.

Figure 2-13. Exception Stack Frame Form

QE128 Quick Reference User Guide, Rev. 1.0

15141312‘11 10 9 8‘7 6 5 4‘3 2 1.0
Status Register

Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

Table 2-4. Vector Table

Stacked
Vector Vector Program Assignment
Number(s) [Offset(Hex)
Counter
0 0x000 - Initial supervisor stack pointer
1 0x004 - Initial program counter
2-63 0x008-0x0FC - Reserved for internal CPU Exceptions
64 0x100 Next IRQ_pin
65 0x104 Next Low_voltage
66 0x108 Next TPM1_chO
67 0x10C Next TPM1_ch1
68 0x110 Next TPM1_ch2
69 0x114 Next TPM1_ovfl
70 0x118 Next TPM2_ch0
71 0x11C Next TPM2_ch1
72 0x120 Next TPM2_ch2
73 0x124 Next TPM2_ovfl
74 0x128 Next SPI2
75 0x12C Next SPI1
76 0x130 Next SCl1_err
77 0x134 Next SCI1_rx
78 0x138 Next SCI1_tx
79 0x13C Next [1Cx
80 0x140 Next KBIx
81 0x144 Next ADC
82 0x148 Next ACMPx
83 0x14C Next SCI2_err
84 0x150 Next SCl2_rx
85 0x154 Next SCI2_tx
86 0x158 Next RTC
87 0x15C Next TPM3_ch0
88 0x160 Next TPM3_ch1
89 0x164 Next TPM3_ch2
90 0x168 Next TPM3_ch3
91 0x16C Next TPM3_ch4
92 0x170 Next TPMS3_ch5
93 0x174 Next TPMS3_ovfl
94-95 0x178-0x17C - Reserved; unused for V1
96 0x180 Next Level 7 Software Interrupt
97 0x184 Next Level 6 Software Interrupt
98 0x188 Next Level 5 Software Interrupt
99 0x18C Next Level 4 Software Interrupt
100 0x190 Next Level 3 Software Interrupt
101 0x194 Next Level 2 Software Interrupt
102 0x198 Next Level 1 Software Interrupt
103-255 [0x19C-0x3FC - Reserved; unused for V1

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

2-9

QE MCUs 8-bit and 32-bit Comparison

2.2.2 QE S08 core

This section provides summary information about the registers, addressing modes and core features. The
generated source and object-code is compatible with the M68HC08 CPU.

The S08 MCU supports only the user programming model. Figure 2-14 shows five CPU registers. These
registers are not part of the memory map.

[accomuiaor | &

..............

15 8 7 D
ST STACK POINTER | sp
15 D
| PROGRAM COUNTER | P&
1 0
CONDITION CODEREGISTER[v 1 1 H | N Z C| CCR
Lcmmf
TERD
NEGATIVE

INTERRUFT MASK
HALF-CARRY (FROMEIT 3)
TWO'S COMPLEMENT OVERFLOW

CPU Reqgisters

Figure 2-14. CPU Registers

Accumulator -- The accumulator is a general-purpose 8-bit register. One operand input to the arithmetic
logic unit (ALU) is connected to the accumulator and the ALU results are
often stored in the accumulator after arithmetic and logical operations.

Index Register (H:X) -- This is a two separate 8-bit register, which often works together as a 16-bit
address pointer where H holds the upper byte of an address and X the lower
byte. All the indexing addressing mode instructions use the 16-bit register.

Stack pointer (SP) -- This 16-bit address pointer register points to the next available location on the
automatic last-in-first-out (LIFO). The stack is used to automatically store
the return address from subroutine calls or return from interrupts. It stores
the context in the interrupt service routine (ISR) and it stores the local
variables and parameters in function calls.

Program counter (PC) -- This register contains the next instruction or operand to be retrieved. This
register automatically increments to the next memory location during a
normal program execution.

Condition code register (CCR) -- This 8-bit condition code register contains the interrupt mask (1) and
five flags that indicate the results of the instruction just executed. Bits 5 and
6 are permanently set to 1.

QE128 Quick Reference User Guide, Rev. 1.0

2-10 Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

7 0
CONDITION CODE REGISTER [v ™11 'H | N Z C] CCR

CARRY
——ZERD
NEGATIVE
INTERRUPT MASKE
HALF-CARRY (FROMEBIT 3
TWO'S COMPLEMENT OVERFLOW

Figure 2-15. Condition Code Register

V - Two's complement Overflow Flag N - Negative flag
H - Half Carry Flag Z - Zero Flag
| - Interrupt Mask Bit C - Carry/Borrow flag

2221 Addressing Modes

Addressing modes define the way the CPU accesses operand and data. The SO8 core supports seven
different addressing modes:
Table 2-5. Addressing Modes and Examples

Addressing Modes Example
Inherent --Operands in internal registers. ASLA — Arithmetic Shift Left A.
Relative -- 8-bit offset to branch destination. BEQ rel — Branch if equal
Immediate -- Operand in next object code byte. ADC #opr8i — Add with carry
Direct -- Operand in memory at 0x0000-0x00FF. ADC opr8a — Add with carry
Extended -- Operand within 64 Kbyte address space. ADC opr16a — Add with carry
Indexed relative to H:X. ADC oprx8,X — Add with carry
Indexed relative to SP. ADC oprx8,SP — Add with carry

n -- Any label or expression that evaluates to a single integer in the range 0-7

opr8i -- Any label or expression that evaluates to an 8-bit immediate value

oprl6i -- Any label or expression that evaluates to a 16-bit immediate value

opr8a -- Any label or expression that evaluates to an 8-bit value

oprl6a -- Any label or expression that evaluates to a 16-bit value

oprx8 -- Any label or expression that evaluates to an unsigned 8-bit value, used for indexed addressing
oprx16 -- Any label or expression that evaluates to a 16-bit value

page -- Any label or expression that evaluates to a valid bank number for PPAGE register. Any value
between 0 and 7 is valid.

rel -- Any label or expression that refers to an address that is within -128 to +127 locations from the next
address after the last byte of object code for the current instruction.

A -- Accumulator

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 211

QE MCUs 8-bit and 32-bit Comparison

2222 Interrupt Sequence

The S08 core interrupt sequence first completes the current instruction then attends the requested interrupt.
The CPU responds to an interrupt with the same sequence operation as in a software interrupt (SW1), and

it differs from the address used for the vector retrieved.

Y

D

Y

®

Store PCL in SP

Sets the | bit in the CCR

Y

Y

Store PCH in SP

\

Fetches the high-order
half of the interrupt
vector

Fetches three bytes of
program information
starting at the address
indicated by the interrupt
vector

Store X in SP

Y

\J

\

Store A in SP

Y

Fetches the low-order
half of the interrupt
vector

Store CCR in SP

Fills the instruction
queue, preparing for
execution of the first

instruction in the
interrupt service routine

|

Delays for one free bus
cycle

Store PCL in SP

5

3

v

Figure 2-16. The CPU Interrupt Sequence

2.2.3 ColdFire V1 or 9S08QE

The ColdFire V1 and S08 cores have significant differences, even though the 32 bit ColdFire V1 core
presents improvements in performance. These differences are highlighted in the following section.

The ColdFire V1 architecture features, staged pipelining allows the core to process multiple instructions
at the same time.

QE128 Quick Reference User Guide, Rev. 1.0

2-12 Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

Instruction
|AG Address e
Generation
) = Address [24:0]
Ic Instruction - _ _
) Fetch Cycle e b ™
Instruction -
Fetch

Pipeline

B FIFO
Instruction Buffer

Y

DSOC Decode & Select,

"—1 Data [31:0]
L]

Operand Operand Fetch |™ - |’\
Execution
Pipeline
Address
AGEX Generation,
Execute

Figure 2-17. V1 Core Pipelines

» The V1 Coldfire core pipeline stages include the following:

— Two-stage instruction fetch pipeline (IPF) (plus instruction buffer stage)

— Instruction address generation (IAG) — Calculates the next prefetch address

— Instruction fetch cycle (IC) — Initiates prefetch on the processor’s local bus

— Instruction buffer (1B) — Buffer stage minimizes effects of fetch latency using fifo queue
» Two-stage operand execution pipeline (OEP)

— Decode and select/operand fetch cycle (DSOC) — Decodes instruction and fetches the required
components for effective address calculation, or the operand fetch cycle

— Address generation/execute cycle (AGEX) — Calculates operand address or executes the
instruction

ColdFire V1 core architecture -- Is an orthogonal architecture that has an advantage. It has 16 different
registers for operation that can be used instead of one. The ColdFire V1 core
processes more effectively the 32-bit length operations than the 8-bit core
version.

S08 core architecture -- Is accumulator based, almost all arithmetic and logical instructions use the
accumulator. The S08 can handle 32-bit length operations but requires more
cycles because it executes more instructions, taking more time.

The ColdFire MCU has two programming models with different privileges to control the system. These
programming models are similar to the administrator and user in windows. When the MCU is on the

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 2-13

QE MCUs 8-bit and 32-bit Comparison

administrator level it can access all the registers and change values. The 8-bit core version does not count
with this feature.

Table 2-6 shows a global view of the core differences. Detailed information is explained in the beginning
of this chapter. Refer to review Reference Manual MCF51QE128 and MC9S08QE128 at the
www.freescale.com site.

Table 2-6. Comparison of Cores

MC9S08QE128 MCF51QE128
Up to 50 MHz CPU from 3.6 V 2.1 V, and 20 MHz CPU from 2.1 V to 1.8 V across temperature ranged of -40°C
to 85°C.
8-bit HCS08 core. 32-bit ColdFire V1 core.
8-bit data bus, 16-bit address bus. 32-bit data bus, 24-bit address bus.
64 Kb memory map, 16 Kb paging window for 16 Mb memory map, entire memory map addressed
addressing memory beyond 64 Kb. Linear address directly.

pointer for accessing data across entire memory range.

HCO08 instruction set with added BGND, CALL and RTC |ColdFire Instruction Set Revision C (ISA_C), and

instructions. additional instructions for efficient handling of 8-bit and
16-bit data.

Support for up to 32 interrupt/reset exceptions. Support for up to 256 interrupt/reset exceptions (39 are

Exception priorities are fixed. One level of interrupt used on MCF51QE128). Exception priorities are fixed

grouping. No hardware support for nesting. except for two interrupts that can be remapped. Seven
levels of interrupt grouping and hardware support for
nesting.

Resets: one vector for all reset sources. Vector must |Resets: vectors for up to 64 reset sources. Vector can
point to address within pages 0-3. No illegal address |point to any valid address. lllegal address reset is
reset. Entire memory map is legal. supported.

System reset status (SRS) registers set flags for most recent reset source.

2.2.31 Exception Comparison

Table 2-7 shows the exception differences between 8-bit core and 32-bit core.

Table 2-7. Exception Differences

Attribute S08 V1 ColdFire
Exception Vector Table. 32, 2-byte entries, fixed location at | 103, 4-byte entries, located at lower end of
upper end of memory. memory at reset, relocatable with the VBR.
More on Vectors. 2 for CPU + 30 for IRQs (interrupt |64 for CPU + 39 for IRQs, reset at lowest
requests), reset at upper address. |address.
Exception Stack Frame. 5-byte frame: CCR, A, X, PC. 8-byte frame: F/V, SR, PC;

General-purpose registers (An, Dn) must
be saved/restored by the ISR.

Interrupt Levels. 1 = (CCRI)). 7 = f(SR[I]) with automatic hardware
support for nesting.

Non-Maskable IRQ Support. |No Yes with level 7 interrupts.

QE128 Quick Reference User Guide, Rev. 1.0

2-14 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

QE MCUs 8-bit and 32-bit Comparison

Table 2-7. Exception Differences

Core-enforced IRQ Sensitivity. |No Level 7 is edge sensitive, and others level
sensitive.

INTC (interrupt controller) Fixed priorities and vector Fixed priorities and vector assignments,

Vectoring. assignments. plus any 2 IRQs can be remapped as the
highest priority level 6 requests.

Software IACK. No Yes

Exit Instruction from ISR. RTI (real time interrupt). RTE (real time exception).

2.23.2 Code Example Comparison

This example is a code made in C and is compiled and executed for both MCUs,V1 and S08. Both results
present a difference in execution time. The generated assembly lines are similar.

There are two four loop cycles that nest within this endless loop.The inner loop cycle counts from 0 to 100
and stores the k variable value in the buffer k array. The outer loop counts from 0 to 60000. The i variable
counter increments every time the k variable counter reaches the 101 value.

void main(void) {

unsigned int i,k;
unsigned int buffer[100];

SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin
// enable. RESET pin enable

for(G;) {

for (i=0; i<=60000; i++) { // This rutine is executed 60001
for (k=0; k<=100; k++) {
buffer[k] = k;
}

}

} 7/ loop forever
// please make sure that you never leave main

}

Assembly code lines generated for the SO8 MCU; observe the difference between this assembly code and
the assembly code generated from the ColdFire V1 core.

10: SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin enable. RESET pin
enable
0004 a623 [2] LDA #35
0006 c70000 [4] STA _SOPT1
0009 L9:
11: for(;;) {
12:
13: for (i=0; i<=60000; i++) {
0009 95 [2] TSX
000a 6103 [51 CLR 3,X
000c 6f02 [51 CLR 2,X
000e LE:
14: for (k=0; k<=100; k++) {
000e 95 [21 TSX
000f 6101 [51 CLR 1,X

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 2-15

QE MCUs 8-bit and 32-bit Comparison

0011 7Ff [4] CLR X

0012 L12:

15: buffer[k] = k;

0012 95 [2] TSX

0013 e601 [31 LDA 1,X

0015 48 [1] LSLA

0016 af04 [2] AIX #4

0018 87 [21 PSHA

0019 oFf [11 TXA

00la 8b [2] PSHH

001b 95 [2] TSX

001c eb01 [31] ADD 1,X

00le e701 [3] STA 1,X

0020 86 [31 PULA

0021 a9%00 21 ADC #0

0023 87 [2] PSHA

0024 e602 [3] LDA 2,X

0026 8a [3] PULH

0027 88 [3] PULX

0028 f7 [21 STA , X

0029 9ee602 [41 LDA 2,SP

002c e701 [31 STA 1,X

002e 95 [2] TSX

002f 6¢c01 [5] INC 1,X
0031 2601 [3] BNE L34 ;abs = 0034
0033 7c [41 INC X
0034 L34:
0034 9efell [5] LDHX 1,SP
0037 650064 [31] CPHX #100
003a 23d6 [31 BLS L12 ;abs = 0012
003c 95 [2] TSX
003d 6c03 [5] INC 3,X
003f 2602 [31 BNE L43 ;abs = 0043
0041 6c02 [5] INC 2,X
0043 L43:
0043 9efe03 [5] LDHX 3,SP
0046 65ea60 [3] CPHX #-5536
0049 23c3 [31 BLS LE ;abs = 000e
16: }

17: }

18:

19: PTED = OxFF;
004b 6eff00 [4] Mov #-1, PTED
004e 20b9 31 BRA L9 ;abs = 0009
20: } 7/ loop forever

21: // please make sure that you never leave main
22: }

23:

Assembly lines generated for the MCF51QE128 MCU.

; 10: SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable.
RESET pin enable

;0 11 for(G;) {

: 12:

0x00000004 0x7023 moveq #35,d0

0x00000006 0x11C09802 move.b do, OxFFFF9802

QE128 Quick Reference User Guide, Rev. 1.0

Background Pin enable.

2-16

Freescale Semiconductor

; 13: for (i=0; i<=60000;

i++) {

0x0000000A 0x4280 cir.1 do
0x0000000C 0x6016 bra.s *+24

14: for (k=0; k<=100; k++) {
0x0000000E 0x4281 clr.l di
0x00000010 0x6008 bra.s *+10
; 15: buffer[k] = k;
0x00000012 0x41D7 lea (a7),a0

0x00000014 0x21811C00

; 16: }

0x00000018 0x5281
0x0000001A 0x0C8100000064
0x00000020 0Ox63FO0

; 17: }

; 18:

0x00000022 0x5280
0x00000024 0xOC800000EAGO
0x0000002A 0Ox63E2

; 19: PTED = OXxFF;

0x0000002C 0x103COOFF
0x00000030 0x11C08008

move.l dl1,(a0,d1.1*4)

addqg. 1 #1,d1
cmpi .1 #100,d1
bls.s *-14

addqg.-1 #1,d0
cmpi .1 #60000,d0
bls.s *-28

move.b #-1,d0

move.b do, OxFFFF8008

; 20: } /7* loop forever */

0x00000034 0x60D4
0x00000036 O0x51FC

bra.s *-42
trapf

QE MCUs 8-bit and 32-bit Comparison

; 0x00000024

; 0x0000001a

: " . .d"
; 0x00000012

; 0x0000000e

; 0x0000000a

Table 2-8 shows the CPU cycles needed and the assembly lines code generated to complete the execution
of the program described above. The used compiler for this test was CW 6.0 version and no optimization

tool was used.

NOTE

This example is just a particular comparison and the performance between
cores is not reflected with this example. The performance is application

dependant.
Table 2-8. Comparison of CPU Cycles and Assembly Code Lines
MCF51QE128 MC9S08QE128
Assembly lines code 18 43
CPU Cycles 49,201,507 407,947,991

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

2.3

2.3.1

Features Comparison

On-Chip Memory Comparison

Table 2-9. On-Chip Memory Comparison

MC9S08QE128

MCF51QE128

Peripheral register maps maintain relative addresses.

Up to 8 Kb of random-access memory (RAM).

FLASH read/program/erase over full operating voltage and temperature.

Up to 128KB of FLASH, two FLASH arrays of 64Kb x
8-bits arranged in series. Two flash arrays allow for
“read while write” programming.

Up to 128 KB of FLASH. Two FLASH arrays of 64 Kb x
8-bits arranged in parallel. FLASH “read while write” not
supported.

Security circuitry to prevent unauthorized access to
RAM and FLASH contents, default is secured when
blank

Security circuitry to prevent unauthorized access to
RAM and FLASH contents, default is unsecured when
blank

2.3.2

Power-Saving Modes and Power-Saving Features Comparison

Table 2-10. Power-Saving mode Comparison

MC9S08QE128

MCF51QE128

Two very low power stop modes (Stop2 and Stop3).

Low Power run (LPRun) and wait (LPWait) modes allow for use of peripherals in reduced-current and

reduced-speed mode.

Peripheral clock enable register can disable clocks to unused modules, thereby reducing currents.

Very low power external oscillator that can be used in stop modes to provide accurate clock source RTC module.

Very low power real time counter for use in run, wait, and stop modes with internal and external clock sources.

6ps typical wake up time from stop modes.

Reduced power wait mode (enabled by WAIT
instruction).

Reduced power wait mode (enabled by setting WAIT bit
in the SOPT1 register then executing STOP
instruction).

2.3.3

Package Comparison

Table 2-11. Package Comparison

MC9S08QE128

MCF51QE128

Pin-to-pin compatible in 80-LQFP and 64-LQFP packages.

Additional 48-QFN, 44-QFP and 32-LQFP packages.

No additional packages.

QE128 Quick Reference User Guide, Rev. 1.0

2-18

Freescale Semiconductor

QE MCUs 8-bit and 32-bit Comparison

2.3.4 Clock Comparison

Table 2-12. Clock Comparison

MC9S08QE128 MCF51QE128

Oscillator (XOSC) — Loop-control pierce oscillator, crystal or ceramic resonator range of 31.25 kHz to 38.4 kHz
or 1 MHz to 16 MHz

Internal clock source (ICS) — Internal clock source module containing a frequency-locked-loop (FLL) controlled
by internal or external reference. Precision trimming of internal reference allows 0.2% resolution and 2%
deviation over temperature and voltage. Supports CPU frequencies from 2 MHz to 50 MHz

2.3.5 System Comparison

Table 2-13. System Comparison

MC9S08QE128 MCF51QE128

Watchdog computer operating properly (COP) reset with option to run from dedicated 1 kHz internal clock source
or bus clock.

Low-voltage detection with reset or interrupt. Selectable trip points.

lllegal opcode detection with reset.

No illegal address reset, all addresses in maps are
legal.

lllegal address detection with reset.

FLASH Block protection: protects in 1k increments.
Protects array O first (from OxOFFFF - 0x00000), then

FLASH Block protection: protects in 2 k increments.
Protects array from 0x00000 to Ox1FFFF.

array 1 (from Ox1FFFF — 0x10000).

2.3.6 Input/Output Comparison

Table 2-14. Input/Output Comparison

MC9S08QE128 MCF51QE128

70 GPIOs (general purpose input/output) and 1 input-only and 1 output-only pin.

16 KBI (keyboard interrupts) with selectable polarity.

Hysteresis and configurable pull up device on all input pins, configurable slew rate and drive strength on all output
pins.

SET/CLR registers on 16 pins (PTC and PTE).

Rapid 1/0O not featured.

Selectable Rapid I/0 supported on PTC and PTE ports.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 2-19

QE MCUs 8-bit and 32-bit Comparison

2.3.7

Development Support Comparison

Table 2-15. Development Support Comparison

MC9S08QE128

MCF51QE128

Single-wire background debug interface. Same hardware Background Debug Mode (BDM) cable supports both

devices.

One version of CodeWarrior integrated development environment (IDE) and debugger supports both devices.

CodeWarrior stationary, project wizard, initialization wizard and Processor Expert make C-code migration

between devices easy.

SET/CLR registers on 16 pins (PTC and PTE).

Break point capability to allow single breakpoint setting
during in-circuit debugging, plus three more
breakpoints in on-chip debug module.

Integrated ColdFire DEBUG_Rev_B+ interface with
single wire BDM connection supports the same
electrical interface used by the S08 family debug
modules.

On-chip in-circuit emulator (ICE) debug module
containing three comparators and nine trigger modes.
Eight deep FIFO for tracing change-of-flow addresses
and event-only data. Debug module supports both tag
and force breakpoints.

Classic ColdFire Debug B+ functionality mapped into

the single-pin BDM interface. 64 deep FIFO for tracing
processor status (PST) and debug data (DDATA). Real
time debug support, with 6 hardware breakpoints, four
PC, one address and one data, that can be configured

into a 1 or 2 level trigger with a programmable response.

2.3.8 Peripherals Comparison

Table 2-16. Peripherals Comparison

MC9S08QE128 MCF51QE128

ADC - 24-Channel, 12-bit resolution, 2.5 ps conversion time, automatic compare function, 1.7 mV/°C
temperature sensor, internal bandgap reference channel, operation in stop3, and fully functional from 3.6 V to
1.8 V.

ACMPx — Two analog comparators with selectable interrupt on rising, falling, or either edge of comparator output,
compare option to fixed internal bandgap reference voltage, and operation in stop3.

SCIx — Two serial communications interface modules with optional 13-bit break.

SPIx — Two serial peripheral interfaces with Full-duplex or single-wire bidirectional, double-buffered transmit and
receive, Master or Slave mode, MSB-first or LSB-first shifting.

lICx — Two 1ICs with up to 100 kbps with maximum bus loading, multi-master operation, programmable slave
address, Interrupt driven byte-by-byte data transfer, supports broadcast mode and 10-bit addressing.

TPMx — One 6-channel (TPM3) and two 3-channel (TPM1 and TPM2), selectable input capture, output compare,
or buffered edge- aligned or center-aligned PWM on each channel, and operation in stop3.

RTC - (Real time counter) 8-bit modules counter with binary or decimal based prescaler; external clock source
for precise time base, time-of-day, calendar or task scheduling functions; Free running on-chip low power
oscillator (1 kHz) for periodical wake-up without external components; runs in all MCU modes

QE128 Quick Reference User Guide, Rev. 1.0

2-20 Freescale Semiconductor

Chapter 3
How to Load the QRUG Examples?

3.1 Overview

This section describes the steps needed to download the firmware to flash. This shows the modules
working in the hardware.

All the examples described in this document are developed using Code Warrior 6.0 version and can be
changed in order to fit the application. To run these examples a Code Warrior version 6.0 and an Evaluation
Board or a Demo board are needed in order to run these examples satisfactorily.

3.2 Steps to programming the MCU using Multilink

Follow these simple steps in order to load the QRUG examples and download it to the device. The
explanation works for the EVB and Demo board.

1. Open CodeWarrior 6.0.

2. File -> Open, or click on the Open Icon as shown in Figure 3-1.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 3-1

How to Load the QRUG Examples?

Freescale CodeWarrior

File Edit Yiew Search Project Processor Expert Device Initialization Window Help

TEEEc e xha A AN NS s EEMD

Look in: | D

RGIFO

| = ®m ek E-

(=)bin
S)emd
I)prm

[CIRGIPO_Data

) Sources

REIPO.mcp

&

|3CF\-' 1_BDM_P&E_Multilink_Cyclone
BCFV 1 _Instructian_Set_Simulator .ir
C_Layout, bl

Default, mem

Object name:

Obiects of

|RGIPD.mep

| Al Files)

4

Figure 3-1. Open the Desired Project

Browse the desired project.

©o gk~ w

Double click on the .mcp extension file, in this case RGP10.mcp.
To open the file double click on .c extension file (main.c).
On the left side of the window is a combo box. Select the P&E Multilink/Cyclone Pro option as

shown in Figure 3-2. The BDM multilink hardware for programming the MCU is needed when an
EVB is used. This device is developed by PEmicro. If a demo board is used do not buy a multilink.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

h o
g |

4
How to Load the QRUG Examples?

i Freescale CodeWarrior - [main.c]

EFiIe Edit Wiew Search Project Processor Expert Device Intialization ‘Window Help

e e IR LY B
==l b-{}-M- - o' - Path: | D:\Profiles\b041434My DocumentsyQE1 28 trainingtQRU GAE xamplestRGIPO4S ourcesimain. ¢ O
RGIPO.mcp l <% RTAC Anericas - =
| D» P Muliink/CyconePo ~| 5 1B & B 85 g ’ o

Instruction Set Simulatio

#include <hidef h: ~% for Enablelnterrupts macro %7
#include "derivative. h" -# include peripheral declarations #-

Code | Data |4 E
=123 Sources 148 0 =~ - - - ‘-
. 148 0 e ;* Function declarations *;
=123 Includes 0 a
ﬁfcﬂggiléz?z% g g woid MCU_Tnit(void) {
_&;bshmsmmsc 41'3 2’8 . SOPTL = 0x=23; % Watchdog disable. Stop Mode Enable. Background Fin enable.)

A8 fp_coldfire.a 13456 1]
{8 C_4i_CF_Reg®Bl_MSL.a 23208 1858

fiS C_4i_CF_ReghBl_Funtmea 5912 776

woid GPIO_Init(void) f

=153 Project Settings 472 20 FTEDLD = 0=03; <% Configure PTEQD and PTE1l pins as outputs =~
=+ Startup Code 472 0 FTED = 0=00:; <% Put 0'= in PTE port *-
R startch.c 472 0 +

QR CN N CREY ENCREY CR CEY CRCEY T ENEY

chm.c bz void RGFIO Init({void) {

resetvector.c] a
R statcth I RGPIO_DIR = 0=0080; /% Configure PTE7 pin as output */
=+ Linker Files RGPIO_ENE = 0x0080; /% Configure PTE7 az RGPIO pin *~
LR Project Icf nfa nda B

Fs £

<% Main Function .

-~ s

vold mainivoid) {
HCU_Init(); % Function that initializes the HCU =~
GPIO_Init{); % Function that initializes the Ports of the MCU =~
RGPIO Init(); <% Function that initializes the EGPID nodule #®7
Enasblelnterrupts; % snable interrupts *-
for(;:) {
PTED PTEDZ? "= 1: #% Toggles a PTE3. This instruction iz executed in 18 CPU cycle
FTED "= 0O=01; ~% Toggles a PTEQD. This instruction is executed in 5§ CPU cycle:
RGPIO TOS = 0=0080; % Toggles PTE?. This instruction is executed in 2 CPU cycles ¢
} % loop forever *7
% pleasze make sure that you never leawve this function *-

+

12 fles KX P .
< |2 Line7o colds ||4] \ S

Figure 3-2. Select the Correct Option in the Combo Box

7. There are three different ways to compile the project. Click on the make icon, beside the combo
box, as shown in Figure 3-3. The make command can be accessed from the Project menu, -> Make,
or just press F7 key on your keyboard.

8. No errors should show up.

9. Project —> Debug. Click on the debug icon beside the make icon, or just press F5 on the keyboard.
Doing this launches the debugger and downloads the program to the MCU flash.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 3-3

h

How to Load the QRUG Examples?

Freescale CodeWarrior - [main.c]

& C_4i CF_ReghBl_MSL.a
{8 C_4i_CF_RegABl_Runtime.a

=3 Praject Settings

(=3 Startup Code

startch.c

cfm.c

resetvector.c

startch.h

== Linker Files

M Project lcf

Make Icon

Debug Icon

12 files 42K,

2K

._.l_ —> _ Line 70

ile Edit View Search Project Processor Expert Device Initialization ‘Wwindow Help X
| R=R— e 3 fredhhsinB@l
=1l b-{}-m- « o'+ Path; D:\Profles\o041 434y Dacumentsh3ET22 traininghdRUGAE samplesiR GIPONS aurcesimain o <
RGIPO.]
o ~% RTAC Americas * =
o g 7
| D Pie buiink/Cpclone Fro—— ~ | {5k 1B @ @ EI =
Files]LinkDrder] Targels] A A #include <hidef h: ~* for Enablelnterrupts nacro =
: #include "derivative h" <#* include peripheral declarations *~/
[3 File | Code | Data |4 | -
148 s 2 A
" mainc 148 tm :* Function declarations *;
Includes
B derivative.h TR il
) MCFST0ET28h R 2 Init froid
ibs SOPT1 = 0=23; % Watchdog disable. Stop Mode Enable. Background Pin enable.]
B MCFSIQE128.C T
B fp_coldfire.a

woid GPIO Tnit(void) {

FTEDD =
PTED: =
}

0=03;
0=00:

woid RGPIO Init(void) {

~% Configure FTED and FTEl pins as outputs *7
s Putil’ = in PTE port. e

RGFPIO_DIR = 0=0080: <% Configure PTE? pin a= output #*-

RGPIO_EWE = 0=0080:; <% Configure FTE? as RGFIO pin *~

1

i 2

A% Main Function *
o

vold main{woid) {

MCU_Init(); P
GPIO Init(): s
RGPIO_Init(): S
EnableInterrupts; %
for(;:) {

PTED_PTED3 "= 1;
PTED “= 0=01;
REPIO_TOG = 0x0080;

+ /% loop forever %

Coldf | [4]

~% please make sure that you never leave this function =~

Function that initializes the HCU =~
Function that initializes the Ports of the MCU -
Function that initializes the RGPIO module =~

enable interrupts =~

Toggles a FTE3. This instruction is emxecuted in 18 CPU cycle
Toggles a PTE0D. This instruction is executed in 5 CPU cycles
Toggles PTE?. This instruction is erecuted in 2 CPU cycles ¢

Figure 3-3. Make Icon and Debug Icon

10. After the debug command is executed a window pops up (see Figure 3-4). Click on the Connect

option.

QE128 Quick Reference User Guide, Rev. 1.0

3-4

Freescale Semiconductor

How to Load the QRUG Examples?

True-Time Simulator & Real-Time Debugger D:\Profiles\b04143\My DocumentsVQE128B training\QRUG\Examples\Demo board\V 1\ADCACFV1_BDM_P&E Multilink_CyclonePro...

File Miew Run Connection Component ary w Help
D|@|d| &|B|@| 2| | <|¢|el4| 2
El|Source |ZHE||Z| Eg.lssemhly \ZHEHX|

P&E MCF51xx Connection Manager - v1.01

Please select connection interface, port. and settings in order to connect to
target.

[Connection port and Interface Tppe
Add LPT Part
Interface: |USB HCE08/HCS12/CFY 1 Multilink - USE Port = NReeah et
Part: |USB1 DEMOOE [PESOT 2023) - ;I

* Containg Embedded Multilink. Click for details

Target CPU Infarmation

[Procedure CPU: ColdFire Processor - Autodetect

MCU reset fine: MCL Yaltage:

~Rezet Option:
[~ Delay after Reset and betare communicating to target far I 0 millizeconds (decimall.

v IF a secure device is detected, perform flash erase ta enter debug made (will prampt before erasure]

Cyelone Pro Power Contral [Voltage —» Power-Out Jack]

v Provide power to targst Regulator Dutput Yoltage Power Down Delay I 250 mg
I Pawer off target upon software exit Iﬂ Paower Up Delay IW ms
7~ Trirn Control

22272727

D efault trim reference frequency is - 31250.00 Hz. [Valid Range: 3125000 t2 39060.00 Hz)
[~ Use custom tim reference frequency : | 31250.00 Hz LClick for timn details.

B Data:2 Hotsync Abort

Iw Shouw thiz dialog befare attempling to cantact target (Othenaise only display on Error] Procedure Data:l Source Register Frial

Loading Target ...
I0 registers loaded for MCFS1QELZ28 from C:hZProgram FileshFre:

in o~
8]

Far Help, press F1 \Loading Target ... 4J

Figure 3-4. Connect Option

11. If a window appears asking to erase and program flash, click Yes.

12. The True-time simulator window appears on your screen. In this window debug the projects,
review the registers and memory in real time.

13. Click on the run button as shown in Figure 3-5. This figure shows the true-time simulator window
or debugger window. This makes the MCU start to execute the project.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 3-5

) 4

How to Load the QRUG Examples?

File Wiew Run MukilinkCyclonePro Component Memory Window Help
] = T R e] Il Y e R)

E Source Skark/Continue {F5)

D:4PiofilestbD414 34y Documents'GE 128 trhining AR UG \ExamplesD ChSourceshaDC.c

void main(woid) {H

MCT Init(); /% Functicn that initializes the MCU */
GPIO_Init(): /% Functiqn that initializes the Ports of the MCO %/
ADC_configuration(): /% Fujction that initializes the ADC module */

Z153F ERA *+0 rahs = OxZ13F

EnableInterrupts; /* enable |interrupts */
ADCSC1_ATEN = 1; #% Egahle ADC interrupt 7
APCTL1_ADPCO = 1; 4% Sqlect the chanmel for ADC input */

fari=«1 [w

[Procedure

v
m [z100 gp 14F
SR |61 status | vEINZC

. PC z134 L4P a
Start/Continue Button Ir | 2134 FPPAGE | 0

Data:1 = B[%]
ADC.c Auta Sumb Global

_S0PT1 <1» wolatile S0PT1STR L &4 FF AF 00
_ACGCl <1» wolatile SCGCLSTR E| o0 a7 8B
_PTDDD <1» wolatile PTDDDAETR ES 03 48
_PTEDD <1> wolatile PTEDDSTR 26 F8 SE
_PTED <1> wolatile PTEDSTR FF FF AF
ADCSCY <1» wolatile ADCSC1STR 1F 89 8B

FiiData:2 |:||E\E| EE Command |:||E||X|
main Auta Spmb Lacal

HEEEHEEEA

|

AT T As

RUNNING
Preset breakpoint encountered.
Ereakpoint

ime=

E3]im]

StarkfContinue program Automatic (triggers, breakpoints, watchpaints, and trace passible) |9508QE128 j(aln]) |Braakpoint /J

Figure 3-5. Run/Continue Icon

3.3 Steps to programming the MCU Using In-Circuit BDM

Follow these simple steps in order to load the QRUG examples and download it to the device. The
explanation works for EVB only.

1. Open CodeWarrior 6.0.

2. File -> Open, or click on the Open Icon as shown in Figure 3-6.

QE128 Quick Reference User Guide, Rev. 1.0

3-6 Freescale Semiconductor

How to Load the QRUG Examples?

Freescale CodeWarrior

File Edit Yiew Search Project Processor Expert Device Initialization Window Help

TEEEc e xha A AN NS s EEMD

Look in: | (3 RGIPO =] = &k E-
(=)bin |3CFV1_BDM_P&E_Multi\ink_CycIone
S)emd BCF\H_Instructinn_Sat_SimuIatnr.\r

Iprm C_Layout, bl

[CIRGIPO_Data Default.mem

) Sources
RRGIPO.mcp

<

Object name: IRGIPD mcp

Obectsof | AllFiles 7]

I 7|
Figure 3-6. Open the Desired Project

Browse the desired project.

Double click on the .mcp extension file, in this case RGP10.mcp.

To open the file, double click on .c extension file (main.c).

On the left side of the window is a combo box. Select the SofTec option as shown in Figure 3-7.

©o gk~ w

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 3-7

A 4
A
How to Load the QRUG Examples?

i Freescale CodeWarrior - [RGPIO.c]

EF“E Edit View Search Project Processor Expert Device Initialization ‘Window Help
i R=l— ' ® % &
=l b -} -nm- - o'~ Path D:4Profilesibl41434My Documents\AE 128 training QR UG AExampleshEVE W1 R GIPONS ources\RGRIO <>
RGIPO mcp l P - [u]
" . <% Project Hame: REGPIO. mcp * —
|ﬂﬂ>’ SofTec ColdFire jﬁ B ¥ @ % <% Source fle nane: RGPIO o * =
PE Multilink /Cyclone Pro - x <
/% Copyright (C) 2007 Free=cale Semiconductor. Inc *.
<% A1]1 Rights Reserwved *
L3 File Code | Data |4 = s s
. - s
%ﬁou o Eg g . j_ <% Hand= on training for QE128 HCU's *
—e31 | o i 0 = <% Module: RGFIO *.
A INCLIoss <% The firmware was developed and tested on CodeWarrior 6.0 wersion =~
E derivative.h 0 o= x x
-l MCFSIRET28h 0 o = /% Description: This firmware shows how to configure the RGPIO *.
S 3?783 2453 ﬂ f* module on the W1 HCU. *;
B fp_coldfire.a 13456 0o = e .
fE C_4i CF_RegtBl_M5L.a 18208 1677 = s% Date: 12-03-2007 *
B C_4i_CF_ReghBIl_Rurtime a E11E e = /% Ulises Corrales Salgado *
=123 Project Settings 452 200« = <% Application Enginesr *
=143 Startup Code 452 20« = ;* RTAC Anericas *;
R startclc 452 0« =
B cfmc 0 12 « =
E L?::att;;e;tor.c g g * ﬂ #:i.nclude <hidgf.h_> ~% for Er}ahlelnterrgpts nacro *®°)
5 E3Linker Files 0 0 = #include "derivative h" % include peripheral declarations =7
-~ Project.lcf nfa nfa =l 2 v
<% Function declarations *
7 -
void MCU_Init{woid) {
SOPTL = 0=23; % Watchdog disable. Stop Hode Enable. Background FPin enable
}
void GPIO TInit{woid) {
FTEDD = 0=03; ~% Configure PTE0 and FTEl pins as outputs =7
FTED = 0=00; % Put 0's in PTE port #*- b
}
void RGPIC _Init(woid) 4
EGPIO DIR = 0=x0080; <% Configure PTE? pin as output
RGPTIO_ENE = 0=0080: #% Configure PTE? a=s RGFIO pin #*-
}
o -
<% Main Function *.
7 -
12 files 38368 2473 -
< | e Y| | v

Figure 3-7. Select the Correct Option in the Combo Box

7. There are three different ways to compile the project.

8. Click on the make icon, beside the combo box, as shown in Figure 3-8. The make command can
be accessed from the Project menu, -> Make, or just press F7 key on your keyboard.

9. No errors show up.

10. Project —> Debug. Also click on the debug icon beside the make icon, or just press F5 on the
keyboard. Doing this launches the debugger and downloads the program to the MCU flash.

QE128 Quick Reference User Guide, Rev. 1.0

3-8 Freescale Semiconductor

h

How to Load the QRUG Examples?

Freescale CodeWarrior - [main.c]

derivative. b]
B MCFS1RE128.h 0
=3 Libs
M MCFSI0E128.C]

void MCU_TInit({wvoid) {

SOPT1 = A

0x23;

B fp_coldfiie.a 13456
B C_4_CF_RegtBl_M5L.a 23208 void GFPIO Init(woid) {
B C_4i_CF_ReghBl_Runtime.a B912
=3 Praject Settings 472 PTEDD = 0x03: S*
' FTED = 0x00; e

£ Startup Code
M startcf o
B cfm.c 0

B e A woid RGPIO Tnit(woid) {

EFiIe Edit “iew Search Project Processor Expert Device Intialization ‘Window Help -8 x
Am = v < B 1Y EER L ERER
= b-{}-m- + o'+ Path | D:\Profilesyb041 434y Documents3E 128 aningyBRLUGAE samplestRIGIPOLS ourcesimain. o | &
RGIPO] i
il <% RTAC Americas * g
== e e F
] [ID P4E Multilink/Cyclone Pra LJ ﬁ B ¥ |<B| E i
: A A
Files]Linleder] Targets] #include <hidef h» /% for Enablelnterrupts macro *
_ _ #include "derivative . h" ~#* include peripheral declarations =~
% | Fie | Code | Data |4 | -
148 e 7 " " i
= <% Function declarations */
148 . i 2
0

Watchdog diszable. Stop Hode Enable. Background Pin enable. |

Configure PTEQD and PTEl pins as outputs %
Bt e in PTE pert. a6

?E‘a"‘:ﬁfh g RGEIO DIR = 0x0080: #% Configure PTE? pin as output =~
3 Linker Files RGPIC_ENE = Ox0080; /% Configure PTE7 as RGPIO pin =/
R Project.lcf nfa 1
Make Icon
- s
<% Main Function *
- e
Debug Icon void main(void) {
MCT_Init(): % Function that initializes the MCU *~
GPIO _Init{); <% Function that initializes the Ports of the HCU =~
RGPIO Init({): % Function that initializes the RGPIO nodule =~/
Enablelnterrupt=; ~%* enable interrupts %~
for(;:) {
PTED PTED3 ~= 1: % Toggles a PTE3. This instruction is executed in 18 CPU cycle
FTED "= 0x01: % Toggles a PTEQD. This instruction iz executed in 5 CPU cycle:
RGPIO TOG = 0=0080; ~% Toggles PTE?. This instruction is executed in 2 CPU cycles :
} % loop forever #*-
% pleaze make sure that yvou never leawve thisz function #*-
H
) | =
12 files 42K 2K 5 =
4 | W N

Figure 3-8. Make Icon and Debug Icon

11. After the debug command is executed a window pops up (see Figure 3-9), select the EVBQE128
hardware model and then click on the Connect option.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

3-9

How to Load the QRUG Examples?

‘o True-Time Simulator & Real-Time Debugger D:\Profiles\b04143\My Documents\QE128 training\QRUG\Examples\EVBAV 1\RGIPO\SofTec ... |;||i||z|

File View Run Connection Component Memory Window Help

D@ &|Bi@] 20 -2 e|e+] D)

EiSauree

|Z||Ellz| [Assembly
| : I

Target Connection

~Hardware Model

X
el |

Cancel

Starter Kit for Freescale MCFE10E128.

[Procedure ~Device

Device code:

|MEFsTOE 28

Communication Setings

~ Connection Mode

& Momal [target will be reset)

" Haot plugein [non intrusive, target will not be reset)

I Do not show thiz dialog box again

i Data:2 [- [B[%] E=lcommand

Auto I_Symb Local
Loading Target ...
I0 registers loaded for MCFS1QELES from C:%Progr
i]
| >

For Help, press F1

\Loading Target ... A

Figure 3-9. Connect Option

12. A new window may appear asking to erase and program flash, click Yes.

13. The True-time simulator window appears on the screen. In this window debug the projects, review
the registers and memory in real time.

14. Click on the run button as shown in Figure 3-10. This figure shows the true-time simulator window
or debugger window. This makes the MCU start to execute the project.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

How to Load the QRUG Examples?

{5 True-Time Simulator & Real-Time Debugger, D:\Profiles\b0414 3y Documents\QE128 training\QRUG\Examples\ADC\BDM_P&E_Multilink_CyclonePro.ini =3
File Wiew Run MultlinkCyclonePro Component Memary Window Help

1 e TR e L I e - R)

H source |:||§||z| [Assembly

[-4Profiles\b041 434y DocumentsAQE 128 kdinings DR LUGAE xamples' ADCAS ources ADC o Line: 53
~

-2l ;abs 0x2lZl
2138 BiR =15 sabs = Ox2129

vold main(void) {[F

MCT In: H he MCT #/
GPIO_Init(): A% Functiop that initializes the Ports of the MCT %/
ADC_configurationi): /% Fugction that inicializes che ADC module &7

213B BET 6,0x10
213D BSET 0,0x17
Z13F ERA +0 ;aba = OxZL13F

214z Maw 0x13,0x08

EnableInterrupts; /% enable interrupts */
ADCEC1_AIEN = 1; /% Erable ADC interrupt */
APCTL1_ADPCO = 1; /% sglect the chamnel for ADC input */

Fari--1 f®

[Procedure
Status | VHINZC

P 2134 LAP o

IP | zl3a PRAGE | O

2100 513 14F
la

Start/Contin-

Data: 1

ADCc Auto Symb Global

_S0PTL <1> wolatile SOPTLTR |

00 84 FF AE 00 00 0O Z0

_SCGCL <1» wolatile 3CGCLSTR 1= 00 01 00 87 8B §9 FE AE

_PTDDD <1» wolatile PTDDDSTR 05 S9E E5 03 48 24 02 A3

_FTEDD <1» wolatile PFTEDDSTR SE

_PTED <1> wolatile PTEDSTR SEL L&

_ADCHECL <1> wolatile ADCICLETR 8B F& &7 E6 ...vuun
m o aneens 1o eemlmd 1a AT EROTT - e

Data: 2 I% Command

main Auto Symb Local

RUNNING
Freset hreakpoint encountered.
Breakpoint

ins
1|
|9s0aQE128 1D |[Breakpaint /J

StartfContinue program |Aut0matic (triggers, breakpoints, watchpoints, and trace possible)

Figure 3-10. Run/Continue Icon

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 3-11

-

How to Load the QRUG Examples?

QE128 Quick Reference User Guide, Rev. 1.0

3-12 Freescale Semiconductor

Chapter 4
Using the Keyboard Interrupt (KBI) for the QE
Microcontrollers

4.1 Overview

This is a quick reference for using the keyboard interrupt (KBI) module for the QE family
microcontrollers (MCUSs). Basic information about the functional description and configuration options
are provided.

The following example may be modified to suit an application. The KBI project is made for the
MC9S08QE128 and MCF51QE128 MCUs.

KBI Quick Reference

Because there is more than one KBI module on this device, there may be more than one full
set of registers on your device. In the register name below, where there's a small x, there
would be a 1 or a 2 in your software to distinguish the register that is on KBI1 from KBI2.

KBIXSC | | | | [KBF | KBACK | KBIE | KBMOD]

Module Configuration
KBF — set when event occurs
KBACK - clears KBF

KBIE — interrupt enable
KBMOD — mode select

KBIXPE [KBIPE7 | KBIPE6 | KBIPE5 | KBIPE4 | KBIPES | KBIPE2Z | KBIPET | KBIPEO |

KBI Pin Enable
KBIPE[7:0] — enables and disables each port pin to operate as a keyboard interrupt pin.

KBIXES [KBEDG7 | KBEDG6 | KBEDG5 | KBEDG4 | KBEDG3 | KBEDG2 | KBEDGT | KBEDGO]

KBI Pin Enable
KBEDG([7:0] — determines the polarity edge that is recognized as a trigger event for the
corresponding pin.

4.2 KBI project for EVB

4.2.1 Code example and explanation

This example code is available from the Freescale Web site www.freescale.com

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 4-1

http://www.freescale.com

|
y

'
A

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

In this application, four of the KBI pins are used to trigger an interrupt routine that toggles an LED every
time a keyboard event is detected. The MCU is programmed to:

» Have four KBI pins (PTD4, PTD5, PTD6 and PTD7), as the interrupt trigger.
» Detect falling edges only on the selected pins
» Generate a hardware interrupt where the LED toggle routine is serviced.

The functions for KBIl.mcp project are:

» main — Endless loop waiting for a KBI interrupt.

* MCU_Init - MCU initialization, watchdog disable and the KBI clock module enabled.

* GPIO_Init — Configure PTEOQ pin as output.

» KBI_Init — KBI module configuration.

» KBI_ISR - routine that toggles an LED every time an interrupt is generated.
The code below executes the instructions to disable the watchdog, enable the Reset option and background
pin. The System Option Register 1 (SOPT1) is used to configure the MCU. The SCGC1 and SCGC2 are
registers used for power saving consumption, here the bus clock to peripherals can be enabled or disabled.

In this example only the bus clock to the KBI module is active. The clocks to the other peripherals are
disabled.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin
// enable. RESET pin enable

SCGC1 = 0x00; // Disable Bus clock to unused peripherals

SCGC2 = 0x10; // Bus Clock to the KBI module is enabled

}

This is the General Purpose Input/Output configuration. These code lines configure the direction for the
PTE port. Eight LEDs from the EVB are connected to the PTE port. The PTEO is configured as output in
order to drive a LED.

void GPIO_Init(void) {

PTEDD = 0x01; // Configure PTEO pin as output
PTED = 0x00; // Put 0"s in PTE port

}

This is the initialization code for the keyboard interrupt using the QE128 MCU. For this example, both
KBI registers (KBIXSC and KBIXPE) are used to configure the module to detect only falling edges and
enable PTD4 to PTD7 as KBI. During the initialization phase the interrupts are masked. It takes time for
the internal pull up to reach a ‘1’ logic value. After the false interrupts are cleared, the keyboard interrupt
IS unmasked.

void KBI_Init(void) {

KBI2SC = 0x06; // KBl interrupt request enabled. Detects edges only
KBI2PE = OxFO; // PTD4, PTD5, PTD6 and PTD7 enabled as Keyboard interrupts
KBI2ES = 0x00; // Pins detects falling edge

}

This is the main function, above are the described called functions, and all the interrupts are enabled. After
this the keyboard interrupt can be serviced.

void main(void) {
MCU_Init(Q); // Function that initializes the MCU

QE128 Quick Reference User Guide, Rev. 1.0

4-2 Freescale Semiconductor

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

GP10_Init(Q; // Function that initializes the Ports of the MCU
KBI_Init(Q); // Function that initializes the KBl module
Enablelnterrupts; // enable interrupts

for(G;) {

} // loop forever

// please make sure that you never leave this function

NOTE

This is the KBI service routine. Every time an interrupt is detected this
routine toggles a LED. The VectorNumber_Vkeyboard can be replaced by
the interrupt vector number. This depends, if the MCU is a 9S08 or V1.
Using this example makes the code fully compatible for either MCU.

void interrupt VectorNumber_keyboard KBI_ISR(void) {

// KBl interrupt vector number = 18 (S08)
// KBl interrupt vector number = 80 (V1)
KBI2SC_KBACK = 1; // Clear the KBI interrupt flag
PTED_PTEDO ~= 1; // Toggles PTEO
}

4.2.2 Hardware Implementation

This project is developed using the EVBQE128 STARTER KIT and can be downloaded at
www.freescale.com. No extra hardware is needed.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 4-3

www.freescale.com
www.freescale.com

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

If the use of other KBI pins are required, extra hardware is easy to install. A push button, a resistor and a
capacitor are used to build the circuit. Figure 4-1 shows the hardware configuration.

U
D—‘;_ PTANKBI TP TPMICHIADPACMP 1+ FTE0 1—3,0
sy 05| FTAUKEIIP1TPMZCHIADP1ACMPI- FTE1 50O
RESET 1okg % D—g FTAZKEIF2ISDATADF2 PTGZADPIE O
—_r O——F FTAYKEI1F3/SCLI/ADFE FTGHADFIS Mg
— O_I_W_I O— PTA&/ACMPIO/BKGI/MS FTG4/ADP20 50
1] - S FTAS/IRQTAMICLI/RESET PTGEADP21 o0
O0nE O—7— FTASTPMICHZADFE FTGSIADPZZ 30
L O—= PTAT/TPM2CHZ/ADPS PTGT/ADPZ: 0O 13y
O FTB0KEI 1P4/RxD1/ADF4 FTFO/ADR10 [g5—C
O— 5 PTB1/KBI1PSTxD1/ADFS FTFU/ADP11 [55—0
O—— PTEZ/KBI1PE/SPSCK1/ADPS FTFZ/ADP12 30 21 LED
D—5 PTE3/KBI1FT/MOSI 1ADFT FTFXADP1I [4—0 £ o
O— 5 FTE4TPMZCH1/MISO! PTF4/ADP14 [0
O— 7 PTESTPMICH1/SS1 PTFE/ADPIE =0
D— 7 PTES/SDANXTAL FTF&/ADP1E g0
o FTET/SCLIEXTAL PTFT/ADPIT 0 230
17 13
O—| FTCOTEMECHD FTENTFMZCLIVSFECKT [y
D— & PTC1/TPMACH! FTE1/MOSI1 [0
33y O— F'T:.»_-TF'P.’S:H.». PTEZ/MISOT E
2 D—5;—| FTCHTPMICH3 FTEXSS1 7O
D5 FTC4TFMICH4RETD FTE4 50
K D—55| PTCSTPMACHS/ACMP20 FTES [55—0
—_ O—=3 | FTCE/RxD2/ACMPZ+ PTEE [z O
—% | S O—= PTCTITxDZACMP2- PTET/TPMACLE [0
[
100nF
[75 5
—_r o O—52 PTDO/KBIZPO/SPECK2 PTHO %ﬂ
0 | S O—55 PTD1/KBI2P1/MOSI2 PTH1 =0
| D—55— FTDZKBIZFZ/MISOZ FTHZ 55—
S e s s
oK D it ez
—_r 37| PTDS/KBIZPS _PTHS 53
—2 | O] ———5z| FIDEKEIFS PTHE/SCLZ [0
| FTDT/KEIZPT PTHT/SDAZ —0 5 3y
00nF T
0K
=Tl &5 i T3
— T W O—sz| FT40 W35 [o c2
| B | FTd1 VDD 10uF 0 1uF
100nF oes gj;
e [(] e
- O—- FTJ4 VDDAD {—2—0 :
O—=— FT.IS VREFH [0
DT FTJE WVREFL TD
O— = PTJT VSSAD 0O

QE1Z8
Figure 4-1. EVB KBI Hardware Implementation

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.

QE128 Quick Reference User Guide, Rev. 1.0

4-4 Freescale Semiconductor

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

Figure 4-1, shows hardware connections used for the KBI project. For
detailed information about the MCU supply voltages needed, please refer to
the Pins and Connections chapter in the Reference Manual (MC9S08QE128
or MCF51QE128). It can also be found at www.freescale.com.

4.3 KBI project for Demo board

4.3.1 Code example and explanation
This example code is available from the Freescale Web site www.freescale.com.

This section explains the differences of the codes used in EVB and the Demo board. The codes are the
same.
The functions for KBIl.mcp project are:

* main — Endless loop waiting for a KBI interrupt.

* MCU_Init - MCU initialization, watchdog disable and the KBI clock module enabled.

* GPIO_Init — Enables internal pull-ups. Configures PTCO pin as output.

» KBI_Init — KBI module configuration.

* KBI_ISR - routine that toggles a LED every time an interrupt is generated.
This is the General Purpose Input/Output configuration These code lines configure the direction for the
PTC port. Only six LEDs from the demo board are connected to the PTC port. The other two LEDs are
connected to the E port. In this example only PTCO is configured as output in order to drive a LED. The

demo board does not count with any pull-ups; therefore the internal pull-up is enabled for the PTA2 and
PTAS3 pins.

void GPIO_Init(void) {

PTAPE = Ox0C; // Enable PTA2 and PTA3 pins Internal Pullups
PTCDD = 0x01; // Configure PTCO pin as output

PTCD = 0x01; // Put 0"s in PTCO pin

}

This is the initialization code for the keyboard interrupt using the QE128 MCU. For this example, both
KBI registers (KBIXSC and KBIXPE) are used to configure the module to detect only falling edges and
enable PTA2 and PTA3 as KBI. During the initialization phase, the interrupts are masked. It takes time for
the internal pull up to reach a ‘1’ logic value. After the false interrupts are cleared, the keyboard interrupt
is unmasked.

void KBI_Init(void) {

KBI1SC = 0x06; // KBl interrupt request enabled. Detects edges only
KBI1PE = 0xOC; // PTA2 and PTA3 enabled as Keyboard interrupts
KBI1ES = 0x00; // Pins detects falling edge

}

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 4-5

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

NOTE

This is the keyboard interrupt service routine. Every time an interrupt is

detected this routine toggles a LED. The VectorNumber_Vkeyboard can be
replaced by the interrupt vector number, this depends if the MCU is a 9S08
or V1. Using this example makes the code fully compatible for either MCU.

void interrupt VectorNumber_Vkeyboard KBI_ISR(void) {

KBI1SC_KBACK = 1; // Clear the KBI interrupt flag
PTCD_PTCDO "= 1; // Toggles PTCO
}

4.3.2 Hardware Implementation
This project was developed using the DEMOQE board. No extra hardware is needed.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

http://www.fr

h

= sz

h

o—=2 |

=

ES

FTAZKBITFZ/3DATADF2
PTALKBI1PISCLIJADPI

O——=— PTANKBI PO TPMICHNADPNACMP 1+
PTALKBIP1/TPM2ZCHADP 1/ACMP1-

FTCWTFM2CHD
PTCA/TPMICH1
FTCZTFMICHZ
PTCLTPMICHI

——
st Al O—=— PTA4ACMP10/BKGIMS PTC4TPMICH4/RETO [F57—0
5o = FTASIRQTFMICLI/RESET PTCETPMICHE/ACMPZO 570
o O—5— FTASTRMICHZADRS PTCE/RxDZIACMFZ: 550
0.%uF O—= FTAT/TRMICHZIADFS FTCT TxDZACMFZ- -0
O—| PTBO/MKEI 1P4/RxD1/ADP4 FTENTRMZCLIISFSCK %ﬂ
O—— FTE1/KEITRSTD/ADFS FTEUMOSIT 30
O—5| PTEZ/KEI 1PE/SPSCK1/ADPE FTEZIMISOT [T
O— 5| PTBX/KEITFT/MOSI 1/ADFT FTEXSE1 570
O—3 | PTB4TPM2CH1/MISO1 FTE4 [r
O—<— FTESTEMICH /S5 FTES 55O
O—=— FTES/SDATKTAL PTEG 33 —C
O—— FTET/SCLI/EXTAL FTET/TRMACLE, 0O
- .
C—E=— FTDOKEIZFISFSCKE FTFI/ADF1D —;*z—ﬂ
O—£2— FTD1/KEIZP1/MOSIZ FTFUADF1T [25—0
O—55 FTDZ/KBIZPZ/MISO2 PTF2IADPIZ 45O
O—£-— FTDA/KEI2FL/SE2 FTFLADPIS [0
O—47| FTC4/KEIZP4 FTF4/ADFT4 [0
O—3;| FTDS/KBIZFS FTFS/ADFIE 3O
O—35| PTOE/KEIZRE PTFEIADPIE [qp O
IV O—==- FTDT/KEIZFT FTFT/ADFIT |
1
. -
o1 L oo - L ;; VES FTE0 —Di:,
10uE | xrIl WO S
- PTGZ —DE\.\
L - FT33 ==
- O—7 VODAD
O—g=— VREFH 51
O—— VREFL FTHD 552
O—=— VSSAD FTH1 2O
PTHE/SCLZ [0
FTHT/SDAZ [0
QF128

Figure 4-2. Demo Board KBI Hardware Implementation.

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (64-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 4-2, shows the hardware connections used for the KBI project, for

detailed information about the MCU supply voltages needed, please refer to
the Pins and Connections chapter in the Reference Manual (MC9S08QE128

or MCF51QE128). It can also be found at www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Using the Keyboard Interrupt (KBI) for the QE Microcontrollers

QE128 Quick Reference User Guide, Rev. 1.0

4-8 Freescale Semiconductor

Chapter 5
Using the Internal Clock Source (ICS) for the QE
Microcontrollers

5.1 Overview

This is a quick reference for using the internal source clock (ICS) module for the QE family
microcontrollers (MCUs). Basic information about the functional description and configuration options
are provided. The following example may be modified to suit an application. The ICS project is made for
the MC9S08QE128 and MCF51QE128 MCUs.

ICS Quick Reference

ICS1 | CLKS | RDIV | IREFS [IRCLKEN [IREFSTEN]

Module Configuration:

CLKS - Clock Source Select IRCLKEN - Internal Reference Clock Enable
RDIV - Reference Divider IREFSTEN - Internal Reference Stop Enable
IREFS - Internal Reference Select

Ics2 | BDIV [RANGE | HGO | LP | EREFS | ERCLKEN | EREFSTEN |

Module Configuration:

BDIV - Bus Frequency Divider EREFS - External Reference Select
RANGE - Frequency Range Select ERCLKEN - External Reference Enable
HGO - High Gain Oscillator Select EREFSTEN - External Reference Stop Enable

LP - Low Power Select

ICSRM | TRIM |

Internal oscillator trim value: higher value = slower frequency

ICSSC | DRST/DRS | DMX32 | IREFST | CLKST | OSCINIT | FTRIM]

Module Status:

DRST - DCO Range Status / DRS - DCO Range Select CLKST - Clock Mode Status
DMX32 - DCO Maximum frequency with 32.768 kHz reference OSCINIT - OSC Initialization
IREFST - Internal Reference Status FTRIM - ICS Fine Trim

5.2 Code Example and Explanation
The project ICS.mcp shows how to configure the ICS module for the QE family MCUs. The main
functions are:

* main — Endless loop toggling a LED.

* MCU_Init — MCU initialization, watchdog disable.

e GPIO_Init — Configure PTEOQ pin as output.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 5-1

|
y

'
A

Using the Internal Clock Source (ICS) for the QE Microcontrollers

e ICS_Init - ICS module configuration
This example configures one of six modes of operation for the ICS module.

These are the four definitions used in the ICS code source. You need to uncomment the desired mode and
compile the project. This makes the MCU work with the selected clock source. For example to configure
the ICS in FEE mode just delete the two slashes at the beginning of the define.

//#define FEl // Configure bus clock to run at 25 MHz in FEI mode.
//#define FEE // Configure bus clock to run at 2 MHz in FEE mode.
//#define FB1 // Configure bus clock to run at low frequency in FBI mode.
//#define FBE // Configure bus clock to run at low frequency in FBE mode.

The code below executes the instructions to disable the watchdog, enable the Reset option and background
pin. The System Option Register 1 (SOPT1) is used to configure the MCU. The SCGC1 and SCGC2 are

registers used for power saving consumption, here the bus clock to peripherals can be enabled or disabled.
The clocks to the other peripherals are disabled.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disabled. Stop Mode Enabled. Background Pin
// enabled. RESET pin enabled.

SCGC1 = 0x20; // Bus to TPM1 peripheral is enabled.

SCGC2 = 0x00; // All clocks to peripherals are disabled.

}

This is the General Purpose Input/Output configuration. These code lines configure the directions for the
PTE port. Only one LED is connected to the PTE port; therefore the PTEO pin is configured as output.

void GPIO_Init(void) {
PTEDD = 0x01; // Configure PTE port as output
PTED = 0x00; // Put 0"s in PTE port

}

This is the initialization code for the internal source clock used for the QE MCU. This application
configures the MCU in one of six modes of the ICS module.

void ICS_Init(void) {
#ifdef FEI
I1CSC1 0x04; // Output of FLL is selected and Internal Reference Selected
1CSC2 0x00; // Bus frequency divided by 1
ICSTRM = *(unsigned char*far)OxFFAF; // Initialize ICSTRM register from a non volatile memory
ICSSC = (*(unsigned char*far)OxFFAE) | OxAO; /* Initialize ICSSC register from a non volatile

memory */
#endif
#ifdef FEE
ICSC1 = 0x00; // Output of FLL is selected
ICSC2 = 0x87; // Divides slected clock by 4. External reference is selected
ICSSC = 0x00; // Initialize ICSSC register from a non volatile memory
#endif
#ifdef FBE
ICSC1 = 0xB8; // External reference clock selected. External reference divided by 5
ICSC2 = 0x00; // Bus frequency divided by 1
ICSSC = 0x00; // Initialize ICSSC register from a non volatile memory
#endif
#ifdef FBI
I1CSC1 0x40; // Internal reference clock is selected

ICSC2 = 0x00; // Divides selected clock by 1

QE128 Quick Reference User Guide, Rev. 1.0

5-2 Freescale Semiconductor

Using the Internal Clock Source (ICS) for the QE Microcontrollers

ICSSC = (*(unsigned char*far)OxFFAE) | O0x00; /* Initialize ICSSC register from a non volatile
memory */

ICSTRM = *(unsigned char*far)OxFFAF; // Initialize ICSTRM register from a non volatile memory

#endif FBI

}

This is the main function, above are the described called functions, and the interrupts are all enabled. The
ICS_configuration function configures the MCU in the selected clock mode. The clock frequency can be
seen on the PTEO pin.

void main(void) {

MCU_Init(Q); // Function that initializes the MCU

GPIO_Init(Q); // Function that initializes the Ports of the MCU
ICS_Init(); // Function that initializes the ICS module
Enablelnterrupts; // interrupts are enabled

for(G;) {

PTED_PTEDO ~= 1; // Toggle PTEO

Delay O;

} // loop forever

// please make sure that you never leave this function

}

The Bus frequency can be checked in the True-Time Simulator window of CodeWarrior. Once the program
is downloaded to the MCU, the simulator window opens, look at the command window and notice the
MCU bus frequency change. See Figure 5-1, for detailed information.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 5-3

) 4

Using the Internal Clock Source (ICS) for the QE Microcontrollers

i True-Time Simulator & Real-Time Debugger D:\Profiles\b0414 3\My Documents\QE128 training\QRUG\Examples\ICS\BDM_PRE_Multilink. ..

File Wiew Run MuliinkCyclonePro Component Command Window Help
D|=a| (@] 2| »[=|=|2|x|-] 8

E Source

|Line: B2

|D:\Profiles\b0414 34y Documents\GE 128 training\ARUGExamplestICS \S ourcesimain.c
fﬂ‘ﬁ‘ﬁﬂ‘ﬁ‘ﬁﬁﬁ'ﬂ‘ﬁ‘ﬁﬂ‘ﬁ‘ﬁﬁﬁ'ﬂ‘ﬁ‘ﬁﬂ‘ﬁ‘ﬁﬁﬁ'ﬂ‘ﬁ‘ﬁﬂ‘ﬁ‘ﬁﬁ‘ﬁ'ﬂ‘ﬁ‘ﬁﬂ‘ﬁ‘ﬁﬁﬁ'ﬂ‘ﬁ‘ﬁﬂ‘ﬁ‘ﬁﬁWﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁf :: = ::
A% Main Function 7 2146 BIR w42 sabs = OxZ11C =

PR R R R R A R AR R AR AR R AR AR S AR TR R AT ERELSARTERTNSERTSAAH 2148 B3R *-55 rahs

OxzZlZZ
2l4B LDA 0x0g
214D EOR #0x80
Z14F 5TA =05

woid mainiwvoid) {E

MCT Init(): |
GPIO_Init(): =
ICS_configurationi):

FriahleTnterrimts: /% enahle dnterrunts 57

[Procedure

X 2100 5P 14F
lea

3tatus | VHINZC

PC Z144 LAP o

1p [z1aa pracE [0

Data:1

[|main.c | Auto | Semb

_50PT1 <l> volatile SOPTISTR #/¥loonsn 00 B4 FF AE 00 00 00 20]
"PTEDD <1> volatile PTEDDSTR =¥loooss 00 01 00 &7 8B 89 F& AE 2
_PTED <l> volatile PTEDSTR focas_me oT miooc iz oaoc iz pp——
“1cscl <1> wolatile ICSCLSTR = Command (=]
Icscz wolatile ICZC2STR | e
- STARTED i
Data:2 RUNNING

Preset breakpoint encountered.

Ereakpoint
Frequency change A @
STARTED

RUNNING

[- | Auto | S_l,lm | Loal :
Bus Frequency

£ 3

For Help, press F1 Automatic (triggers, breakpoints, watchpoints, and trace possible) |9508QE128 1D |RUNNING él

Figure 5-1. Bus Frequency

NOTE

The bus frequency shown in the command windown is not always rigth. The
following code is used to check the frequency using an oscilloscope in the
TPM1CHO pin of the MCU. The obtained frequency is the bus frequency

divided by 1000.
void BUSCLK_DividedByl1000(void) {
TPM1SC = 0x08; // TPM1 clock source = Bus clock
TPM1COSC = 0x28; // PWM is edge-aligned. PWM toggles from high to low
TPM1MOD = 1000; // PWM period = bus clock / 1000
TPM1COV = 500; // PWM duty cycle = 50%

}

5.3 Hardware Implementation

This project is developed using the EVBQE128 STARTER KIT. No extra hardware is needed. Figure 5-2
shows the hardware configuration.

QE128 Quick Reference User Guide, Rev. 1.0

5-4 Freescale Semiconductor

h

Using the Internal Clock Source (ICS) for the QE Microcontrollers

U1
D———| FTAQ/KBI1FOTPMICHUADPUACMP T+ FTG0 [0
RESET 33y D5 FTAUKEITP1TPMECHIADP ACKP1- PTG1 570
10K % Dy PTAZKBI1F2/SDAT/ADF2 FTG2IADP1S [0
=Tt O—— PTAYKEI1PZ/SCLI/ADFS PTGIADP1S E,TD
—2 O—I—/\/\/\—l O—2 PTA4/ACMP1O/BRGOMS FTG4/ADF20 g0
i = FTALIRQTFMICLK/RESET PTGE/ADP21 g1
J_ O0nE D—z— PTASTPMICHZADFE PTGS/ADPZ2 50
= O—— PTAT/TPM2CHZ/ADFS FTETADPZ: O
- »
D-__:, FTEO/KBI1P4/RxD1/ADP4 FTFWADP1D0 = 0
O—=—1 PTEV/KBI1PETxD1/ADFS PTFI/ADPIT 43 0
O—=—1 PFTEZKEI1PS/SPESCK1/ADPS FTFZ/ADP1Z g 0
D-_3 PTBAKBIPT/MOSI1/ADPT FTFHADPIL [
D-_4 PTEB4TPMZCH1/MIS01 FTF4ADP14 51
O—+ PTESTPMICH1/551 FTFS/ADFIS 7O
O— = PTB&/SDATXTAL FTFE/ADF1S [0
O0——— PTET/SCL1/EXTAL FTFT/ADPIT 0
i]
D-_; PTCOTPMICHD PTENTPMZCLE/SPECKT ii
D— 5 PTC1/TPMACH FTE1/MOSI [0
C—a| FTCZTRMACHE FTEZMISST a0
D—55— FTCITFMICHS FTELEST 55—
O—5—{ FTC4TRMICH4RETS FTE4 50
D—55- FTCETFMACHS/ACMFZ0 FTES [0
O—53 | FTCE/RxD2/ACMPZ+ PTEE [z O
O—=— PTCT/TxD2/ACMF2- FTET/TPMACLE 0O
25 57
D—53- FTDO/KEIZF0/SFECKE FTHO g0
o 2_ FTD1/KBIZP1/MOS12 FTHI g5
O—S{ FTDZ/KEIZFZMISOZ FTHZ 53—
DT PTDAKBIZPI/552 FTH3 [0
C—$-| FTD4/KEIZP4 FTH4 5
DT FTDS/HBIZPE FTHS gTD
C—5=| FTD&/KEIZFE FTHEISCLE g3—0
D—=2— PTDT/KBIZFT PTHT/SDAZ [0 5 3y
5
&
= el ves |2 ci G2
D? F"TJ_\ VoD —— 10uF 0.1uF
D_,55 FTJ2Z
O—sg | FTJ2 75 —
O—=5 FTJ4 VDDAD [0
O—= FTUS VREFH [0
O— FTJE VREFL g0
O—= FTJT WESAD ——O

QE1z8

Figure 5-2. ICS Hardware Implementation

NOTE
This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 5-2, shows the hardware connections used for the ICS project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. (MC9S08QE128 or
MCF51QE128). It can also be found at www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 5-5

http://www.freescale.com
http://www.freescale.com

Using the Internal Clock Source (ICS) for the QE Microcontrollers

QE128 Quick Reference User Guide, Rev. 1.0

5-6 Freescale Semiconductor

Chapter 6

Using the Inter-Integrated Circuit (lIC) for the QE

Microcontrollers

6.1 Overview

This is a quick reference for using the inter-integrated circuit (11C) module for the QE family

microcontrollers (MCUSs). Basic information about the functional description and configuration options

are provided.

The following example may be modified to suit an application. The 11C project is made for the

MC9S08QE128 and MCF51QE128 MCUs.

IIC Quick Reference
There is more than one 11C modules in this device, there also may be more than one full set of
registers on the device. In the register name below, where there’s a small x, there would be a 1 or a
2 in the software to distinguish the register that is on 11C1 or 11C2.

llcxA | _AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 |
This register contains the slave address to be used by the 1IC module.
lICxF | MULT | ICR
MULT — IIC Multiplier Factor CR - IIC Clock Rate
lIcxcl | NICEN | NICIE | MST] X | TXAK | RSTA]
ModBUSY - Bus Busyule Configuration:
IICEN — 1IC Enable TX — Transmit Mode Select
IICIE — IIC Interrupt Enable TXAK — Transmit Acknowledge Enable
MST — Master Mode Select RSTA — Repeat START
lcxs | TCF | IAAS | BUSY [ARBL | [SRW | lICIF | RXAK
TCF — Transfer Complete Flag SRW — Slave Read/Write
IAAS — Addressed as a Slave IICIF — 1IC Interrupt Flag
BUSY — Bus Busy RXAK — Receive Acknowledge
ARBL — Arbitration Lost
lICxD | DATA
Data Register
lIcCxC2 | GCAEN | ADEXT | | | AD1I0 | AD9 | ADS8

GCAEN — General Call Address Enable
ADEXT — Address Extension

6.2

This example codes for the Master and Slave project is available from the Freescale Web site

AD[10:8] — Slave Address

Code Example and Explanation

www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

6-1

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Inter-Integrated Circuit (lIC) for the QE Microcontrollers

6.2.1 IIC Master Project

In this application, two pins are used to work with the protocol. One is the PTH7, this is the Data pin for
I1C protocol.The other is the PTH6, the clock pin. For detailed information about the 11C protocol refer to
Inter-Integrated Circuit chapter in your reference manual.
The functions for 11C_Master.mcp project are:

* main — Endless loop, sending a byte (counter) and waiting for I1C interrupt to occur.

* MCU_Init — MCU initialization Watchdog disable and the 11C clock module enabled.

* GPIO_Init — Configure PTE port as output, PTH6 and PTH7 pin as output.

* 1IC_Init — I1C module configuration.

* 1IC_ISR - lIC interrupt service routine.

* Delay — Waste time routine.

The 11C master project configures the MCU to work as master and uses the 11C protocol to send a byte
counter to the slave. The counter count displays in eight LEDs.

This part of the code is the MCU initialization. These instructions disable the watchdog, enable the Reset
option and background pin. The System Option Register 1 (SOPT1) is used to configure the MCU. The
SCGC1 and SCGC2 are registers used to save power consumption, here the bus clock to peripherals can
be enabled or disabled. In this example only the bus clock to the I1C module is active. The clocks to other
peripherals are disable.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin enable.
// RESET pin enable

SCGC1 = 0x08; // Bus Clock to the 1IC module is enabled

}

This is the General Purpose Input/Output configuration. These code lines configure the directions for the
PTE and PTH ports. Eight LEDs are connected to the PTE port; therefore the PTE port is configured as
output. The PTH6 and PTH7 are configured as output. These two pins are the Serial clock (SCL) and serial
data (SDA).

void GPIO_Init(void) {

PTHPE = 0xCO; // Enable Pull ups on PTH7 and PTH6 pins
PTEDD = OxFF; // Configure PTE as outputs

PTED = 0x00; // Put 0"s in PTE port

}

This is the initialization code for the Inter-Integrated Circuit using the QE MCU. Here, the module is
configured to work as master. For example, the MCU runs with a bus speed of 4 MHz the 11C baud rate
can be calculated as following:

lIC baud rate = bus speed (Hz) / (mul * SCL divider) Eqn. 6-1
lIC baud rate = 4000000/ (1 * 32)

IIC baud rate = 125000

QE128 Quick Reference User Guide, Rev. 1.0

6-2 Freescale Semiconductor

Using the Inter-Integrated Circuit (IIC) for the QE Microcontrollers

The baud rate in this example is 125000 because the ICS module is not configured and the MCU runs at
default speed (4 MHz).
void 1IC_Init (void) {

11C2F = 0x09; // Multiply factor of 1. SCL divider of 32

11C2C1 = 0xCO; // Enable I1IC and interrupts

}

This is the delay function used before the MCU starts to send the next byte to the slave. This delay function
is used only to observe the changes in the LEDs.

void Delay (intl6 c) {

intlé i = O;
for (i; i<=c; i++) {
}

}

This is the main function, above are the described called functions, all the interrupts are enabled. In the
endless loop a byte counter is sent by 11C to the slave. The Delay function is called between byte transfer.

void main(void) {

MCU_Init(Q); // Function that initializes the MCU
GPIO_Init(); // Function that initializes the Ports of the MCU
11C_Init(Q); // Function that initializes the 11C module
Enablelnterrupts; // enable interrupts
for(G;) {

Delay(60000) ;

PTED = counter;

counter++;

if (PTHD_PTHD7 == 0) {

while (PTHD_PTHD7 == 0); // Wait while pin is low

while (11C2C1_MST == 1); // Wait until IIC is stopped

MasterTransmit(1,1); // Initialize to Transmit

}

else {

}
while (11C2C1_MST == 1); // Wait until 11C is stopped
Master_Receive();
} // loop forever

// please make sure that you never leave this function

}

These functions are used when the device is configured as Master.

void Master_Read_and_Store(void) {
it (rec_count == num_to_rec) {
last_byte to_rec = 2;

11C_Rec_Data[rec_count] = 11C2D;
rec_count++;

}

void Master_Transmit(uint8 a, uint8 b) {
// This function starts the transmission of the communication

last_byte = 0; // Initialize

count = O;

bytes_to_trans = a; // Select number of bytes to transfer
num_to_rec = b;

11C2C1_TX = 1; // Set TX bit for Address cycle
11C2C1_MST = 1; // Set Master Bit to generate a Start

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 6-3

Using the Inter-Integrated Circuit (lIC) for the QE Microcontrollers

11C2D = OxAA; // Send Address data LSB is R or W for Slave
}
void Master_Receive() {

rec_count = 0O;

last_byte to_rec = 0;

last_byte = 0;

count = O;

num_to_rec = 0O;

11C2C1_TXAK = 0;

11C2C1_TX = 1; // Set TX bit for Address cycle
11C2C1_MST = 1; // Set Master Bit to generate a Start
add_cycle = 1; // This variable sets up a master rec in the ISR
11C2D = OxAB; // Send Address data LSB is R or W for Slave
}
NOTE

This is the Inter-Integrated Circuit service routine. These routines handle the
Master and Slave interrupts in both modes, transmit or receive. If the device
is working as Master just follow the master logic. If the device is acting as
slave follow the slave logic. For a better understanding refer to Typical IIC
Interrupt Routine figure from the Reference Manual. The
VectorNumber_Viicx can be replaced by the interrupt vector number, this
depends if the MCU is S08 or V1. Using this example makes the code fully
compatible for either MCU.

interrupt VectorNumber_iicx void 11C_ISR(void) {

// 11C interrupt vector number = 17 (S08)
// 11C interrupt vector number = 79 (V1)
11C2S_IICIF = 1; // Clear Interrupt Flag
if (11C2C1_MST) // Master or Slave?
it (11C2C1_TX) // Transmit or Receive?
{
[FFFFAAx Transmit ialiaiaialadaled /
if (last_byte) { // lIs the Last Byte?
11C2C1_MST = 0; // Generate a Stop
T
else if (last_byte 1= 1) {
it (11C2S_RXAK) { // Check for ACK
11C2C1_MST = 0; // No ACk Generate a Stop
s
else if (M11C2S_RXAK) {
if (add_cycle) { // 1s Address Cycle finished? Master done addressing Slave?
add_cycle = 0; // Clear Add cycle
11C2C1_TX = 0; // Switch to RX mode
11C2D; // Dummy read from Data Register
ks
else if (add_cycle 1=1) {
11C2D = counter; // Transmit Data
count++;

if (count == bytes_to_trans) {
last_byte = 1;
}
}

QE128 Quick Reference User Guide, Rev. 1.0

6-4 Freescale Semiconductor

Using the Inter-Integrated Circuit (IIC) for the QE Microcontrollers
}
}
}
else {
V Asiaiaiaiaiaiaiaiaiaioialaiaialalaiaiaiaialalatalatale Receive falalaiaV 4
if (last_byte to rec == 1) {
11C2C1_MST = 0; // Last byte to be read?
Master_Read_and_Store();
}
else if (last_byte to_rec == 2){ // Second to last byte to be read?
last_byte to_rec = 1;
11C2C1_TXAK = 1; // This sets up a NACK
Master_Read_and_Store();
}
else {
Master_Read_and_Store();
}
}
}
else {
/** Feokedkekek Slave **x*** Fekedekkekek el 4
if (1IC2S_ARBL) {
11C2S_ARBL = 1;
it (1IC2S_I1AAS) { // Check For Address Match
count = O;
SRWQ);
}
}
else {
it (1IC2S_IAAS) { // Arbitration not Lost
count = O;
SRWQ;
}
else {
it (11C2C1_TX) { // Check for rec ACK
it (1IC2S_RXAK) { // ACK Recieved
11C2D = 11C_TX Data[count];
count++;
}
else {
11C2C1_TX = O;
11C2D;
}
}
else {
Slave_Read_and_Store();
}
}
}
}
}

This function is used to initialize the transfer process. Some variables are initialized. The master bit (MST)
is set and a start signal is then generated and the communications process begins at that point. The slave
address is then sent.

void Master_Transmit(uint8 a, uint8 b) {
last_byte = O;

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 6-5

Using the Inter-Integrated Circuit (lIC) for the QE Microcontrollers

count = O;

bytes_to_trans = a; // Number of bytes to transfer

num_to_rec = b; // Number of bytes to store

11C2C1_TX = 1; // Set TX bit for Address cycle

11C2C1_MST = 1; // Set Master Bit to generate a Start

11C2D = OxAA; // Send Address data LSB is R or W for Slave
}

This function is used to read data received from the slave device and stored in the IIC_Rec_Data array. In
this example only the first byte is used.

void Master_Read_and_Store(void) {
if (rec_count == num_to_rec) {
last_byte to _rec = 2;

}
11C_Rec_Data[rec_count] = 11C2D;
rec_count++;

}

This function is used to initialize the receive and store process in the MCU. Some variables are initialized
and the MST bit is set to generate a start.

void Master_Receive() {
rec_count = 0O;
last_byte to_rec = 0;
last_byte = O;
count = O;
num_to_rec = 0O;
11C2C1_TXAK =0;

11C2C1_TX = 1; // Set TX bit for Address cycle

11C2C1_MST = 1; // Set Master Bit to generate a Start

add_cycle = 1; // This variable sets up a master rec in the ISR
11C2D = OxAB; // Send Address data LSB is R or W for Slave

6.2.2 lIC Slave Project

This project is similar to the 11C_Master project. This example shows how to configure the MCU as slave.
The ISR is the same and the used functions are the same. For detailed information about the codes visit the
web page www.freescale.com.

This function is used when the device is working as slave and is necessary to know if the device does a
dummy read or writes data to the master.

void SRW(void) {
if (1IC2S_SRW) { // Check for Slave Rec or transmit
11C2C1_TX = 1; // Set Tx bit to begin a Transmit
11C2D = 11C_TX Data[count];
count++;
}
else {
11C2C1_TX = O;
11C2D; // Dummy read

}

QE128 Quick Reference User Guide, Rev. 1.0

6-6 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Inter-Integrated Circuit (IIC) for the QE Microcontrollers

This function reads data from the 11C buffer and stores it in IC_Rec_Data array. In this example only the

first byte of the array is used.

void Slave Read_and_Store(void) {
if (rec_count == num_to_rec) {

last_byte to _rec = 2;

11C_Rec_Data[rec_count] = 11C2D;

rec_count++;

if (rec_count == num_to_rec) {

rec_count = 0;
b
¥

6.3 Hardware Implementation

This project is developed using the EVBQE128 STARTER KIT. No extra hardware is needed. Two resitors
are needed for the protocol to work properly. For this example 2 MCUs are connected. Figure 6-1 shows

the hardware configuration.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

6-7

www.evaluationboard.com
www.evaluationboard.com

trollers

icrocon

t (IIC) for the QE Mi

ircui

Using the Inter-Integrated C

82130

elfslele

o)

pen e e (e

T
P
I=)

e

B

ﬂ

Frm—d

|

T b

ol

nn?
n@.
]
i)
=]
iy
el]
W

i2d n_q 191d

Ovssh
T43un
HAFUA
0¥0aA

aan
g5

T¥OSIIHLd
T105/8H1d
GHld
Hld
EHLd
THld
IH1d
OHld

HJEHL 31

v_)mmm OMITNALELS

Glday/edld
#1dQvibdld
£1dav/Edld

n mn_{ EE

n.i u{ ._aE
E1d0v/EDLld
$1davEe)

1IN ATAHOT
Y07/ IHINELT

Sd7IENS0Ld
FaZlEAY LS
Z854HTIEN QL
Z0SINZJZIENZALd

Qjmmm Eu,mx o“_E

TINIVEZOXLILIL
+ZdNIVZORE0 LS
QZdNOV/EHIENLED L
OLSH/PHIENLYILS
EHENALEDL
THENALED
FHOEMAL DL
CHOERALI0DLS

Elalal;l;:l

:ﬂlalral

salslal

flﬁlmiﬂml

e

P

gl

[]

e ulr_i: :

J.

J.t..-im

*J:“J.”l'l‘i.

&
3

900,

i

==
133

ok

]

b

o)

@ S S S

90 |20 |80 2%
Y 31 31 31

pen e e (e

S

dl

BaaR

QvSsA
143
HA3dA
avaan

Qaaa
S50

IVOS/IHLd
T105/0H1d
SHLd
FHLd
HLd
THLd
IH1d
OHLd

WEMALIL3LA

93ld

§3ld

¥3ld
155/831d
108INEaL
HSOM/AL

IHIS4S/TITNALIAL

LhdQvildLd
0140¥1041d
GhdQ¥icdld
FhdQ¥irdld
£hd0¥iEdld

ﬁ n_uJ_EE

£240¥ILaLd
T40viald
1240vaLd
(Z40¥HaLd
ELdQViEDLd
£140¥1TOLd

Ld
914

._n_u,ﬂ_ Pfbd vg.mE

4L AR
NI oL

OZdWOV/EHOEMdLEILd
QLSH/PHIENALYOLd
EHOENALEDL
THIENSLZD
FHOEMALLILD
CHOENALUDL

8d0vITHITNALLY1d

T

algfl.:lﬂl

it

sl:i:al

BRSS!

.,ﬂ: glﬁl:l:jﬂ

Figure 6-1. IIC Hardware Implementation
QE128 Quick Reference User Guide, Rev. 1.0

‘J.‘“J.“”l‘*l‘i" “J.*J.

Freescale Semiconductor

6-8

Using the Inter-Integrated Circuit (IIC) for the QE Microcontrollers

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCSO08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 6-1, shows the hardware connections used for the 11C project, for
detailed information of the MCU hardware needed, please refer to the Pins
and Connections chapter in the Reference Manual.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 6-9

Using the Inter-Integrated Circuit (lIC) for the QE Microcontrollers

QE128 Quick Reference User Guide, Rev. 1.0

6-10 Freescale Semiconductor

Chapter 7
Using the Analog Comparator (ACMP) for the QE
Microcontrollers

71 Overview

This is a quick reference for using the analog-to-digital comparator (ACMP) module for the QE family
microcontrollers (MCUs).

Basic information about the functional description and configuration options are provided. The following
example may be modified to suit an application. The ACMP project is made for the MC9S08QE128 and
MCF51QE128 MCUs.

The ACMPx module provides a circuit for comparing two analog input voltages for comparing one analog
input voltage with an internal reference voltage. Inputs of the ACMPx module can operate across a full
range of supply voltage
ACMP Quick Reference
Because there is more than one ACMP module on this device, there may be more than one
ACMP status and control registers on your device. In the register name below, where
there’s a small x, there would be a 1 or a 2 in the software to distinguish the register that is

on an ACMP1 or an ACMP2.
ACMPxSC | ACME | ACBGS | ACF | ACIE | ACO | ACOPE | ACMOD |
Module Configuration:
ACME - enables module ACO - reads status of output
ACBGS - select bandgap as reference ACOPE — output pin enable
ACF — set when event occurs ACMODI1:0] — sets mode

ACIE - interrupt enable

The ACMPx module has two analog inputs named ACMPx+ and ACMPx~-, and one digital output named
ACMPxO. The ACMPx+ serves as a non-inverting analog input and the ACMPXx~— serves as an inverting
analog input. ACMPXO serves as digital output and can be enabled to drive an external pin. The ACMP1
module can be configured to connect the ACMP10 to the TPM1 input capture channel 0 by setting the
ACIC1 in the SOPT2. The TPM with the input capture function captures the time at which an external
event occurs. Rising, falling, or any edge may be chosen as the active edge that triggers an input capture.
The ACMP2 output can be driven to the TPM2 channel 0 by setting the ACIC2 in the SOPT2.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 7-1

wr
PRt

Using the Analog Comparator (ACMP) for the QE Microcontrollers

The ACMP interrupt is generated depending how the ACMOD bits are configured in the ACMPxSC
register. Figure 7-1 shows the moment where the ACMP+ signal crosses the ACMP- signal, producing an
interrupt.

Interrupt generated

ACMP-

ACMP+

Figure 7-1. ACMP Interrupt Generation

7.2 ACMP project for EVB

7.21 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.

The project ACMP.mcp implements the ACMP function selecting a rising- or falling-edge event to trigger
hardware interrupts. The main functions are:

main — Endless loop waiting for the ACMP interrupt to occur.

MCU_Init — MCU initialization, watchdog disable and the ACMP clock module enabled.
GPIO_Init — Configure PTEO pin as output.

ACMP_Init —= ACMP module configuration

ACMP_ISR — Toggles a LED after a rising or falling edge event occurs.

This example consists of comparing two different input voltages using the ACMP module. The ACMP-
is fed with a static voltage which is an internal bandgap and serves as a reference voltage. For more
detailed and specific data about internal reference voltage, please see the QE128 DataSheet. It can be
found at www.freescale.com. An ACMP+ is fed with a variable voltage of 0 to 3 V. Every time the ACMP+
voltage crosses the ACMP- reference voltage, a hardware interrupt is triggered toggling the PTEO pin.
This pin is connected to a LED.

The code below executes the instructions to disable the watchdog, enable the Reset option and backgroud
pin. The System Option Register 1 (SOPT1). It is used to configure the MCU. The SCGC1 and SCGC2

QE128 Quick Reference User Guide, Rev. 1.0

7-2 Freescale Semiconductor

http://www.freescale.com

Using the Analog Comparator (ACMP) for the QE Microcontrollers

are registers used for power saving consumption, here the bus clock to peripherals can be enabled or
disabled. In this example only the bus clock to the ACMP module is active. The clocks to the other
peripherals are disabled.

void MCU_Init(void) {
SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin enable. RESET pin enable

SCGC1 = 0x00; // Disable Bus clock to unused peripherals
SCGC2 = 0x08; // Bus Clock to ACMP modulle is enabled
}

This is the General Purpose Input/Output configuration. These code lines configure the direction for the
PTE port. The eight LEDs from the EVB are connected to the PTE port, and only the PTEOQ is configured
as output in order to drive a LED.

void GPIO_Init(void) {

PTEDD = 0x01; // Configure PTE port as output
PTED = 0x00; // Put 0"s in PTE port

}

This is the initialization code for the analog comparator used for the QE128 MCU. This application uses
the ACMP2 module. The internal bandgap is selected and this voltage is compared with the PTC7 pin
voltage.

void ACMP_Init (void) {

ACMP2SC = OxC3; // ACMP module enable. Internal reference selected. Comparator
// output rising or falling edge

}

This is the main function, above are the described called functions, and all the interrupts are enabled. After
this the analog comparator interrupt can be serviced.

void main(void) {

MCU_Init(Q); // Function that initializes the MCU

GPIO_Init(); // Function that initializes the Ports of the MCU
ACMP_Init(Q) // Function that initializes the KBI module
Enablelnterrupts; // enable interrupts
ACMP2SC_ACIE = 1; // enable the interrupt from the ACMP

for(::) {

} // loop forever

// please make sure that you never leave this function

NOTE

This is the analog comparator interrupt service routine. Every time an
interrupt is detected, this routine toggles a LED (PTEQ). The
VectorNumber_Vacmpx can be replaced by the interrupt vector number, this
depends if the MCU is S08 or V1. Using this example makes the code fully
compatible for either MCU.

void interrupt VectorNumber_Vacmpx ACMP_ISR(void) {
// ACMP vector address = 20 (S08)
// ACMP vector address = 82 (V1)
1; // Clear ACMP flag
1; // Toggles PTEO

ACMP2SC_ACF
PTED_PTEDO ~

}

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 7-3

b -

Using the Analog Comparator (ACMP) for the QE Microcontrollers

7.2.2 Hardware Implementation

This project is developed using the EVBQE128 STARTER KIT. Extra hardware is needed. A variable
resistor of 1 kQ is required. One terminal of the potentiometer (POT) is connected to 3.3 V and the other
terminal is connected to the ground. When the POT varies, the voltage in the center pin change. This pin
is the input for the PTC7 pin. Figure 7-2 shows the hardware configuration.

U
O——| FTAO/KEI1FOTPMICHNADFPO/ACMP 1+ PTG0 |30
— 5y D5 FTAUKEITP1TRMZCHNADPUACKPI- FTGT 50
i 10KE O—3— PTAZ/KBI1F2/SDATADRZ FTGZIADFIE 30
P m —’\.-"\.-"\—I O——— PTAZKBI1PL/SCLI/ADP2 PTGLADP1S -_SD
J_C' Il C—I— O—— PTA4ACKMP1O/BKGIVMS FTG4/ADPZD '_4D
] = FTASIRQTPMICLK/RESET FTGRADP21 O
100nF O— FTASTFMICHZIADFE FTGAIADFIZ g0
— O—= FTAT/TFMECHZIADFS FTGTADFZE 0 44y
D.__:I FTEHEI1P4/RxD1/ADPY FTFWADF10 :2 0
O—=— PTE1/KBI1PSTxD1/ADPS FTFI/ADP11 53 0
O—| PTBZ/KBI1P&/SPSCK1ADFS FTFZADPIZ [3—0 Z| LED
O—35 PTBH/KBI1FT/MOSI 1/ADFT FTFLADPI3 0 #| o
D-_4 PTE4/TPM2CH1/MISO1 PTF4/ADP14 0
O—+— PTESTPMICH1/S51 FTFS/ADP1S 7O
D— 3| FTEE/SDATXTAL FTFEIADFIE g0
O—" FTBT/SCL1/EXTAL FTFT/ADFIT 0 220
17 . e |23
13y Cyg| FTCOTRMICHD FTEQTFMICLISFECKT 53
%' O FTCUTEMICH? FTEUMOS!T H—0
C—p| FTCZTRMACH:E FTEZMISOT g0
057 PTC3TPMICH3 FTEXEET 550
D—57 FTC4/TPMICH4/RSTO FTE4 g0
. O—55-| PTCSTPM3CHSIACMP20 FTES 550
POt ST F‘T:D.-Hx[t-:.-A:h’Pf+ F"IED rag o
o PTCTiTxD2/ACMP2Z- FTET/TPMACLK 0O
5 57
O—— PTDOVKBIZPVSPSCK2 PTHD '-"_SD
— DO—55| FID1/KBIZPI/MOSIZ FTH: 2O
= D5 FIDZKEIZFZMISOR FTHZ 550
D—55- FTDOKEIZFL/SS2 FTH 50
C—35| FTD4KEIZPS PTH4 [55—
B I _FTHS mgs O
O—55| PTDG/KBIZPE PTHE/SCLZ [gg0
D—=5- FTOT/KEIZFT FTHT/SDAZ [0 —r
T
O gg_ PTJD 15.'55 _;i 1 I - -
D7 | FTU1 VoD 10uF 0.1uF
= o
[=] 5 =
O— | FTH4 VDDAD 50
O—= PTIE VREFH =0
O— PTG VREFL <O
O—=— FTJT VEEAD ——O

QE1Z2E
Figure 7-2. ACMP Hardware Implementation

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.

QE128 Quick Reference User Guide, Rev. 1.0

7-4 Freescale Semiconductor

Using the Analog Comparator (ACMP) for the QE Microcontrollers

ACMP module can operate with two external inputs. This example code is
expressly made to configure the ACMP module to work using the internal
reference voltage.

The analog comparator circuit is designed to operate across a full range of
supply voltage. Please refer to the data sheet of the device. You can find it
at www.freescale.com.

Figure 7-2, shows the hardware connections used for the ACMP project, for
detailed information about the MCU supply voltages needed, please refer to
the Pins and Connections chapter in the Reference Manual (MC9S08QE128
or MCF51QE128). It can be found at www.freescale.com.

7.3 ACMP project for Demo board

7.3.1 Code Example and Explanation
These example codes are available from the Freescale Web site www.freescale.com.
This section explains the differences of codes using an EVB and Demo board. The codes are the same.

The project ACMP.mcp implements the ACMP function, selecting a rising- or falling-edge event to trigger
hardware interrupts. The main functions are:

» main — Endless loop waiting for the ACMP interrupt to occur.

* MCU_Init — MCU initialization, watchdog disable and the ACMP clock module enabled.
e GPIO_Init - Configure PTCO pin as output.

e ACMP_Init — ACMP module configuration.

» ACMP_ISR — Toggles a LED after a rising or falling edge event occurs.

This is the General Purpose Input/Output configuration. These code lines configure the direction for PTC
port. Only six LEDs from the demo board are connected to the PTC port. The other two LEDs are
connected to the E port. In this example only the PTCO is configured as output in order to drive a LED.
void GPIO_Init(void) {

PTCDD = 0x01; // Configure PTC port as output
PTCD = 0x00; // Put 0"s in PTC port

}

NOTE

This is the analog comparator interrupt service routine. Every time an
interrupt is detected, this routine toggles a LED (PTCO0). The
VectorNumber_Vacmpx can be replaced by the interrupt vector number, this
depends if the MCU is S08 or V1. Using this example makes the code fully
compatible for either MCU.

void interrupt VectorNumber_Vacmpx ACMP_ISR(void) {
// ACMP vector address 20 (S08)
// ACMP vector address = 82 (V1)

ACMP2SC_ACF = 1; // Clear ACMP flag */

PTCD_PTCDO ~= 1; // Toggles PTCO */

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 7-5

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

b -

Using the Analog Comparator (ACMP) for the QE Microcontrollers

}

7.3.2 Hardware Inplementation

This project is developed using the demo board. Extra hardware is needed. A variable resistor of 1 kQ is
required. One terminal of the POT is connected to 3.3 V and the other terminal is connected to the ground.
In this configuration when POT varies, the voltage in the center pin changes, this pin is the input for PTC7
pin. Figure 7-3 shows the hardware configuration.

33V
Ut q
% ’
510
LED
O——| PTAWKEI 1POTPMICHOADPOACMP T+ FTCOTPM3GHD ; > xH
O—35 PTA1/KEI 1P/ TPMECHIADP1/ACMPI- PTCUTPMICHT 50 1y
O—3| PTAZ/KEI 1PZ/SDATIADF2 PTCZTPM3CHE [z o ¢
RESET oW O—— FTAYKEI1F3/SCLIADFS PTCITPMICHS [-57—0 ,—?
—_ O——— PTA4/ACMP10/BKGIVMS FTC4TPM3CH4RETD [H5—0
O——t——— 7| FTAZIRQTPMICLK/RESET PTCETPMICHEACMPZO 570 10K
o O—5— FTASTRMICHZADRS FTCE/RxDRIACKFZ: 55— Lo
0.9uF O—= FTAT/TRMICHZIADFS FTCT/ TRDZACMFE-
O—7| PTBO/KEI 1P4/RxD1/ADP4 FTENTRMZCLHISFSCK %ﬂ ==
O—— FTE1/KEI1FSTxD/ADFS FTENMOSIT 50
O—5| PTEZ/KEI 1PE/SPSCKI/ADPE FTEZMISOT [0
O— 5| PTBI/KEITFT/MOSI1/ADPT FTEXSST 570
O—3| PTB4TPM2CH1/MISO1 FTE4 [r—C
O—<— FTESTEMICH /S5 FTES 35O
O—=— FTES/SDATXTAL PTEG 33 —C
O——— FTET/SCLI/EXTAL FTET/TRMACLE, 0
- .
C—%=— FTDOKEIZFISFSCKE FTFOADFID —;*z—ﬂ
O—<2— PTD1/KEIZP1/MOSIZ FTF1/ADFTT 0
O—55 PTDZKBIZFZMISOZ FTFZIADPIZ [ggo
O—£-— FTDA/KEIZFL/SE2 PTFIADPIZ [z2—0
O—47| FTC4/KEIZP4 FTF4/ADFI4 32—
O—3; | PTDS/KBIZFS FTFSADFIE [45—O
O—35| PTOE/KEIZRE FTFE/ADPIE [o
1.3V O—==- PTDT/KBIZFT FTFTIADFT 0
ki
|
. -
I BlE L ;TE'D
10uE | 0.1uF — FTE! 5
| PTGZ _D5-
— e | Y
. O—Z— VDDAl
O—g=— VREFH 51
O—==— VREFL FTHD 55—
O—=— VSEAD FTH1 =0
PTHE/SCLZ [0
FTHT/SDAZ [0
QE128

Figure 7-3. ACMP Hardware Implementation

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (64-pin package). There may be changes needed in the
code to initialize another MCU.

QE128 Quick Reference User Guide, Rev. 1.0

7-6 Freescale Semiconductor

Using the Analog Comparator (ACMP) for the QE Microcontrollers

ACMP module can operate with two external inputs. This example code is

expressly made to configure the ACMP module to work using the internal
reference voltage.

The analog comparator circuit is designed to operate across a full range of
supply voltage. Please refer to the data sheet of the device. You can also find
it at www.freescale.com.

Figure 7-3, shows the hardware connections used for the ACMP project, for
detailed information about the MCU supply voltages needed, please refer to
the Pins and Connections chapter the Reference Manual (MC9S08QE128 or
MCF51QE128). It can also be found at www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 7-7

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Analog Comparator (ACMP) for the QE Microcontrollers

QE128 Quick Reference User Guide, Rev. 1.0

7-8 Freescale Semiconductor

Chapter 8
Using the Analog to Digital Converter (ADC) for the QE
Microcontrollers

8.1 Overview

This is a quick reference for using a 12-bit analog-to-digital converter (ADC) module for the QE family
microcontrollers (MCUs). Basic information about the functional description and configuration options
are provided. The following example may be modified to suit an application. The ADC project is made for
the MC9S08QE128 and MCF51QE128 MCUs.
ADC Quick Reference

For specific pin control registers and bits on the device, please refer to the

reference manual (MC9S08QE128 or MCF51QE128). It can be found at

www.freescale.com.

ADCSC1 [COCO | AIEN | ADCO | ADCH

Module configuration:
ACME - conversion complete flag ADCO — continuous conversion enable

AIEN — Interrupt enable ADCH- output pin enable.

ADCSC2 [ADACT | ADTRG | ACFE | ACFGT | [[

Module configuration:

ADACT - conversion active. ADTRG - conversion trigger select
ACFE — compare function enable. ~ ACFGT- compare function greater than
enable
ADCRH | | | | | ADR11 | ADR10 | ADR9 | ADR8 |

Result of ADC conversion:
ADR11-ADRS8 — contains the upper four bits of the result of a 12-bit conversion

ADCRL [ADR7 | ADR6 | ADR5 | ADR4 | ADR3 | ADR2 | ADRi | ADRO |

Result of ADC conversion:
ADR7-ADRO — contains the eight bits of the result of a 12-bit, 10-bit or 8-bit
conversion

ADCCVH | [[[[ADCVii | ADCVi0 | ADCV9 | ADCV8 |

Compare value:
ADCV11-ADCV8 — contains the upper four bits of the 12-bit compare value.

ADCCVL | ADCV7 | ADCV6 | ADCV5 | ADCV4 | ADCV3 | ADCV2 | ADCVi1 | ADCVO |

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 8-1

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

Compare value.
ADCV7-ADCVO0 — contains the lower eight bits of the 12-bit, 10-bit or 8-bit
compare value

ADCCFG | ADLPC | ADIV | ADLSMP | MODE | ADICLK
ADLPC — Low Power configuration MODE — Conversion mode Selection
ADIV — Clock divide select ADICLK — Input clock select.
ADLSMP — Long sample time
configuration.

APCTL1 [ADPC7 | ADPC6 | ADPC5 | ADPC4 | ADPC3 | ADPC2 | ADPCi | ADPCO |

Pin Control: ADC or I/O controlled
ADPC7-ADPCO — These bits are used to disable the I/O port control of the
MCU. For specific information visit www.freescale.com and search for the
reference manual MC9S08QE128 or MCF51QE128 MCUs.

APCTL2 [ADPC15 | ADPC14 | ADPC13 | ADPCi2 | ADPCi1 | ADPC10 | ADPC9 | ADPC8 |

Pin Control: ADC or I/O controlled
ADPC15-ADPCS8 — These bits are used to disable the I/O port control of the
MCU. For specific information visit www.freescale.com and search for the
reference manual MC9S08QE128 or MCF51QE128 MCUs.

APCTL3 [ADPC23 | ADPC22 | ADPC21 | ADPC20 | ADPC19 | ADPC18 | ADPCi7 | ADPC16 |

Pin Control: ADC or I/O controlled
ADPC23-ADPC16 — These bits are used to disable the 1/0 port control of the
MCU. For specific information visit www.freescale.com and search for the
reference manual MC9S08QE128 or MCF51QE128 MCUs.

The QE128 MCUs have a 12-bit analog-to-digital succesive-approximation converter which is the ADC.
It can be configured with a 12-bit, 10-bit or 8-bit resolution. These are some options for the user:

» Three different resolutions: 12-bit, 10-bit and 8-bit.

» Two different types of conversions: single or continuous conversion.

» Selectable ADC clock frequency: include a bus clock preescaler.

» Automatic compare with interrupt for less-than, grater-than or equal-to, programmable value.
» Configurable sample time and conversion speed/power.

8.2 ADC project for EVB

8.2.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.

The following examples describe the initialization code for the 12-bit ADC module using the
interrupt-based approach, 8-bit resolution, and continuous-sample mode.

The zip file contains the following functions:
* main — Endless loop waiting for the ADC interrupt to occur.

QE128 Quick Reference User Guide, Rev. 1.0

8-2 Freescale Semiconductor

http://www.freescale.com

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

* MCU_Init — MCU initialization, watchdog disable and the ADC clock module enabled.
* GPIO_Init — Configure PTE port as output.

» ADC_Init— ADC module configuration.

* ADC_ISR — The data obtained by ADC module is display on PTE port.

This section consists of varying the potentiometer that also varies the voltage and is connected to the ADC
channel 0. The obtained data is displayed in an 8 LEDs array connected to the PTE port. The ADC module
is configured in continuous conversion mode. The MCU is interrupted constantly and within the ISR the
obtained data is displayed on the PTE port.

The code below executes the instructions to disable the watchdog, enable the Reset option and backgroud
pin. The system option register 1 (SOPT1) is used to configure the MCU. The SCGC1 and SCGC2 are
registers used for power saving consumption, here the bus clock to peripherals can be enabled or disabled.
In this example only the bus clock to the ADC module is active. The clocks to the other peripherals are
disabled.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disabled. Stop Mode Enabled. Background Pin
// enabled. RESET pin enabled

SCGC1 = 0x10; // Bus Clock to the ADC module is enabled

SCGC2 = 0x00; // Disable Bus clock to unused peripherals

}

This is the General Purpose Input/Output configuration. These code lines configure the directions for the
PTE port. The eight LEDs are connected to the PTE port; therefore the PTE port is configured as output.
void GPIO_Init(void) {

PTEDD = OxFF; // Configure PTE port as output
PTED = 0x00; // Put 0"s in PTE port

}

This is the initialization code for the analog-to-digital converter used for the QE MCU. This application
uses the ADC module channel 0. The module is configured in continuous conversion mode and an 8-bit
resolution.

void ADC_Init (void) {

ADCSC1 = 0x20; // Interrupt disable. Continuous conversion and channel O
// active
ADCSC2 = 0x00; // Software trigger selected
ADCCFG = 0x30; // Input clock/2. Long Sample time configuration. 8-bit
// conversion
APCTL1 = 0x00; // ADCO pin disable
}

This is the main function, above are the described called functions, and all the interrupts are enabled. The
ADC interrupt can be serviced.

void main(void) {

MCU_Init(Q); // initializes the MCU

GP10_Init(Q); // initializes GPIO

ADC_Init(Q); // Function that initializes the ADC module
Enablelnterrupts; // enable interrupts

ADCSC1_AIEN = 1; // Enable ADC interrupt

APCTL1_ADPCO = 1; // Select the channel for ADC input

for(G;) {

} // loop forever

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 8-3

}{—

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

// please make sure that you never leave this function

NOTE

This is the analog-to-digital converter interrupt service routine. Every time
an interrupt is detected, this routine displays the converted value in PTE
port. The VectorNumber_Vadc can be replaced by the interrupt vector
number, this depends if the MCU is S08 or V1. Using this example makes
the code fully compatible for either MCU.

void interrupt VectorNumber_Vadc ADC_ISR(void) {
// ADC vector address = 19 (S08)
// ADC vector address = 81 (V1)
PTED = ADCRL; // Move the adquired ADC value to PTE port

}

8.2.2 Hardware Implementation

FOT
1K

Ut
3.3\..@T|Il
| FTADKEITFOTEMICHUADEDACHE T+ FTG0 2
—_— 3y 5| FTATKEI 1P TRH2CHIADR 1 ACKP- PTGT 50
) ke % Oy FTAZIKEITF2/ED FTGZADFIE 570
=Tl —’\/\/\—I O——F— FTAZ/KBITF3 PTG3/ADP13 g5
1_0 1 0—1— O—F FTA%IACIHPT DiMS PTG4/ADP20 E.__‘D
i = FTaS CLK/RESET PTGS/ADP21 fe—0
$00nF O—{ FTAGTEMICHZ/ADFS FTGH/ADFZ2 520
— O— FTAT/TFMZCHZ/ADFS FTGT/ADF23 — O 3.3y
O— 5 FTEQ/KEITF4/RxD 1/ADF4 ETEUADFID 0
O—— PTB1/KBI P& TxD1/ADPE FTF1/ADP11 —3—D
O—5— FTB2/KBI 1F&/SPSCK1/ADPS FTFZADFIZ [2 LED LED LED LED LED LED LED LED
D5 FTEL/KEITFTAIOEIUADFT FTFA/ADPI3 0 Sl o % o2 ¥ o2 ¥ pe ¥| o ¥| o2 F| o7 | oe
D-—_‘ PTB4/TPM2CH1/MIS01 FTF4/ADP14 g1 - b -
O—+ FTESTPMICH1/S81 FTFES/ADFIS 52
DO— 2| FTB&/SDATMXTAL FTFE/ADP1E [z
] CL1 17
O—" FTE7/BCLI/EXTAL FTFT/ADPIT =0 R R T
17 33
O— 7 FTCOTFMICHD FTEOTRMICLK/SFSCKT [y i
D-_g FTC1/TFMICH1 FTE1/MOSI1 E |
O—p| FTCZTPM3CH2 FTEZMISO1 35
O—57— PFTCATPMICH3 PTE/SE1 =
C—=— FTC4TPMICHARETD PTE4 [ag
O—£2 PTCEHTPMICHSACMP20 FTES [35
O—2 FTCE/RXDZIACMFZ+ FTES 35
O—=— PTCT/TxDZACMFZ- PTET/TPM2CLK
25 5
O—£5{ FTDOIKEIZPI/SPECKE PTHO |30
DT—} PTD1/KEIZP1/MOE2 PTH1 E._;D
O35 FTDZ/KBIZPZMISOZ FTHZ 55—0
O—£= FTD/KEIZF3/S82 FTHI 51—
O£ FTD4/KEIZRY FTHY a0
O—37| FTDS/KBI2PS FTHS gz O
D55 FTDE/KEIZFE FTHE/SCLE [55—0
D=5+ FTOT/KEIZFT PTHT/SDAZ [0 3y
7
=] . T3
O—2 FTJ0 V5SS e o
&5
B—g7 | P voo [10uF 0 ivF
O—sg | T2
D.;._g FT.3 TE =
D%_':) PT.J4 VDDAD -{?D
O FTJS VREFH [5—1
O— FTI8 VREFL (=70
OD—= FTJT WESAD —O

QE1Z8

Figure 8-1. ADC Hardware Implementation.

QE128 Quick Reference User Guide, Rev. 1.0

8-4 Freescale Semiconductor

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

NOTE

This example is developed using the CodeWarrior version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 8-1, shows the hardware connections used for the ADC project, for
detailed information about the MCU hardware needed, please refer to the

Pins and Connections chapter in the Reference Manual. It can be found at
www.freescale.com.

8.3 ADC project for Demo board

8.3.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.
This section explains the differences of codes using an EVB and Demo board. The codes are the same.

The project file contains the following functions:
* Main — Endless loop waiting for the ADC interrupt to occur.
 MCU_Init - MCU initialization, watchdog disable and the ADC clock module enabled.
* GPIO_Init — Configure PTCO to PTC5, PTE6 and PTE7 as as outputs.
» ADC_Init— ADC module configuration.
* ADC_ISR — The data obtained by the ADC module is displayed on PTCO to PTC5 pins, PTE6 and
PTET pins.

This is the General Purpose Input/Output configuration. These code lines configure the direction for the
PTC port. Only six LEDs from the demo board are connected to the PTC port. The other two LEDs are
connected to port E. In this example the PTCO to PTC5, and PTE6, PTE7 are configured as outputs in order
to drive LEDs.

void GPIO_Init(void) {

PTCDD = (UINT8) (PTCD | Ox3F); // Configure PTCO-PTC5 as outputs
PTEDD = (UINT8) (PTED | OxCO); // Configure PTE6 and PTE7 pins as outputs
PTCD = Ox3F; // Put 1%s in port C in order to turn off the LEDs
PTED = OxCO; // Put 1%s in port E in order to turn off the LEDs
}
NOTE

This is the ADC interrupt service routine. Every time an interrupt is
detected, this routine displays the converted value in eight LEDs. The
VectorNumber_Vadc can be replaced by the interrupt vector number, this
depends if the MCU is S08 or V1. Using these example makes the code fully
compatible for either MCU.

void interrupt VectorNumber_Vadc ADC_ISR(void) {

// ADC vector address
// ADC vector address

19 (S08)
81 (V1)

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 8-5

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

b -

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

UINT8 temp;
temp = ~ADCRL;

PTED
PTCD

}

8.3.2

(UINT8) (temp & 0xCO);
(UINT8) (temp & Ox3F);

// Create a temp variable used for further operations
// Negate the ADC converted value because is going to be display

// on the LEDs (The LEDs turn on with 07s)
// Move the adquired ADC value to port E
// Move the adquired ADC value to port C

Hardware Implementation

w
T
L
%F{' %M R2 %m %F{E' RE
510 510 510 510 510 510
T
W v LED1_| LEDZ_| LED3 | LED4 | LEDS | LEDE
POT h 4
by 2 by 2 % 2
- = PTAOKEI1POTPIICHADFACMP T+ PTCOMTPMICHD ;
O—4 FTATKEI1P1/TPMZCHYADF1/ACMPI- FTCITRMICHT e 5
O—3 FTAZKEI 1P2/SDAT/ADRZ FTC2TPMICHZ 5
RESET SW C—F— FTAZ/KEI 1 FASCLIADFS FTCUTRUACHE [
—, O—2— FTA4ACMPIO/BKGDIME FTC4TRMICHARETD |57
S| FTAXIRQTPMICLIRESET PTCETPMICHHACMPZO 57
o O— | FTABTPMICH2/ADPS FTCE/RxDZACMPZs |55
Ciur | T FTATITPMZCHZIADPS PTGT/TxD2IACMP2- [0
L
D2 FTE0KE1F4/RxD1/ADF4 FTEQTPMZCLIUSPECK %ﬂ 33y
O FTE1/KEI1PETxD1/ADFS FTE1/MOSIT [0 510 3
O— = FTB2/KEI1PE/SPSCK1/ADPE FTEZMISOT [0 T
O— 5 FTBXKEI1PTMOSIT/ADFT FTELSS1 [0 Er
O— 3 FTE4TPMZCH1/MISO FTE4 55O
O—<—| FTESTFMICH1/ES1 FTES 20 LEDT 510
O— = FTE&/SDALXTAL FTEE -1"—4,:, . 8
O——— FTET/SCLUEXTAL FTETTPMACLE 7
LEDE
. .
O—55 PTDO/KBIZPOISPSCH2 FTFADF10 iTD
O—5= FTD1/KEIZP1/MOSI2 FTFUADPTT [5—0
O—5 FTD2/KEIZP2/MISO2 FTEZADPIZ [0
O—== FTDA/KEIZPL/SE2 FTELADRIZ [0
O—55| FTD4/KEIZP4 FTFHADP14 [0
O—3| PTDS/KEIZPS PTFEADP1S [r—0
O—35 PTDG/KEIZPE PTFE(ADP1E [
3.3V B—="1 PTOT/KBIZPT FTFT/ADFTT [0
T
H_—‘ . .
ca c2 5; Vs FTE0 :; =
L0uF 0.1uF Voo FTG! &7 2
FTGZ [570
= e PTG =0
- O—22 VDDAD
=i VREFH =2
O—z5— VREFL PTHD [£5—0
O—5- ySEAD FTHT [52—J
PTHE/SCL2 2
FTHT/SDAZ [0
QE128

Figure 8-2. ADC Hardware Implementation

NOTE

This example is developed using the CodeWarrior version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (64-pin package). There may be changes needed in the
code to initialize another MCU.

QE128 Quick Reference User Guide, Rev. 1.0

8-6 Freescale Semiconductor

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

Figure 8-2, shows the hardware connections used for the ADC project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. It can be found at

www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

8-7

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Analog to Digital Converter (ADC) for the QE Microcontrollers

QE128 Quick Reference User Guide, Rev. 1.0

8-8 Freescale Semiconductor

Chapter 9
Using the Real Time Counter (RTC) for the QE
Microcontrollers

9.1 Overview

This is a quick reference for using the real time counter (RTC) module for the QE family microcontrollers
(MCUs). Basic information about the functional description and configuration options are provided. The
following example may be modified to suit an application. The RTC project is made for the
MC9S08QE128 and MCF51QE128 MCUs.

The RTC module can be used to generate a hardware interrupt at fixed periodic rate. The RTC module in
QE MCU has three clock sources, the 1 kHz internal clock, the 32 kHz internal clock and an external clock.
There are different periods of time that can be used to interrupt the MCU. Please refer the reference manual
for specific times. It can be found at www.freescale.com.

RTC Quick Reference

RTCSC | RTIF | RTCLKS | RTIE | RTCPS
Module Configuration:
RTIF - Real-Time Interrupt flag IRTIE - Real-Time Interrupt Enable
RTCLKS - Real-Time Clock Source Select RTCPS - Real-Time clock prescaler select
RTCCNT | RTCCNT |
RTCCNT - It contains the value of the current RTC count
RTCMOD | RTCMOD |

RTCMOD - RTC Modulo

9.2 RTC project for EVB

9.2.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.

The zip file contains the following functions:
* main — Endless loop waiting for the RTC interrupt to occur.
* MCU_Init— MCU initialization, watchdog disable and the RTC clock module enabled.
* GPIO_Init — Configure PTE port as output.
* RTC_Init— RTC module configuration.
* RTC_ISR — Toggles PTE port .

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 9-1

http://www.freescale.com
http://www.freescale.com

Using the Real Time Counter (RTC) for the QE Microcontrollers

The following example describes the initialization code for the RTC module. This example shows how to
generate an RTC using 1 kHz of internal reference. Port E toggles every time an interrupt is generated
which is every second.

The code below executes the instructions to disable the watchdog, enable the Reset option and backgroud
pin. The system option register 1 (SOPT1) is used to configure the MCU. The SCGC1 and SCGC2 are
registers used for power saving consumption, here the bus clock to peripherals can be enabled or disabled.
In this example only the bus clock to the RTC module is active. The clocks to the other peripherals are
disabled.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disabled. Stop Mode Enable. Background Pin
// enable. RESET pin enable

SCGC1 = 0x00; // Disable Bus clock to unused peripherals

SCGC2 = 0x04; // Bus Clock to the RTC module is enable

}

This is the general purpose Input/Output (GP10) configuration. These code lines configure the directions
for the PTE ports. The eight LEDs are connected to the PTE port; therefore the PTE port is configured as
output.
void GPIO_Init(void) {

PTEDD = OxFF; // Configure PTE port as output

PTED = 0x00; // Put 0"s in PTE port
}

This is the initialization code for the Real-Time clock module used for the QE MCU. This application
generates an interrupt every second. Within the interrupt service routine a PTE port is toggled.
void RTC_Init (void) {

RTCSC = OxOF; // RTCPS configure prescaler period every 1s
RTCMOD = 0x00; // RTCMOD configure to interrupt every 1s

}

This is the main function, above are the described called functions, all the interrupts are enabled. The RTC
interrupt can be detected.

void main(void) {

MCU_Init(Q); // Function that initializes the MCU

GP10_Init(Q); // Function that initializes the Ports of the MCU
RTC_Init(); // Function that initializes the RTC module
Enablelnterrupts; // enable interrupts

RTCSC_RTIE = 1; // Enable RTC interrupt

} // loop forever

// please make sure that you never leave this function

NOTE

This is the RTC interrupt service routine. Every second an interrupt is

generated this routine toggles a PTE port. The VectorNumber_Vrtc can be
replaced by the interrupt vector number, this depends if the MCU is S08 or
V1. Using these example makes the code fully compatible for either MCU.

void interrupt VectorNumber_Vrtc RTC_ISR(void) {

QE128 Quick Reference User Guide, Rev. 1.0

9-2 Freescale Semiconductor

b -

g |

Using the Real Time Counter (RTC) for the QE Microcontrollers

RTCSC =

RTCSC | 0x80;
PTED ~= OxFF;

// RTC vector address
// RTC vector address

24 (S08)
86 (V1)

// Clear the RTC flag
// Toggles Port E

}
9.2.2 Hardware Implementation
s
O PTAG/KEI 1 POTPMICHU/ADPOACHP T+
- oy E'.E {KEI P P HACHP -
e WKE T o 4]
— e
e o—1 Fras ADF
L ook o—E | PrATTPIZCHLADPS

O— 2| PTBUKBI1P4/RXDADP4
O—{| FTEL/KEI 1FSTxD 1/ADPS
| PTBX/KBI{PE/SPSCKI/ADRS

052 PTOOMKBIZFOISPSCKE
O—5| PTOKBIZP1/MOSI2
O—£5| FTD2KBIZFZ/MISOZ
O—$= FTDA/KBIZPYS52
O35 FTD4/KEIZP4

O—37| FTDSKBIZPS

O—37| FTD&KEIZFS

0= PTOT/KBIZPT

dadAAAAd

PTEMTPMECLKSPSCKI

PTE1/MOS!1
PTEZ'MISO1
PTE3/551
PTE4
FTES
PTEE
PTET/TPMICLK

VDDALD
VREFH
VREFL
VESAD

LED
'
o4 &

220

LED
0y

20

LED
D& §

220

LED:
'
o7 *

220

QE1Z8

Figure 9-1. RTC Hardware Implementation.

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the

HCS08 and V1 families. It is expressly made for the MCF51QE128 and

MC9S08QE128 (80-pin package). There may be changes needed in the

code to initialize another MCU.

Figure 9-1, shows the hardware connections used for the RTC project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. It can be found at

www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

LED

(]

Freescale Semico

nductor

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Real Time Counter (RTC) for the QE Microcontrollers

9.3 RTC project for Demo board

9.3.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.
This section explains the differences of codes using the EVB and Demo board. The codes are the same.

The project file contains the following functions:
* Main — Endless loop waiting for the RTC interrupt to occur.
* MCU_Init — MCU initialization, watchdog disable and the RTC clock module enabled.
* GPIO_Init — Configure PTCO pin as output.
* RTC_Init— RTC module configuration.
e RTC_ISR — Toggles PTCO pin .
This is the general purpose Input/Output (GPI0) configuration. These code lines configure the direction

for the PTC port. Only six LEDs from the demo board are connected to the PTC port. The others two LEDs
are connected to port E. In this example PTCO is configured as output in order to drive a LED.

void GPIO_Init(void) {

PTCDD = 0x01; // Configure PTCO as output
PTCD = 0x01; // Put 1 in PTCO to turn off the LED
¥
NOTE

This is the RTC interrupt service routine. Every second an interrupt is
generated this routine toggles a PTE port. The VectorNumber_Vrtc can be
replaced by the interrupt vector number, this depends if the MCU is S08 or
V1. Using this example makes the code fully compatible for either MCU.

void interrupt VectorNumber_Vrtc RTC_ISR(void) {

// RTC vector address = 24 (S08)
// RTC vector address = 86 (V1)
RTCSC = RTCSC | 0x80; // Clear the RTC flag
PTCD_PTCDO "= 1; // Toggles PTCO pin
}

QE128 Quick Reference User Guide, Rev. 1.0

9-4 Freescale Semiconductor

http://www.freescale.com

PR 4

9.3.2

Hardware Implementation

33
&
-
510
U
LED
b 4
=
D—J{: PTANEBIPITPMICHNADPIACMP1+ PTCWTPMICHD g
D_3 PTAIEBIPLTPM2CHNADP1/ACMP1- PTC1/TPMICHI B 0
O— PTAZKEIPZ/SOATADR2 CZTPMICHZ =0
RESET SW O——{ PTA3/KBI1P3/SCL1/ADP3 FTCHTPMICHI 550
=1l D—E, PTA4/ACMP1OVEKGDVMS PTCATPMICH4/R5ETO TD
C—j_—? PTASIRQTPMICLK/RESET PTCHTPMICHSACMP20 TD
o O—p| FTABTFMICHZ/ADPE FTCE/RxDZACMPZ: 530
0w || O PTATTPM2CHZIADPS FTCT/TxD2/ACMPZ- [P0
L
O g FTEOEBI1P4/RxD1/ADPS PTENTPMZCLE/SPSCK %ﬂ
O 1| FTBVKBIPST=D1/ADPS PTE1/MOS5I1 3_—.:,‘:‘
O— = PTB2HEI1PE/SPSCK1/ADPS PTEZMISON 550
O—3| PTB3/KBI1PT/MOSI 1/ADPT PTE3/SS1 70
O—3 PTB4TRM2CH1/MISO1 FTE4 50
O—+— PFTESTPMI1CH1/S51 FTES 52
O—y5 | FTBG/SDATXTAL PTES —E—Dﬂ
PTBT/SCLI/EXTAL PTET/TPMICLE
o_25 . n et o
75 | FTDO/KBIZP0/SPSCK2 FTFWADP10 47
O—55— PTD1/KBIZP1/MOSI2 FTFU/ADP11 |50
O—& PTO2/MBIZPZ/MISOZ PTFZ/ADP1Z [0
O—55- PTD3/KBIZP3/SS2 FTFUADP13 [z—0
D—55-| FTD4/KBIZP4 FTF4/ADF14 [0
DT FTDS/KBIZPE PTFSADPIS 57 0
D—55—| FTD&/KBIZPE FTFE/ADF1E g0
33y O—=2- FTDT/KBIZFT FTFT/ADR1T =
5
{ 1 F;
C J— cz E; W35 PTGD —Dg
1eE | :'.'LI:]H- VoD FTE! 5 o
L FTGZ o0
— 5g PTG 0O
; O—g5 VDDAD
O—g5{ VREFH =
O—g VREFL PTHO g0
O—=<- ySSAD FTH1 20
PTHE/SCL2 [—pz—0
PTHT/SDAZ [0
QE1Z8

Figure 9-2. RTC Hardware Implementation.

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (64-pin package). There may be changes needed in the
code to initialize another MCU.

QE128 Quick Reference User Guide, Rev. 1.0

Using the Real Time Counter (RTC) for the QE Microcontrollers

Freescale Semiconductor

9-5

PR 4

Using the Real Time Counter (RTC) for the QE Microcontrollers

Figure 9-2, shows the hardware connections used for the RTC project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. It can be found at

www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

9-6 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Chapter 10
Using the Serial Communications Interface (SCI) for the QE
Microcontrollers

10.1 Overview

This is a quick reference for using the serial communication interface (SCI) module for the QE family
microcontrollers (MCUs). Basic information about the functional description and configuration options
are provided. The following example may be modified to suit an application. The SCI project is made for
the MC9S08QE128 and MCF51QE128 MCUs.

10.2 SCI project for EVB

10.2.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.

The zip file contains the following functions:
* main — Endless loop waiting for the SCI interrupt to occur.
* MCU_Init — MCU initialization, watchdog disable and the SCI clock module enabled.
* GPIO_Init — Configure PTE port as output.
e SCI_Init — SCI module configuration.

* SCI_RX_ISR — The data obtained by SCI module is displayed on the PTE port and the character
“1” is sent by SCI.

The following example describes the initialization code for the SCI module. This example configures the
serial communications interface at 9600bps, in an 8-bit mode. The MCU waits for an interrupt, once an
interrupt is detected the received data is displayed on the PTE port and then the character “1” is sent by
SCI. The SCI module uses interrupts to handle transmition, reception and errors events, for this example
reception interrupt is used.

The code below executes the instructions to disable the watchdog, enable the Reset option and backgroud
pin. The System Option Register 1 (SOPT1) is used to configure the MCU. The SCGC1 and SCGC2 are
registers used for saving power consumption, here the bus clock to peripherals can be enabled or disabled.
In this example only the bus clock to the SCI module is active. The clocks to the other peripherals are
disabled.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disabled. Stop Mode Enabled. Background Pin
// enable. RESET pin enable

SCGC1 = 0x01; // Bus Clock to the SCI1 modulle is enabled

SCGC2 = 0x00; // Disable Bus clock to unused peripherals

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 10-1

http://www.freescale.com

Using the Serial Communications Interface (SCI) for the QE Microcontrollers

}

This is the General Purpose Input/Output configuration. These code lines configure the directions for the
PTE ports. The eight LEDs are connected to the PTEport; therefore the PTE port is configured as output.
void GPIO_Init(void) {

PTEDD = OxFF; // Configure PTE port as output
PTED = 0x00; // Put 0"s in PTE port

}

This is the initialization code for Serial Communications Interface module used for the QE MCU. This
application configures the SCI module in an 8-bit mode, normal operation, and a baud rate of 9600 bps.
To reach 9600 bps the Baud Rate Modulo Divisor and the clock source must be configured. For this
example the used clock source is at its default of 4 MHz. The Baud Rate Modulo Divisor needs to be at 26
to obtain 9600 bps.

void SCI_Init (void) {

SCI1C1 = 0x00; // 8-bit mode. Normal operation
SCI1C2 = 0x2C; // Receiver interrupt enabled. Transmitter and receiver enabled
SCI1C3 = 0x00; // Disable all errors interrupts
SCI1BDL = Ox1A; // This register and the SCI1BDH are used to configure the SCl baud rate
SCI1BDH = 0x00; // BUSCLK 4AMHZz
// Baud rate = ———————————————————— = e = 9600bps
} // [SBR12:SBRO] x 16 26 x 16

This is the main function, the above described functions are called, and all the interrupts are enabled. The
SCI_Rx interrupt can be detected.

void main(void) {

MCU_Init(); // Function that initializes the MCU

GP10_Init(Q; // Function that initializes the Ports of the MCU
SCI_InitQ); // Function that initializes the SCI module
Enablelnterrupts; // enable interrupts

for(G;) {

} // loop forever

// please make sure that you never leave this function

}

This is the SCI service routine. Every time a SCI interrupt is detected, the received data is displayed on the
PTE port and the character “1” is sent by SCI. The VectorNumber_Vscilrx can be replaced by the interrupt
vector number, this depends if the MCU is S08 or V1. Using this example makes the code fully compatible
for either MCU.

void interrupt VectorNumber_Vscilrx SCI_RX_ISR(void) {

// SCl vector address = 15 (S08)
// SCI vector address = 77 (V1)

SCI11S1_RDRF = 0; // Receive interrupt disable
PTED = SCI1D; // Display on PTE the received data from SCI
while (SCI1S1_TDRE == 0); // Wait for the transmitter to be empty
SCI1D = "17; // Send a character by SCI
}

QE128 Quick Reference User Guide, Rev. 1.0

10-2 Freescale Semiconductor

Using the Serial Communications Interface (SCI) for the QE Microcontrollers

10.2.2 Hardware Implementation

oI PTANKEI 1POTR

5 HOADPIACHPT+ Freo 2o
¢ O35 FTALKEITF1TFI2CHD

S T HOIADP 1/ACHP1- PTG [51—0
1oke g o
=Tl
1 EE
H AR, AD B/ e
— wone o2 PTATITPURCHIADPS FIGTADRZ o 44y
1
T3 FTEKEI1P4RAD1ADPS
37| FTE1/KEI1PETxD1/ADPE
I
RIOUT

R2OUT — O

TioUT Ha
T20UT /0O

g TIADF1T 220
TNVALID [F~—0 %

PTEOTPM2CLIVSFSCK] [or
FTEIMOSH 5o
FTEZMISO! 55

FTEXSS! 55

]
=)
0

220

220 iZZ{) 220 %22{) %22{) 20

+ + + + + + + h 4

LED 7| LED ;[LED 7| LED 7| LED 7T LED 7| LED ;[LED

£ £ & £ £ £ © £

#| Dt ¥| Dz #¥| D3 #| D4 ¥| D5 #| D8 #| DT ¥| DB
| | ‘

o—3 Forceon
O—| FORCEOFF

FTE4
FTES

o ETE
MAXI218 PTET/TPM3CLK

0—52-| FTDO/KBIZPOISPSCK2 PTHO g
055 FTDIKEIZPI/MOSI2 FTHI 550
O—57-| FTD2/KBIZPZMISO2 FTHZ 55

= Y 3552 FTHI [0

DB3

o7
NN

FTHE/SCL2 [a—0
FTHT/SDAZ =0 13

33733339

Figure 10-1. SCI Hardware Implementation

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 famies. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 10-1, shows the hardware connections used for the SCI project, for
detailed information about the MCU power supply, please refer to the Pins
and Connections chapter in the Reference Manual. It can be found at
www.freescale.com.

The SCIl.mcp project needs to work with the hyperterminal program. The hyperterminal is configured to
the following characteristics:

9600bps baud rate
8-bit mode

No parity checked
1 stop bit

No flow control

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 10-3

Using the Serial Communications Interface (SCI) for the QE Microcontrollers

Press any key and the character “1” appears.

10.3 SCI project for Demo board

10.3.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.
This section explains the differences of codes used in the EVB and Demo board. The codes are the same.

The project file contains the following functions:
* main — Endless loop waiting for the SCI interrupt to occur.
* MCU_Init — MCU initialization, watchdog disable and the SCI clock module enabled.
* GPIO_Init - Configure PTCO-PTC5, PTE6 and PT7 as outputs.
e SCI_Init — SCI module configuration.
e SCI_RX_ISR — The data obtained by SCI module is display on eight LEDs and the character “1”
is send it by SCI.

This is the General Purpose Input/Output configuration. These code lines configure the direction for the
PTC port. Only six LEDs from the demo board are connected to the PTC port. The other two LEDs are
connected to the E port. In this example PTCO to PTC5, and PTEG, PTE7 are configured as outputs in order
to drive LED:s.

void GPIO_Init(void) {

PTCDD = (UINT8) (PTCD | Ox3F); // Configure PTCO-PTC5 as outputs
PTEDD = (UINT8) (PTED | 0xCO); // Configure PTE6 and PTE7 pins as outputs
PTCD = Ox3F; // Put 1%s in port C in order to turn off the LEDs
PTED = 0OxCO; // Put 1%s in port E port in order to turn off the LEDs
}
NOTE

This is the SCI service routine. Every time an SCI interrupt is detected, the
received data is displayed on eight LEDs and the character “1” is sent by
SCI. The VectorNumber_Vscilrx can be replaced by the interrupt vector
number, this depends if the MCU is S08 or V1. Using this example makes
the code fully compatible for either MCU.

void interrupt VectorNumber_Vscilrx SCI_RX_ISR(void) {

// SCl vector address = 15 (S08)
// SCI1 vector address = 77 (V1)
UINT8 temp;
SCI11S1_RDRF = 0; // Receive interrupt disable
temp = SCI1D; // Store the recieve value on temp variable
PTED = (UINT8) (temp & O0xCO); // Move the received value to port E
PTCD = (UINT8) (temp & Ox3F); // Move the received value to port C
while (SCI1S1_TDRE == 0); // Wait for the transmitter to be empty
SCI1D = "17; // Send a character by SCI
}

QE128 Quick Reference User Guide, Rev. 1.0

10-4 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Using the Serial Communications Interface (SCI) for the QE Microcontrollers

10.3.2 Hardware Implementation

c3 CZ QE1Z8
10uf] 0. 1uF]

Figure 10-2. SCI Hardware Implementation.

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (64-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 10-2, shows the hardware connections used for the SCI project, for
detailed information about the MCU power supply, please refer to the Pins
and Connections chapter in the Reference Manual. It can also be found at

www.freescale.com.

The SCIl.mcp project needs to work with the hyperterminal program. The hyperterminal is configured to
the following characteristics:

* 9600bps baud rate

» 8-bit mode

* No parity checked

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 10-5

http://www.freescale.com
http://www.freescale.com

) 4

Using the Serial Communications Interface (SCI) for the QE Microcontrollers

e 1 stop bit
* No flow control

Press any key and the character “1” appears.

QE128 Quick Reference User Guide, Rev. 1.0

10-6 Freescale Semiconductor

Chapter 11
Using the Serial Peripheral Interface (SPI) for the QE
Microcontrollers

11.1 Overview

This is a quick reference for using the serial peripheral interface (SPI) module for the QE family
microcontrollers (MCUs). Basic information about the functional description and configuration options
are provided. The following example may be modified to suit an application. The SPI project is made for
the MC9S08QE128 and MCF51QE128 MCUs.

SPI Quick Reference
Because there are two SPI modules on some devices, there may be two full sets of registers. In the
register names below, where there’s a small x, there would be a 1 or a 2 in your software to
distinguish the registers that are on SP11 from those on SPI2.

SPIxC1 [SPIE | SPE | SPTIE | WMSTR | CPOL | CPHA | SSOE | LSBFE |
Module configuration:

SPIE — SPI Interrupt Enable CPOL - Clock Polarity

SPE — SPI system Enable CPHA — Clock Phase

SPTIE — SPI transmit Interrupt Enable SSOE - Slave Select Output Enable

MSTR — Master/Slave Mode Select LSBFE — LSB First

SPIXC2 | | | [MODFEN | BIDIROE | [SPISWAI | SPCO |

Module configuration:

MODFEN — Master Mode-Fault function Enable SPISWAI — SPI Stop in Wait mode
BIDIROE - Bidirectional mode Output Enable SPCO — SPI Pin control 0

SPIXBR | [SPPR2 | SPPRL [SPPRO | [SPRZ | SPR1 [SPRO |
SPPRI[2:0] — SPI Baud Rate Prescaler Divisor SPR[2:0] — SPI Baud Rate Divisor

SPIxS [__SPRF | [SPTEF | MODF | | | | |
SPRF — SPI Read buffer full Flag MODF — Master Mode Fault Flag
SPTEF — SPI Transmit Buffer Empty Flag

SPIXD | Bit7 | 6 | 5 | 4 | 3 | 2 | 1 | Bit0]

Data buffer

11.2 SPI project for EVB

11.2.1 Code Example and Explanation

This example code for Master and Slave project is available from the Freescale Web site
www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 11-1

http://www.freescale.com
http://www.freescale.com

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

11.2.1.1 SPI Master Project

The project SPI_Master configures the SPI module in master mode. The main functions are:
* main — A byte is sent by SPI.
* MCU_Init — MCU initialization, watchdog disable and the SPI clock module enabled.
» GPIO_Init — Configure PTE port as output, configure PTD4 as output (§ signal).
* SPIL_Init — SPI module configuration.
e SPI_ISR — Clear module flags.

The following example describes the initialization code for the SP1 module in master mode. Two boards
need to be connected. One board is configured as master, the other one works as slave. The firmware
configures the MCU as master and sends a count of 0 to 255 to the slave using the SPI module.

The code below executes the instructions to disable the watchdog, enable the Reset option and backgroud
pin. The System Option Register 1 (SOPT1) is used to configure the MCU. The SCGC1 and SCGC2 are
registers used for power saving consumption, here the bus clock to peripherals can be enabled or disabled.
In this example only the bus clock to the SPI2 module is active. The clocks to the other peripherals are
disabled.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin
// enable. RESET pin enable

SCGC1 = 0x00; // Disable Bus clock to unused peripherals

SCGC2 = 0x02; // Bus Clock to the SPI2 module is enabled

}

This is the General Purpose Input/Output configuration. These code lines configure the pin directions for
the PTD port. The SPI protocol can communicate various slaves with one master. To communicate with a
specific slave the SS signal must be low. The PTD3 pin is configured as output and the SS signal must be
changed by software using a GPIO.

void GPIO_Init(void) {

PTDDD = 0x04; // The SS signal must be generated by software using a GPIO
PTEDD = OxFF; // Configure PTE port as output

PTED = 0x00; // Put 0"s in PTE port

}

This is the initialization code for Serial Peripheral Interface module used for the QE MCU. This
application configures the SPI module to work in master mode. The different pins are used for data input
and data output. To obtain a 15.625KHz bit rate it is necessary to do the following calculations:

4MHz

15.625kHz = —
(Prescaler)(Divider)

4AMHz
15.625kHz

256 = (Prescaler Divisor) x (Clock Rate Divider)

256 = 8*32

QE128 Quick Reference User Guide, Rev. 1.0

11-2 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

void SPI_Init (void) {

SPI2BR = 0Ox75; // Select the highest baud rate prescaler divisor and the
// highest baud rate divisor
SP12C1 = 0OxDO; // SP1 Interrupt enable, system enable and master mode selected
SP12C2 = 0x00; // Different pins for data input and data output
}

This is the main function, descibed above are the called functions, and all the interrupts are enabled.
Within the endless loop a byte is sent by SPI and the next byte is sent after a delay. For detailed information
about the SPI module, refer to the QE MCU reference manual. It can be found at www.freescale.com.

void main(void) {
UINT8 counter = 0;

MCU_Init(Q); // Function that initializes the MCU
GP10_Init(Q); // Function that initializes the Ports of the MCU
SPI_Init(); // Function that initializes the SPI module
Enablelnterrupts; // enable interrupts
for(G;) {
delay(60000); // Delay function
while (ISPI2S_SPTEF && !'PTDD_PTDD3); // Wait until transmit buffer is empty
PTDD_PTDD3 = O; // Slave Select set in low
SP12D = counter; // Put in SPI buffer a data to send
PTED = counter; // Display the counter value on LEDs
counter++; // Increment counter

} // loop forever

// please make sure that you never leave this function

NOTE

This is the SPI interrupt service routine. This routine is used when a byte is
sent by the slave to the master.

void interrupt VectorNumber_Vspi2 SPI_ISR(void) {
// SP1 interrupt vector number
// SP1 interrupt vector number

12 (S08)
74 (V1)

UINT8 temp;
while (PTDD_PTDDO); // Wait for clock to return no default

PTDD_PTDD3 = 1; // Set Slave Select high

temp = SPI2S; // Clear register flag

temp = SPI12D; // Read data register to clear receive flag
}

11.2.1.2 SPI Slave Project

The project SPI_Slave configures the SPI module in slave mode. The main functions are:
* main — Waits for the SPI interrupt to occur.
* MCU_Init — MCU initialization, watchdog disable and the SPI clock module enabled.
* GPIO_Init - Configure PTE port as output.
* SPIL_Init — SPI module configuration.
* SPI_ISR — Display the received data in PTE port

The firmware for this project is similar to the SPI_master project. The differences are, the device is
configured as slave and only Receives a byte and displays it on the PTE port.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 11-3

http://www.freescale.com

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

This is the initialization code for the SPI module used for the QE MCU. This application configures the
SP1 module to work in slave mode.

void SPI_Init (void) {
SPI2BR = 0Ox75; // Select the highest baud rate prescaler divisor and the
// highest baud rate divisor
= OxC4; // SP1 Interrupt enable, system enable and slave mode selected
= 0x00; // Different pins for data input and data output

SPI12C1
SP12C2

}

NOTE

This is the SPI interrupt service routine. This routine is used when a byte is
sent by the master to the slave.

void interrupt VectorNumber_Vspi2 SPI_ISR(void) {
UINT8 temp, buffer;
while (PTDD_PTDDO);
temp = SPI2S; // Clear register flag
buffer = SP12D;// Read data register to clear receive flag
PTED = buffer;

}
For detailed information about the code, refer to the SP1_Slave project from the QRUG examples.

QE128 Quick Reference User Guide, Rev. 1.0

11-4 Freescale Semiconductor

http://www.freescale.com

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

B 3T
o avssa JLIY — g | aesst il o
eI ey oria [2L o e e orid [2L o
o—gH Hamn arid (o o4 Hazn Grid (o
- o2 avaan ¥ [5 - o2t awaan w5
= S0 e = L erid [
o zria [52 o
E4 1, g‘{ aan irid (8 o L ErTy] aon s o
lﬁ T ol fEEo E4 ESS o[o5
& &
LoE O] T¥asid o L O Z¥asiLHLd —0
o T35 5L [o 35l E o
D SHLd oo O—g SHld £ 0
[eECE T e o e T £ o
o3 £hld o Trle
[e
o2 iHid [
o2 oHla L N
5 E
bz]
&] [y
) OTHIVEHIENALEILE [o
F—o QISHHIENLASL
Fio SHOENALEDLS [2 o
] zHOEnaLEdLs [5
i £ e i T HOENALL DL R0
o3l [o tHdEnaLedld o
oz WAN W 0z W 0z W -4 W -4 W @ e W _— IV oz W oz W @z W <3 W oz W oz W oz W oz W [L.
o waseald [o o] FHlo
frea e s e e
30|20 |20 |ge0 |gh0 (g0 |g2 g (g oer] e o 90 |ge8 |gmm (gesw |gro |gEn |gz |go (g o i
az O3 03 ghm hn hs Zhn b] F— oz b3 31 Jhm1 s A Lam Lam i H—x
o2 Bio o2 Hio
o o o2 gizawio=ls (o
| !
& &
e o | szagvias ESOMZHITNEL LS |0 [— T]
o5 2zeaviEaLe SdQ¥RHOINELEYLd [0 o 2z2avisald Ho
[e o] :
[o e [ot o
o5 | eraavinls [o o
oL | siegvrals - o2 o
[-t H—o o] o
[4. F— [F—
zn n

Hardware Implementation

11.2.2

11-5

Figure 11-1. SPI Hardware Implementation.
QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 11-1, shows the hardware connections used for the SPI project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. It can be found at
www.freescale.com.

11.3 SPI project for Demo board

11.3.1 Code Example and Explanation

This example code for the Master and Slave project is available from the Freescale Web site
www.freescale.com.

This Section explains the differences of codes used in the EVB and Demo board. The codes are the same.

11.3.1.1 SPI Master Project

The project SPI_Master configures the SPI module in master mode. The main functions are:
* main — A byte is sent by the SPI.
« MCU_Init—MCU initialization, watchdog disable and bus clock to the SPI clock module enabled.
« GPIO_Init—Configure PTC-PTC5, PTE6 and PTE7 pins as outputs, configure PTD4 as output (SS
signal).
* SPI_Init — SPI module configuration.
* SPL_ISR — Clear module flags.

This is the General Purpose Input/Output configuration. These code lines configure the pin directions for
the PTD port. The SPI protocol can communicate various slaves with one master. To communicate with a
specific slave the SS signal must be low. The PTD3 pin is configured as output and the SS signal must
be changed by software using a GP10. These code lines configure the direction for the PTC port. Only six
LEDs from the demo board are connected to the PTC port. The other two LEDs are connected to the E
port. In this example the PTCO to PTC6, and PTE6, PTE7 are configured as outputs in order to drive LEDs.

void GPIO_Init(void) {

PTDDD = 0x04; // The SS signal must be generated by software using a GPIO
PTCDD = (UINT8) (PTCD | Ox3F); // Configure PTCO-PTC6 as outputs

PTEDD = (UINT8) (PTED | OxCO); // Configure PTE6 and PTE7 pins as outputs

PTCD = Ox3F; // Put 1%s in port C in order to turn off the LEDs
PTED = OxCO; // Put 1%s iIn port E port in order to turn off the LEDs

}

This is the main function, described are the above functions are called, and all the interrupts are enabled.
Within the enless loop a byte is sent by SPI and the next byte is sent after a delay. For detailed information
about SPI module, refer to the QE MCU reference manual. It can be found at www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

11-6 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com
http://www.freescale.com

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

void main(void) {
UINT8 counter = 0;

MCU_Init(Q); // Function that initializes the MCU
GP10_Init(); // Function that initializes the Ports of the MCU
SPI_Init(); // Function that initializes the SPI module
Enablelnterrupts; // enable interrupts
for(G:) {
delay(60000); // Delay function
while (ISPI2S_SPTEF && !'PTDD_PTDD3); // Wait until transmit buffer is empty
PTDD_PTDD3 = 0; // Slave Select set in low
SP12D = counter; // Put in SPI buffer a data to send
PTED = (UINT8) (counter & 0xCO); // Move the adquired ADC value to port E
PTCD = (UINT8) (counter & Ox3F); // Move the adquired ADC value to port C
counter++; // Increment counter

} // loop forever

// please make sure that you never leave this function

}

11.3.1.2 SPI Slave Project

The project SPI_Slave configures the SPI module in slave mode. The main functions are:
* main — Waits for the SPI interrupt to occur.
* MCU_Init — MCU initialization, watchdog disable and the SPI clock module enabled.
* GPIO_Init - Configure PTE port as output.
e SPI_Init — SPI module configuration.
» SPI_ISR — Display the received data in eight LEDs

The firmware for this project is much similar to SP1_master project. The differences are that the device is
configured as slave and only Receives a byte and displays it on the PTE port.

This is the initialization code for Serial Peripheral Interface module used for the QE MCU. This
application configures the SPI module to work in slave mode.

void SPI_Init (void) {

SPI2BR = 0x75; // Select the highest baud rate prescaler divisor and the
// highest baud rate divisor
SPI2C1 = 0xC4; // SP1 Interrupt enable, system enable and slave mode selected
SP12C2 = 0x00; // Different pins for data input and data output
}
NOTE

This is the SPI interrupt service routine. This routine is used when a byte is
sent by the master to the slave.

void interrupt VectorNumber_Vspi2 SPI_ISR(void) {
UINT8 temp, buffer;
while (PTDD_PTDDO);
temp = SPI2S; // Clear register flag
buffer = ~SP12D; // Read data register to clear receive flag
// on the LEDs (The LEDs turn on with 0°s)
PTED = (UINT8) (temp & 0xCO); // Move the adquired ADC value to port E
PTCD = (UINT8) (temp & Ox3F); // Move the adquired ADC value to port C

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 11-7

) 4

}
For detailed information about the code, refer to the SP1_Slave project from the QRUG examples.

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

QE128 Quick Reference User Guide, Rev. 1.0

11-8 Freescale Semiconductor

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

Hardware Implementation

11.3.2

2130 52130
05| ZHO5IHLE e BT
o FE avssn Een i avssn
TR EEn [ETE 1z
HaEn AT [
avaan avaan -2 o
o] 5914 o 914
O—2 2914 o fald FLTE ot
Al ne 2o O gg] p2ud Q= 3 2
B = / B M T
& &
O] LLdO¥ILAL Lazanials | Me B
o9 gidavieild sazianeale FE ek
o2 Slagvieals SegEnsaLs [o o2
o2 piadvials PeTIBhaL [oo
o2t shedvials TESATIBN Tl o
b Ziagvzals o
Tulw«ﬂ bres e Tulwl 0150wl
b 8 F
031
¥IDINELILELE o Il ¥1EHALILELE o
5 T M o g
oS3 St Lo o o2 g3l Erat]
o Ht o o2 vald o
% | [eL fuiad P e [£L
o T = o—£E] issrial T
o= Fo L A o2 oEinzaL FEo
o Lald [-a o Lo e B0 le oo
S e P e e s b 14052S0MTNAL DELE Al IEHICELS Ha
T T
o] ZNOYRALIOL B4OVTHOTNALLY | | "0 o] ZAN0¥RARLIL o L8
L] +zanovzoaals sagvzHoincLsid (i T 9 L] szanovzo oL H—o T ®
EZ | 0ZanwsHOmNELG0LE L3S0 GwLd [2 GzaniowsHOmELE0LE +
2| olsyomiaLols i H—o s 1555 Glsy oAl H—o e
2 EAoieLE0Ld E— TH2EN=LE01 E—
G nerstia et
T zdinaleald .) E— THOALTOL e 0N E—
L 1OV H— [H3E=L 01 LD/ 07 THD (M
BT oMdenaLe3ld LANDTIOAIOH F—o B ondenaLicols +1HOVI0ATYOHIL F—a
[E3 I T 4 I | I
ciaz ham oz han (han | ean sz oz | v | eam | zan Tam
zn in
a5l sl mEd w5 g asd msd med mEL WS4 WS
PO BE S TE O LS 0 S s pES o @S b
T T
4 &
W

&
o

Figure 11-2. SPI Hardware Implementation.

QE128 Quick Reference User Guide, Rev. 1.0

11-9

Freescale Semiconductor

Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers

NOTE
This example is developed using the CodeWarrior IDE version 6.0 for the
HCSO08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (64-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 11-2, shows the hardware connections used for the SPI project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. It can be found at
www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

11-10 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Chapter 12
Generating PWM Signals Using Timer/Pulse-Width

Modulator (TPM) Module for the QE Microcontrollers

12.1 Overview

This is a quick reference for enabling the pulse width modulator (PWM) functionality of the

timer/pulse-width modulator (TPM) module for the QE family microcontrollers (MCUs). Basic

information about the functional description and configuration options are provided. The following

example may be modified to suit an application. The PWM project is made for the MC9S08QE128 and

MCF51QE128 MCUs.
TPM Quick Reference

Because there is more than one TPM modules on QE MCU, there are three full sets of registers. In
the register names below, where there’s a small x, there would be a 1, 2 or 3 in your software to
distinguish the registers that are on TPM1 from those on TPM2 or from TPM3. A small nin a

register name below is a place-holder for the channel number

TPMxSC [TOF | TOIE | CPWMS | CLKSB | CLKSA | PS2 | PSI | PSO
Module configuration::
TOF — Timer Overflow Flag CLKS[B:A] — Clock Source Select
TOIE — Timer Overflow Interrupt Enable PS[2:0] — Prescale Divisor Select
CPWMS - Center-Aligned PWM Select
TPMXCNTH [Bit15 | 14 [13 [12 [11 [10 [9 [Bits |
TPMXCNTL [Bit7 | 6 | 5 | 4 | 3 | 2 | 1 [Bit0 |
Any write to TPMxCNTH or TPMxCNTL clears the 16-bit counter
TPMXMODH [Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bitg |
TPMxMODL [Bit7 | 6 [5 [4 [3 [2 [1 [Bit0 |
Modulo value for TPWM module
TPMXCnSC [CHnE | CHnlE | MSnB_ | MSnA | ELSnB | ELSnA | [|
CHnF — Channel n Flag MSnA — Mode Select A for TPM Channel n
CHnIE — Channel n Interrupt Enable ELSn[[B:A] — Edge/Level Select Bits
MSnB — Mode Select B for TPM Channel n
TPMXCnVvH [Bit15 | 14 [13 [12 [11 [10 [9 [Bits |
TPMxCnVL [Bit7 | 6 | 5 | 4 | 3 | 2 | 1 [Bit0]

Captured TPM counter of input capture function OR output copare value for output compare of PWM function

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor

12-1

Generating PWM Signals Using Timer/Pulse-Width Modulator (TPM) Module for the QE Microcontrollers

12.2 PWM project for EVB

12.2.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.

The project file contains the following functions:

* main — Endless loop waiting for the TPM interrupt to occur.

* MCU_Init— MCU initialization, watchdog disable and the TPM1 clock module enabled.

* GPIO_Init — Configure PTEOQ pin as output.

e TPM_Init— TPM module configuration.

 TPM_ISR — The PWM duty cycle is incremented and the PWM signal is shown in the PTEO pin.
This example describes the initialization code for the TPM module using the PWM feature. The TPM

module uses channel 1 to generate a PWM signal. When Channel 1 interrupt is detected, the PWM
duty-cycle is incremented. When the counter reaches a value of 0x00FO0, the counter value is reset to 1.

This part of the code is the MCU initialization. These instructions disable the watchdog, enable the Reset
option and backgroud pin. The system option register 1 (SOPT1) is used to configure the MCU. The
SCGC1 and SCGC2 are registers used for power saving consumption, here the bus clock to peripherals
can be enabled or disabled. In this example only the bus clock to the TPM module is active. The other
peripheral clocks are disabled.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin enable.
// RESET pin enable

SCGC1 = 0x20; // Bus Clock to the TPM1 module is enabled

SCGC2 = 0x00; // Disable Bus clock to unused peripherals

}

This is the General Purpose Input/Output configuration. These code lines configure the pin directions for
the PTE port. In this example one LED is connected to the PTE port; therefore the PTEO pin is configured
as output.

void GPIO_Init(void) {

PTEDD = 0x01; // Configure PTEO pin as output
PTED = 0x00; // Put 0"s in PTE port

}

These line codes initialize the TPM module for the QE MCU. This application enables the TPM Channel
1 interrupt and configures the TPM module to work in the PWM mode. The MCU bus clock works at 4
MHz. This is the MCU default speed. This clock is divided by 128 and used in the TPM module.

void TPM_Init (void) {

TPMIMOD = OxOOFE; // Store OxXOOFE value

TPM1C1SC = 0x68; // Channel 1 interrupt enable. PWM edge aligned

TPM1C1VH = 0x00; // TPM1C1lV is a 16 bit register, for this example is only
// needed to store 0x0001

TPM1C1VL = 0x01; // in this register at the beggining because the next value
// will be iIncreased by 1 in the ISR

TPM1SC = OxOF; // TPM Clock Source is the bus rate clock. This bus is

// divided by 128

QE128 Quick Reference User Guide, Rev. 1.0

12-2 Freescale Semiconductor

http://www.freescale.com

Generating PWM Signals Using Timer/Pulse-Width Modulator (TPM) Module for the QE Microcontrollers

This is the main function, above are the described called finctions, and all the interrupts are enabled. The
TPM interrupt can than be detected. Within the endless loop the PWM output value is displayed in the
PTEO.

void main(void) {

MCU_Init(Q); // Function that initializes the MCU

GP10_Init(Q); // Function that initializes the Ports of the MCU
TPM_Init(Q); // Function that initializes the TPM module
Enablelnterrupts; // enable interrupts

for(;:) {

PTED_PTEDO = PTBD_PTBD5; // PTB5 is the PWM output, so this output is

// display in the PTEO (This is made only for didactic purposes)
} // loop forever

// please make sure that you never leave this function

NOTE

This is the TPM service routine. Every time a TPM interrupt is detected, the
PWM duty cycle is incremented by 1. When the value of the register reaches
0x00FO the compare value is reset to one.

void interrupt VectorNumber_Vtpmlchl TPM_ISR(void) {
// TPM interrupt vector number = 5 (S08)

// TPM interrupt vector number = 67 (V1)
TPM1C1SC_CH1F; // Clear TPM flags
TPM1C1SC_CH1F = O; // Two-step flag acknowledgement

if (TPM1C1V <= OxO00FO0){ // 1f the maximum value of the duty cycle is not reached
TPM1C1V++; // Increment de duty cycle by 1
PTED_PTEDO = PTBD_PTBD5; // PTB5 is the PWM output, so this output is display in the LED1
}
else {
TPM1C1V = 0x0001; // Reset the value of duty cycle to 1
}

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 12-3

PR 4

Generating PWM Signals Using Timer/Pulse-Width Modulator (TPM) Module for the QE Microcontrollers

12.2.2 Hardware Implementation
U
C— FTAOKEI1POTPMICHO/ADPOIACMP 1+ PTG0 |30
— 3.9y O35 FTAVKBITP1TPMZCH/ADP1/ACMPI- FTG1 50
sk % O] FTAZMEITFZEDATADES FTGZADFIE gz
=Tl O——— PTAZKBI1PL/SCLI/ADP2 FTGIADP1S "TD
— I C‘—I—/\/\/‘—I U—E, PTA4ACMP10/BEGIVMS PTGHADP2ZD "?D
| 7| PTASIRQTPMICLK/RESET PTGSADP21 :&__F.D
e O—| PTASTPMICHZ/IADPS FTGH/ADPZZ 50
O—— PTAT/TPM2CHZADFS FTGT/ADPZE 0O
4
o g FTBWKEBI1P4/FxD1/ADP4 FTFWADF1D 1; 0
O 1| FTEVKBI1P&TxD1/ADPS FTFI/ADP1T 53 0
o 7| FTBZ/HBI1PSSPSCKI/ADFS FTFZADPIZ g 0
O 7| FTEAKBI1PT/MOSI1/ADFT FTFADPIZ O
o 4| FTE4TPMECHT/MIS01 FTF4/ADF14 IE- 0
O—+— PTB&TPMICH1/551 FTFWADPIS 47 0
o E, PTBE/SDAIKTAL PTFE&/ADPIE g 0
= PTBT/SCLA/EXTAL PTFT/ADPIT O
220
017 | erenTRMaC o cicy |22
g | FTCOTPM3CHD FTENTPMZCLK/SPSCKT oy
O—5| PTC1/TPMACH] PTE1/MOSIT [0
O—s5| FTCZTFMICHZ FTEZMISOT 550
O—5;| PTCHTPMACH2 PTEXSS1 [57O
O—55- PTC4TPMICH4/RETOD FTE4 570
O—57 PTCSTPMACHEACMP20 PTEE [5—C
O—54 | FTCE/RxD2/ACMPZ+ PTEE [qg O
O—= PTCT/TxD2/ACMP2- FTET/TPMICLE ——O
25 57
O—52 PTDOVKEIZFD/SPSCHZ FTHD [gg—O
O—57| FTDA/KBIZP1/MOS12 PTH1 g5
O—55 PTD2/KBIZPZMISOZ FTHZ 552
O—5= PTDA/KBIZPY/552 PTH3 50
O—55 | FTD4/KEIZP4 PTH4 g0
O—37| FTDS/KEIZPS PTHS gz
O—55| PTDG/KBIZPE PTHE/SCLZ g0
D—=- PTD7/KBIZFT PTHT/SDAZ [0 33y
T
.
058 FTu0 vss [H5— 1 o
D7 | P VoD —— uF 0.1uF
C—z{ FTd2 ’
o—g5 P13 o A
O—g | FT4 VDDAD 75O -
O— PTIS VREFH =0
O— FTJE VREFL (g
O—= PTJT V8sAD [— O
QEiZ8
Figure 12-1. PWM Hardware Implementation.
NOTE
This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.
QE128 Quick Reference User Guide, Rev. 1.0
12-4 Freescale Semiconductor

Generating PWM Signals Using Timer/Pulse-Width Modulator (TPM) Module for the QE Microcontrollers

Figure 12-1, shows the hardware connections used for the PWM project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. It can be found at
www.freescale.com.

12.3 PWM project for Demo board

12.3.1 Code Example and Explanation
This section explains the differences of codes used in the EVB and Demo board. The codes are the same.

This is the General Purpose Input/Output configuration. These code lines configure the direction for the
PTC port. Only six LEDs from the demo board are connected to the PTC port. The other two LEDs are
connected to the E port. In this example the PTCO is configured as output in order to drive a LED.

void GPIO_Init(void) {

PTCDD = 0x01; // Configure PTCO as output
PTCD = 0x01; // Put 1 in PTCO in order to turn off the LED

}

This is the main function, above are the described called functions, and all the interrupts are enabled. The
TPM interrupt can then be detected. Within the endless loop the PWM output value is displayed which is
in the PTEO.

void main(void) {

MCU_InitQ); // Function that initializes the MCU

GPIO_Init(Q); // Function that initializes the Ports of the MCU
TPM_Init(Q); // Function that initializes the TPM module
Enablelnterrupts; // enable interrupts

for(Gs) {

PTEC_PTCDO = PTBD_PTBD5; // PTB5 is the PWM output, so this output is

// display in the LED1 (This is made only for didactic purposes)
} // loop forever

// please make sure that you never leave this function

NOTE

This is the TPM service routine. Every time a TPM interrupt is detected, the
PWM duty cycle is incremented by 1. When the value of the register reaches
0x00FQ the compare value is reset to one.

void interrupt VectorNumber_Vtpmlchl TPM_ISR(void) {

// TPM interrupt vector number = 5 (S08)
// TPM interrupt vector number = 67 (V1)
TPM1C1SC_CH1F; // Clear TPM flags
TPM1C1SC_CH1F = 0; // Two-step flag acknowledgement
if (TPM1C1V <= OxO00F0){ // If the maximum value of the duty cycle is not reached
TPM1C1V++; // Increment de duty cycle by 1

PTCD_PTCDO = PTBD_PTBD5; // PTB5 is the PWM output, so this output is display in the LED1
¥

else {
TPM1C1lV = 0x0001; // Reset the value of duty cycle to 1

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 12-5

http://www.freescale.com
http://www.freescale.com

b -

Generating PWM Signals Using Timer/Pulse-Width Modulator (TPM) Module for the QE Microcontrollers

}
}

12.3.2 Hardware Implementation

[=
Li
#E U
m
lT;‘

O——— FTANKEIPUTPMICHIADPNACMET+ FTCOTPMICHD [
O—5 FTATKBITPITPMZCHOADP1ACMPT- FTCITFMICH] 50
O3 FTAZKEI 1F2/SDATADF2 FTCZTFMICHE 25—
ERE IS C——— FTAZKEITFL/SCLIADRE FTCLTRIICH] (53—
—, O—={ FTA4/ACMF10/BKGI/ME FTC4TPMICH4RSTS 550
o = FTAZ/RQTPMICLIRESET FTCSTPMICHS/ACMPZO 550
e O—2| FTABTFIICHLADRE FTCE/RxDZACMPZs [-55—0
Qaur | O FTAT/TPM2CHZ/ADPE PTCTTxD2ACKRZ- [P0

L £

O— 3 FTEW/KBI 1P4/RxD1/ADF4 FTENTRMZCLIVSFECKS %ﬂ
C—=— PTE1/KBI1PET=D1/ADPS FTE1/MOSI1 H5—0
O— = FTEZ/KEI1FE/SPECKTADFS FTEZMISOT [0
O— 5 FTBXKBI1PT/MOSI 1/ADFT FTE3SST 70
D5 FTB4/TPMZCH1/MISO1 FTE4 5O
C—+— FTES/TFIICH/SE1 FTES [0
CF— = FTEE/SDAKTAL FTEE 20
O FTET/SCLI/EXTAL FrE7TRIACLK 20

e .
C—E2 FTOOKEIZFIISRSCKE FTFOIADFID %EI
O—55 FTD1/KBIZP1/MOSI2 FTF1/ADP11 [35—0
O—5:{ FTC2/KBIZF2MIS02 FTFZADPIZ [y
O—£2- FTD3KEIZFLEE2 FTEZADPTE (=0
O—55- FTD4/HEI2P4 FTF4/ADP14 52—
O—: FTDSKEIZFS FTFSIADPIS =0
O—-— FTC&KEIZFS FTFSIADFIE [z
1y C—==— FTDT/HEIZFT FTFT/ADPIT =0

ET 3
_H__I_- Vs Pran 2

C C2 [B
1:2:-.5 DAuF ={ von alksd] E-? =
gr_" &2 o
— EZ } G2
- O—25| VDDAD
O VREFH o
O—z=— VREFL FTHD [0
O—=5 yE5AD FTH1 [0
FTHE/SCLE [0
FTHT/SDAZ 0

Figure 12-2. PWM Hardware Implementation.

NOTE

This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (64-pin package). There may be changes needed in the
code to initialize another MCU.

Figure 12-2, shows the hardware connections used for the PWM project, for
detailed information about the MCU hardware needed, please refer to the
Pins and Connections chapter in the Reference Manual. It can be found at
www.freescale.com.

QE128 Quick Reference User Guide, Rev. 1.0

12-6 Freescale Semiconductor

http://www.freescale.com
http://www.freescale.com

Chapter 13

Using the Output Compare function with the
Timer/Pulse-Width Modulator (TPM) module for the QE
Microcontrollers

13.1 Overview

This is a quick reference for enabling the PWM functionality of the timer/pulse-width modulator (TPM)
module on the QE family microcontrollers (MCUs). Basic information about the functional description
and configuration options is provided. The following example may be modified to suit your application.
The TPM project was made for the MC9S08QE128 and MCF51QE128 microcontrollers.

TPM Quick Reference
Because there is more than one TPM modules on QE MCU, there are three full sets of registers. In
the register names below, where there’s a small x, there would be a 1, 2 or 3 in your software to
distinguish the registers that are on TPM1 from those on TPM2 or from TPM3. A small niin a
register name below is a place-holder for the channel number.

TPMxSC [TOF | TOIE | CPWMS | CLKSB | CLKSA | PS2 [Pst | PSO |
Module configuration:
TOF — Timer Overflow Flag CLKS[B:A] — Clock Source Select
TOIE — Timer Overflow Interrupt Enable PS[2:0] — Prescale Divisor Select
CPWMS — Center-Aligned PWM Select
TPMXCNTH [Bit15 | 14 [13 [12 [11 [10 [9 [Bita |
TPMxCNTL [Bit7] 6 [5 [4 [3 [2 [1 [Bit0 |
Any write to TPMxCNTH or TPMxCNTL clears the 16-bit counter
TPMXMODH [Bit15 | 14 [13 [12 [11 [10 [9 [Bits |
TPMxMODL [Bit7 | 6 | 5 | 4 | 3 | 2 | 1 [Bit0 |
Modulo value for TPM module
TPMxCnSC [CHnF | CHnlE | MSnB [MSnA [ELSnB | ELSnA | | |
CHnF — Channel n Flag MSnA — Mode Select A for TPM Channel n
CHnIE — Channel n Interrupt Enable ELSn[[B:A] — Edge/Level Select Bits
MSnB — Mode Select B for TPM Channel n
TPMxCnVH | Bit15 | 14 | 13 | 12 | 11 | 10 | 9 | Bits8 |
TPMxCnVvL [Bit7 | 6 [5 [4 [3 [2 [1 [Bit0 |

Captured TPM counter of input capture function OR output copare value for output compare of PWM function

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 13-1

Using the Output Compare function with the Timer/Pulse-Width Modulator (TPM) module for the QE Microcontrollers

13.2 TPM Project for EVB

13.2.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com

The project file contains the following functions:
* main — Endless loop waiting for the TPM interrupt to occur.
* MCU_Init— MCU initialization, watchdog disable and bus clock to the TPM1 module enabled.
* GPIO_Init — Configure PTEOQ pin as output.
e TPM_Init— TPM module configuration.
* TPM_ISR — The ISR instructions will toggle PTEOQ pin.
This example describes the initialization code for the Timer-Pulse Width Modulator module using the

toggle on output compare feature. The firmware configures TPM module channel 3 to toggle a LED when
the counter counts up to OxFFFF. The toggle instruction is executed within the ISR.

This part of code is the MCU initialization, this instructions disable the watchdog and enable the Reset
option and backgroud pin. The SOPT1 register is the System Option Register 1, and is used to configure
the MCU. SCGCL1 and SCGC2 are registers used for power consumption save, where the bus clock to
peripherals can be enable or disable. In this example only the bus clock to the TPM module is active, the
others peripheral clocks are disable.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin enable.
// RESET pin enable

SCGC1 = 0x80; // Bus Clock to the TPM3 module is enabled

SCGC2 = 0x00; // Disable Bus clock to unused peripherals

}

This is the General Purpose Input/Output configuration, this code lines configure the pin directions for
PTE port. In this example only one LED is connected to port PTE, for that reason PTEOQ pin is configured
as output.

void GPIO_Init(void) {

PTEDD = 0x01; // Configure PTEO pin as output
PTED = 0x00; // Put 0"s in PTE port

}

This lines code initializes the Timer-Pulse Width Modulator module for the QE MCU. This application
enables TPM Channel 3 interrupt and configures the TPM module to work as toggle output on compare
mode. The MCU bus clock will work at 4MHz approximately (default operation), this clock is divided by
128 and used in the Timer-Pulse Width Modulator module.

void TPM_Init (void) {

TPM3MOD = OXFFFF; // The counter counts up to OxFFFF

TPM3C3V = 0x0000; // The channel interrupt will happen when counter matches

TPM3C3SC = 0x54; // Channel interrupt enabled and configured as toggle output on compare
TPM3SC = OxOF; // TPM clock source is: Bus rate clock divided by 128

}

QE128 Quick Reference User Guide, Rev. 1.0

13-2 Freescale Semiconductor

http://www.freescale.com

Using the Output Compare function with the Timer/Pulse-Width Modulator (TPM) module for the QE Microcontrollers

This is the main function, here are called the functions described above and all the interrupts are enable.
after this the TPM interrupt can be detected.

void main(void) {

MCU_Init(Q); // Function that initializes the MCU

GPI10_Init(Q; // Function that initializes the Ports of the MCU
TPM_INnitQ; // Function that initializes the TPM module
Enablelnterrupts; // enable interrupts

for(G:) {

} // loop forever

// please make sure that you never leave this function

}

NOTE

This is the Timer-Pulse Width Modulator service routine. Every time an
TPM interrupt is detected, the PTEO pin is toggle. The interrupt will be
generated when the counter counts up to OXFFFF, after whis an interrupt will
be generated and detected by the MCU.

void interrupt VectorNumber_Vtpm3ch3 TPM_ISR(void) {
// TPM interrupt vector number
// TPM interrupt vector number
TPM3C3SC_CH3F; // Clears timer flag
TPM3C3SC_CH3F = 0;
PTED_PTEDO = ~PTED_PTEDO; // Toggle PTEO

}

28 (S08)
90 (V1)

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 13-3

}{—

Using the Output Compare function with the Timer/Pulse-Width Modulator (TPM) module for the QE Microcontrollers

13.2.2 Hardware Implementation

Ut
O PTAWKBIPOTPMICHO/ADPOACMP1+ PTGD 23—0
SESET 33y O35 FTAUKEIF1TRIEZCHIADR LACHP1- FTGI 2O
10K -? D_4 FTAZKEIMP2/SDATIADPZ PTGZ/ADP1E 7O
= O——=— FTA%KEBITP3/SCLI/ADPI PTGADPIS g3
|_O I O—I—/\/\/\—I D_E\ PTA4ACMPIO/BKGDVMS PTG4/ADF2D :?D
|1 7| FTANIRTPMICLK/RESET 5 1
J_ e C——{ FTAZTFMICHZADFS
= O— FTAT/TFMZCHZ/ADFS
.- I a4
5| FTELKEI1P4/RxD1/ADF4 FTFVADPID [0
O 1| FTEI/KBIPATxD1/ADPS FTF1/ADF1 43 0
O—s FTFZADRIZ g0
o— FTFHADFIZ =0
0 FTF4/ADF14 0
O— 1 FTFS/ADP1S D
O E\ PTBS/SDAINTAL FTFE/ADF1G g 0 23y
= FTET/ISCLISEXTAL FTFT/ADPIT 0 -?
220 0
.,
o g PTCIVTPMICHD PTEWTPM2CLK/SPSCKI ﬁ
D5 FTCTTFMACH] FTEUMOSI 52 =
D5 FTCZTRMICHZ FTEZMISD! [0 —
O—5 | FTC3TRMICHE FTEYSS! [5—O
D—57 FTCATFHICHARETD FTE4 [0
D55 FTCETFMICHEACMFZ0 FTES 50
D53 FTCERxDACMFR: FTES [0 2.3V
O—=— FTCT/TxDZ ACMF2- PTET/TPM3CLK — O T
o D1
25 E . &7 i
C—£o—{ FTDO/KEIZP0/SPECKE FTHD o
D? FTDA/MKEIZP1/MOSIZ FTH1 ?ﬂ LED
C—5e{ FTD2MEIZFZMISTE FTHZ 50 =
D? FTD3/KBIZP3/552 FTHZ Tﬂ
C—3p | FTD4/KEIZF4 PTH4 =0
O—37| FTDE/KBI2PE PTHS gz
D57 FTDEKEIZFS FTHE/SCLE o301
D—==- FTDT/KEIZFT FTHT/SDAZ [0 e
5
O FT0 vss 174 ci j— 2
B o L — 10uF 0.1uF
5] 7
DEs|ETE Ny 75 =
O—g | FT44 VODAD g0
O— FT45 WREFH 54
O—{ FTJE VREFL g0
O——— FTJT VSEAD — O

QEi1ZE

Figure 13-1. TPM Hardware Implementation

NOTE
This example was developed using the CodeWarrior IDE version 6.0
ALPHA 2 for the HCS08 and V1 family, and was expressly made for the
MCF51QE128 and MC9S08QE128 (80-pin package). There may be
changes needed in the code to initialize another MCU.

The Figure 13-1, shows the hardware connections used for the TPM project,
for detailed information about the MCU needed hardware please refer to
Pins and Connections chapter on your Reference Manual.

QE128 Quick Reference User Guide, Rev. 1.0

13-4 Freescale Semiconductor

Using the Output Compare function with the Timer/Pulse-Width Modulator (TPM) module for the QE Microcontrollers

13.3 TPM project for Demo board

13.3.1 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com.

The next lines only explains the differences of code using an EVB and the Demo board. The rest of the
code are the same.
The project file contains the following functions:
e main — Endless loop waiting for the TPM interrupt to occur.
* MCU_Init— MCU initialization, watchdog disable and bus clock to the TPM1 module enabled.
* GPIO_Init — Configure PTCO pin as output.
* TPM_Init— TPM module configuration.
* TPM_ISR — The ISR instructions will toggle PTCO pin.
This is the General Purpose Input/Output configuration, this code lines configure the direction for PTC

port. Only six LEDs from demo board are connected to PTC port, the others two LEDs are connected to
port E. In this example PTCO to PTC6, PTE6 and PTE7 are configured as outputs in order to drive LEDs.

void GPIO_Init(void) {

PTCDD = (UINT8) (PTCD | Ox3F); // Configure PTCO-PTC6 as outputs
PTEDD = (UINT8) (PTED | OxCO); // Configure PTE6 and PTE7 pins as outputs
PTCD = Ox3F; // Put 1%s in port C in order to turn off the LEDs
PTED = OxCO; // Put 1%s in port E port in order to turn off the LEDs
}

NOTE

This is the Timer-Pulse Width Modulator service routine. Every time an
TPM interrupt is detected, the PTEO pin is toggle. The interrupt will be
generated when the counter counts up to OXFFFF, after whis an interrupt will
be generated and detected by the MCU.

void interrupt VectorNumber_Vtpm3ch3 TPM_ISR(void) {

// TPM interrupt vector number = 28 (S08)
// TPM interrupt vector number = 90 (V1)
TPM3C3SC_CH3F; // Clears timer flag
TPM3C3SC_CH3F = 0;
PTED_PTEDO = ~PTED_PTEDO; // Toggle PTEO
}

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 13-5

http://www.freescale.com

\
4

(

Using the Output Compare function with the Timer/Pulse-Width Modulator (TPM) module for the QE Microcontrollers

13.3.2

Hardware Implementation

'IH—L

RESET sw
—ll

L

ca |
PAPI
e

PTAWKEITPOTPMICHNADPOACMP1+
PTAVKBIPVTPMZCHIADP 1/ ACMP1-

PTAZ/HBITPZ/SDAT/ADPZ
PTAKEITPISCLI/ADF2
FTA4/ACMP1CVBKGDYMS
PTASIRQTPMICLK/RESET
FTASTFM1CHZ/ADPE
PTAT/TPMZCHZ/ADPS

PTCOTPMICHD
FTCAUTPMICH1
PTC2ZTPMICH2Z
FTCATPFMICHI
FTCATFMACH4/RSTO
FTCETPMICHSACMPZO
FTCE/RxDZ/ACMFZ+
PTCTTxD2 ACMP2-

IV B
o o
R Rz
510 > 510
LEDT_| LEDZ
b 4
%

O35 FTBIVKEI 1P4/RxD1/ADFS FTEQTFMZCLISFECK %ﬂ
C—=— FTB1/KEI1PETxD1/ADFS FTELMOSI [0
B—5 PTBZ/KBI 1PE/SPSCK1/ADFS FTEZMISOT [55—0
O— 5 PTEL/KBI1FT/MOSI 1/ADFT PTE3/SS] 57O
O3 PTE4/TPMECH1/MISO1 FTE4 50
C—2— FTESTFMICH1/551 PTES ==—0
O— = FTBE/SDATKTAL FTES [0
O—" PTBT/SCL1/EXTAL FTETMPMACLK [F2—0
- ’
O—52 PTDOVKBIZPI/SPSCK2 FTFOVADFID :z 0
O—55 PTDA/KBIZP1/MOSI2 FTF1/A0F11 550
O—5 PTD2/KBIZPZMISOZ PTFZIADFIZ [53—0
O—5- PTDA/KBIZPY/SE2 FTFHADP1I [0
O—27-| FTD4/KEIZF4 FTF4/ADF14 3= g
C—3:— FTDA/KEIZFS FTFE/ADFIE 4=
% FTDE/KEBIZFS FTFE/ADPIE :; 0
33V 0—="+ PTDT/KBIZFT FTFT/ADPIT o
T
] .
5T q
I e S PTG) 33—
10uF | X7 I e KL ggz =
=0
l— =3 FTEI =0
- O—5- VODAD
C—=:— VREFH .
O—2=— VREFL PTHO %ﬂ
O—=— v5saD FTH1 e
FTHE/SCLE [0
FTHT/SDAZ 0O
QE1ZE

Figure 13-2. TPM Hardware Implementation

NOTE

This example was developed using the CodeWarrior IDE version 6.0
ALPHA 2 for the HCS08 and V1 family, and was expressly made for the
MCF51QE128 and MC9S08QE128 (80-pin package). There may be
changes needed in the code to initialize another MCU.

QE128 Quick Reference User Guide, Rev. 1.0

The Figure 13-2, shows the hardware connections used for the TPM project,
for detailed information about the MCU needed hardware please refer to
Pins and Connections chapter on your Reference Manual.

13-6

Freescale Semiconductor

Chapter 14
Using the Rapid General Purpose I/0 (RGPIO) for the
MCF51QE128 Microcontrollers

141 Overview

This is a quick reference for enabling the Rapid GP10 (RGP10) module for a MCF51QE128
microcontroller (MCU). Basic information about the functional description and configuration options are
provided. This example may be modified to suit an application. This module is only available in 32-bit
cores (V1).

14.2 Code Example and Explanation
This example code is available from the Freescale Web site www.freescale.com

The project file contains the following functions:
* main — Endless loop. Turn on and off three LEDs.
* MCU_Init — MCU initialization, watchdog disable, RESET pin enabled.
* GPIO_lInit - Configure PTEO and PTEL1 pins as outputs.
* RGPIO_Init — RGPIO module configuration.
The following firmware describes the initialization code for the RGPIO module. This example shows the

difference using normal GP10 and Rapid GPIO. The differences are shown in the True Time Simulator
window and is explained further in this document.

This part of the code is the MCU initialization. These instructions disable the watchdog, enable the Reset
option and backgroud pin. The System Option Register 1 (SOPT1) is used to configure the MCU.

void MCU_Init(void) {

SOPT1 = 0x23; // Watchdog disable. Stop Mode Enable. Background Pin
// enable. RESET pin enable

}

This is the General Purpose Input/Output configuration. These code lines configure the pin directions for
the PTE port. In this example two LEDs are connected to the PTE port, therefore the PTEQ and PTEL pins
are configured as outputs.

void GPIO_Init(void) {

PTEDD = 0x03; // Configure PTEO and PTEl pins as outputs
PTED = 0x00; // Put 0"s in PTE port
}

This is the initialization code for RGPIO module used for the MCF51QE128 MCU. These code lines
configure the PTE7 to work as a RGPIO output.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 14-1

http://www.freescale.com

Using the Rapid General Purpose I/0 (RGPIO) for the MCF51QE128 Microcontrollers

void RGPIO_Init(void) {

RGPI10O_DIR
RGP10_ENB

}

This is the main function, above are the described called functions. The firmware has an infinite loop and
always toggles three different LEDs. These are three different ways of toggling these LEDs. The first one,
uses a normal GPIO and the instruction is executed in 20 CPU cycles (18 ASM instructions). The second
one, is executed in 6 CPU cycles (6 ASM instructions). The third one, uses the the RGP1O module and the
toggle instruction is executed in 2 CPU cycles (2 ASM instructions).

void main(void) {

0x0080; // Configure PTE7 pin as output
0x0080; // Configure PTE7 as RGPIO pin

MCU_Init(); // Function that initializes the MCU

GPIO_Init(); // Function that initializes the Ports of the MCU

RGPI10_Init(); // Function that initializes the RGPIO module

Enablelnterrupts; // enable interrupts

for(G;) {
PTED_PTED3 "= 1; // Toggles a PTE3. This C command line is executed in 18 CPU cycles
PTED ~= 0x01; // Toggles a PTEO. This instruction is executed in 5 CPU cycles
RGPIO_TOG = 0x0080; // Toggles PTE7. This instruction is executed in 2 CPU cycles

} // loop forever

// please make sure that you never leave this function

}

14.3 Simulation steps

This section describes the necessary steps to observe the differences of using a normal GPIO and RGPIO
module in a V1 microcontroller.

1. Once the firmware is downloaded to the MCU, a simulation window is opened like the figure
shown below.

QE128 Quick Reference User Guide, Rev. 1.0

14-2 Freescale Semiconductor

Using the Rapid General Purpose I/0 (RGPIO) for the MCF51QE128 Microcontrollers

File Wiew FRun Simulator Component Source Window Help

I T e e e L e e A e)

FEEE * * * * * * D7,-1A7)

A% Main Function *-50 ; Dx000005ES
FERE * *-di ; Ox000005F0
*-34 ; Ox00000800
5R,D0

#O0xXFSFF,DO
MCU_Inic{); Function that initializes the MCT */ oo, 5k

GPIO_Init(): Function that initializes the Portzs of the MCUO */ 0xFFFF3005 40
RGPIO_Init(): 4% Function that initializez the REGPI0 module %/

woid main(void) EIE

FrnahleTnterrimtsa: /% enahle interrunta &F
=4 (i

ColdFire |CPU Cypcles: B77 Auto

[H Procedure =1 | o ol | o Dz | 0 D3
— | 0 | 0 D | 0 D7

| |

| |

-~

gooo04 734 A2 o

] S00004 00914
| oo |

main |
_sStartup [)

Data: 1
RGFRIO.c Auto Symb Global

uua LEABLEIELELIERELEY
uua LEABLEIELELIERELEY
u AEABAEAELELERE LR
ua (RIBIEIELEARREERY
i {RIBIEIELRARRRLRY

Data: 2 |._ |E||z| Command

main ALt Symb Lacal Postload Command File execution: postload.cmd 2
File does not exizt: postload.cmd
Postload command file does not exist. =
wain 0x618 T =
STARTED]
(1| m) >
For Help, press F1 [2.000000 MHz 677 |ColdFire Simulator |Breakpaint Y

Figure 14-1. Step 1

2. Goto code line PTED_PTED3 = 1. Right click and select Set Breakpoint option. See next figure.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 14-3

) 4

Using the Rapid General Purpose I/0 (RGPIO) for the MCF51QE128 Microcontrollers

i True-Time Simulator, & Real-Time Debugger D:\Profiles\b04143\My Documents\QE1 2B training\QRUG\Examples\RGIPONCFY1_Instructio. .. : : :

File Wiew Run Simulator Component Source Window Help
C]@d] &[=|e] 2(8| ||z £|e+] 3

E Source [il Assembly
|D:4Profilesib041 434y DocumentshOE1 28 traininghQR UGAE xamplestR GIPONS ources\RGPIO ¢ |Line: 58

EnableInterrupts; /% enahle interrupts #/ *-50 H DxDDDUDSESE|
*-46 ; 0x000005F0

foriz;) {[E *-34 ; 0x00000600
3R, D0

PFTED_FTEDI *= 1: A7 Toggl . — . iz executed in 5 #OxFSFF, DO

PTED ~= 0Ox01; i Togglj iz executed in Do, SR

RGPIO_TOG = 0x0080; /% Toggle RunToCursor s exeouted in 2 OxFFFFE008, A0

Show Breakpoints...

[} /% loop forewer %/ Show Location

A% mleaap make aure that wn ne

1) m) Set Markpoinit [ColdFire [CPU Cycles: 677
Show Markpaints. .. - 5 o
[@ Procedure
Set Program Counter i —— u] D5
X Open Source File, .. LT R
main (] = go00004
_startup () Copy Chrl+C e [EETRY
Go To Line. ., ChrH-G
Data:1 Find... Chrl+F
[RGPIO.c Find Procedure... Qb 07 e 0™ | Gilobal [Auwo
Falding T
RELBABLRARIBLEIEY
Freeze RELBABLRARIBLEIEY
Marks UL
RELELELRAELELELEY
ToolTips P——
Data: 2 |3][X| == Command X
[main [fun | Spmb | Local Postload Command File execution: postload.cmd |
File does not exist: postload.cmd
Postload command file does not exist. 3
wain 0x618 T ==
STARTED ol
| m) |
For Help, press F1 [2.000000MHz 677 |ColdFire Simulator [Breakpoink v

Figure 14-2. Step 2

3. Goto code line PTED "= 0x01. Right click and select Set Breakpoint option.

4. Puta break point in code line RGPIO_TOG = 0x0080. The break points should be as the figure
shows it.

QE128 Quick Reference User Guide, Rev. 1.0

14-4 Freescale Semiconductor

Using the Rapid General Purpose I/0 (RGPIO) for the MCF51QE128 Microcontrollers

i True-Time Simulator & Real-Time Debugger D:\Profilesib04143\Wy Documents\QE1 2B trainingdQRUGAExamples\RGIPOACFY1_Instructio. .. : : :

File View Run Simulator Component Source ‘Window Help
D)@ &[m@] 28| o222 2

B Source [l Assembly

D:\Profileshb0414 34y DocumentshQE1 28 training QRUGAE xamples\RGIPOAS ources\RGPI0.c |Line: 58

|

EnableInterrupts; /% enable interrupts *7 *-50 ; 0x000005ES
48 : Ox000005F0
fori::) (@ w-34 : 0x00000600
3R,D0
-HPTED_PTEDS A= 1; /% Toggles a PTES. This instruction iz executed in #O0xFEFF, DO
= FTED ~= 0Ox01;: /% Togglez a PTED. This instruction is executed in oo, SR
-HRGPID_TDG- = 0Ox0080; J% Toggles PTET. This inzstruction iz executed in £ = OxFFFFG005 40

F} /* loop forewver */
A% nlease make anure rhart v hewetr leave thia funertinm *7F

£ ﬂ] 2= [ColdFire |CPU Cycles: 677
oo | 0 Dl

1]

| BO0004

nain (] 800004

_startup [[EETEE

Register

| Procedure Jii | |

Data:1
RGPRIO.c Auto Symb Global

uu uu 1 JELBLERRRIBERERY
uu uu 1 JELBLERRRIBERERY
uu uu 1 JELBLERRRIBERERY
uui uu RELRS JELELERR(RIRRFLRY
L uu 1 QELBLRLRLkiBYELRY

Data:2 |:|@||z| Command = (|OX]
ity At Syprb Laocal Postload Command File execution: postload.cmd]

File does not exist: postload.cmd

Postload command file does not exist. =1

nain 0x618 T =

GTARTED]|
) |

For Help, press Fi |2.000000 MHz 677 [ColdFire Simulator [Breakpoint v

Figure 14-3. Step 4

5. Click on the Start/Continue button, or just press F5 key on the keyboard.

6. Inthe the assembly window the blue squeare shows the instruction that has been executed. The first
red arrow is a breakpoint from the Source window and corresponds to the first red arrow from the
Assembly window. See next figure.

QE128 Quick Reference User Guide, Rev. 1.0

Freescale Semiconductor 14-5

http://www.freescale.com

) 4

Using the Rapid General Purpose I/0 (RGPIO) for the MCF51QE128 Microcontrollers

i True-Time Simulator & Real-Time Debugger D:\Profiles\b04143\My Documents\QE128 training\QRUGAExamples\RGIPONCFV1 _Instructio.... [= |[8](X]

File “iew Run Simulator

Component Assembly Window Help

O|@a| s[5=]2] 28] »a|=|e|e-] 2

E Source

D:\Profileshb0414 34y DocumentshQE 128 training QRUGAE xamples\RGIPOAS ources\RGRI0. ¢ [Line: 58

EnableInterrupts; /% enable interrupts *7

fori(;:) {E

R FTED PTEDZ 4= 1:
=} PTED = Ox01;

/% Toggles a PTE3. This instruction is exe
/% Togglez a PTED. This instruction is executed in
-HRGPID_TDG- = 0Ox0080; /% Toggles PTE7. This instruction is executed in 2

A} /* loop forever */

A% nlease make aure rhat v hewetr leawve thia fimntinm *7F

3| m)

[Procedure

main)
_startup ()

Data:1
RGPRIO.c Auto Symb Global

Data:2

miain Auto Sumb Local

D7,- (A7)]
*-50 : Ox00000SES =/
*_ag : 0x000005F0
#-34 : 0x00000600
SR,D0

#0xFEFF,D0 PR

Do, SR

#-9,D7
{40),D1

D1,D7

{40 ,D1

Dz

Dl,Dz2

#28,D1

Dl,D2Z

#31,D1

Dl,DzZ

#0x1,Dz2
#0x1,D2

Dl

Dz,D1

#3,D1

D1,D7

D7, (A0}
0xFFFFE008,D2
Dl

pz,Dl

#0x1,D1

D1, 0xFFFF&00&
#128,D1
D1,0x00C0000E
*-74

D7,- (A7)
DO,D7

Far Help, press Fi

|2.000000 MHz

[Breakpaint

Figure 14-4. Step 6

7. Press Ctrl+F11 on the keyboard or click on assembly step button, and observe the executed

assembly instruction from each C command line.

QE128 Quick Reference User Guide, Rev. 1.0

14-6

Freescale Semiconductor

b -

Using the Rapid General Purpose I/0 (RGPIO) for the MCF51QE128 Microcontrollers

14.4 Hardware Implementation

Ui

o— pran KB 1PIVTFMICHO/ADFVACHE 1+
RESET - 3.$V D_E'i L) P1ACHP1-
I T SN I = x| ?E‘.JE* 0
[P i s o
= ToonE OB FTATTPMCHBIADES Preyabres |20 e
’ b
D—ﬁ— F‘TE'--'KEI'P-t-'RxD':-'ADP-i FTFOVADF1D %ﬂ i
i P FTEzAger: 2o =0 LeD LeD
=t usipes fl o s e
O— FTFS/ADF1S [0
O— | AL FTFE/ADP1E [0
0—= PTET/SCLI/EXTAL PTFFADPIT [0 720 % 220 220
D—g— PTCVTFMICHD PTEOTPM CLK.SF'S"‘K ﬁ |
O—jg| PTC1/TPMICHI MMOSIT FEE
O3 FTCZTRPMICH2 PTEwls:) i
DT PI‘JJCI—:_ PTEZSS1 55
00— Pr’:.,l—-i-RSTD PTE4 I
022 | FTES 55—
o5 PTES (35—
PTET/TPM3ICLK
D% F'TD-D:-'KE-IZP:-:-'SPSCH FTHD %ﬂ
D? PTD1/KBIZP1/MOS12 PTH1 ?ﬂ
O—2g| PTDZ/KEIZFZIMISO2 FTHZ [
U? PTDZ/HBIZP3/552 PTHZ Tﬂ
O—55 PTO4/KEIZP4 FTH4 57—
O—37 PTDS/KEIZPS PTHE &30
DT F'TI:-E KBI2ZPS PTD—E.:SCLZ Tﬂ
O—=%1 FTOT/KEIZF FTHT/SDAZ [0 3y
T
.- e |72 _lﬁ
D_Dgﬁ E:, \':é'g = ;':-'I.F g.‘-'\L.F
o2 eris = L
B—5p | FTH4 VDDAD [=
DT PTI5 ‘.-_REFI— Tﬂ
O—m—| P8 VREFL [z
O—=— FTJ WESAD O
QE128
Figure 14-5. RGPIO Hardware Implementation.
NOTE
This example is developed using the CodeWarrior IDE version 6.0 for the
HCS08 and V1 families. It is expressly made for the MCF51QE128 and
MC9S08QE128 (80-pin package). There may be changes needed in the
code to initialize another MCU.
Figure 14-5, shows the hardware connections used for the RGPIO project,
for detailed information about the MCU hardware needed, please refer to
the Pins and Connections chapter in the Reference Manual. It can be found
at www.freescale.com.
QE128 Quick Reference User Guide, Rev. 1.0
Freescale Semiconductor 14-7

http://www.freescale.com
http://www.freescale.com

	QE128 Quick Reference User Guide
	Chapter 1 QE Peripheral Module Quick Reference User Guide
	Chapter 2 QE MCUs 8-bit and 32-bit Comparison
	2.1 Overview
	2.2 Cores Comparison
	2.2.1 V1 core
	2.2.1.1 Addressing Modes
	2.2.1.2 Exception Processing

	2.2.2 QE S08 core
	2.2.2.1 Addressing Modes
	2.2.2.2 Interrupt Sequence

	2.2.3 ColdFire V1 or 9S08QE
	2.2.3.1 Exception Comparison
	2.2.3.2 Code Example Comparison

	2.3 Features Comparison
	2.3.1 On-Chip Memory Comparison
	2.3.2 Power-Saving Modes and Power-Saving Features Comparison
	2.3.3 Package Comparison
	2.3.4 Clock Comparison
	2.3.5 System Comparison
	2.3.6 Input/Output Comparison
	2.3.7 Development Support Comparison
	2.3.8 Peripherals Comparison

	Chapter 3 How to Load the QRUG Examples?
	3.1 Overview
	3.2 Steps to programming the MCU using Multilink
	3.3 Steps to programming the MCU Using In-Circuit BDM

	Chapter 4 Using the Keyboard Interrupt (KBI) for the QE Microcontrollers
	4.1 Overview
	4.2 KBI project for EVB
	4.2.1 Code example and explanation
	4.2.2 Hardware Implementation

	4.3 KBI project for Demo board
	4.3.1 Code example and explanation
	4.3.2 Hardware Implementation

	Chapter 5 Using the Internal Clock Source (ICS) for the QE Microcontrollers
	5.1 Overview
	5.2 Code Example and Explanation
	5.3 Hardware Implementation

	Chapter 6 Using the Inter-Integrated Circuit (IIC) for the QE Microcontrollers
	6.1 Overview
	6.2 Code Example and Explanation
	6.2.1 IIC Master Project
	6.2.2 IIC Slave Project

	6.3 Hardware Implementation

	Chapter 7 Using the Analog Comparator (ACMP) for the QE Microcontrollers
	7.1 Overview
	7.2 ACMP project for EVB
	7.2.1 Code Example and Explanation
	7.2.2 Hardware Implementation

	7.3 ACMP project for Demo board
	7.3.1 Code Example and Explanation
	7.3.2 Hardware Inplementation

	Chapter 8 Using the Analog to Digital Converter (ADC) for the QE Microcontrollers
	8.1 Overview
	8.2 ADC project for EVB
	8.2.1 Code Example and Explanation
	8.2.2 Hardware Implementation

	8.3 ADC project for Demo board
	8.3.1 Code Example and Explanation
	8.3.2 Hardware Implementation

	Chapter 9 Using the Real Time Counter (RTC) for the QE Microcontrollers
	9.1 Overview
	9.2 RTC project for EVB
	9.2.1 Code Example and Explanation
	9.2.2 Hardware Implementation

	9.3 RTC project for Demo board
	9.3.1 Code Example and Explanation
	9.3.2 Hardware Implementation

	Chapter 10 Using the Serial Communications Interface (SCI) for the QE Microcontrollers
	10.1 Overview
	10.2 SCI project for EVB
	10.2.1 Code Example and Explanation
	10.2.2 Hardware Implementation

	10.3 SCI project for Demo board
	10.3.1 Code Example and Explanation
	10.3.2 Hardware Implementation

	Chapter 11 Using the Serial Peripheral Interface (SPI) for the QE Microcontrollers
	11.1 Overview
	11.2 SPI project for EVB
	11.2.1 Code Example and Explanation
	11.2.1.1 SPI Master Project
	11.2.1.2 SPI Slave Project

	11.2.2 Hardware Implementation

	11.3 SPI project for Demo board
	11.3.1 Code Example and Explanation
	11.3.1.1 SPI Master Project
	11.3.1.2 SPI Slave Project

	11.3.2 Hardware Implementation

	Chapter 12 Generating PWM Signals Using Timer/Pulse-Width Modulator (TPM) Module for the QE Microcontrollers
	12.1 Overview
	12.2 PWM project for EVB
	12.2.1 Code Example and Explanation
	12.2.2 Hardware Implementation

	12.3 PWM project for Demo board
	12.3.1 Code Example and Explanation
	12.3.2 Hardware Implementation

	Chapter 13 Using the Output Compare function with the Timer/Pulse-Width Modulator (TPM) module for the QE Microcontrollers
	13.1 Overview
	13.2 TPM Project for EVB
	13.2.1 Code Example and Explanation
	13.2.2 Hardware Implementation

	13.3 TPM project for Demo board
	13.3.1 Code Example and Explanation
	13.3.2 Hardware Implementation

	Chapter 14 Using the Rapid General Purpose I/O (RGPIO) for the MCF51QE128 Microcontrollers
	14.1 Overview
	14.2 Code Example and Explanation
	14.3 Simulation steps
	14.4 Hardware Implementation

