

MCM2114

4096-BIT STATIC RANDOM ACCESS MEMORY

The MCM2114 is a 4096-bit random access memory fabricated with high density, high reliability N-channel silicon-gate technology. For ease of use, the device operates from a single power supply, is directly compatible with TTL, and requires no clocks or refreshing because of fully static operation. Data access is particularly simple, since address setup times are not required. The output data has the same polarity as

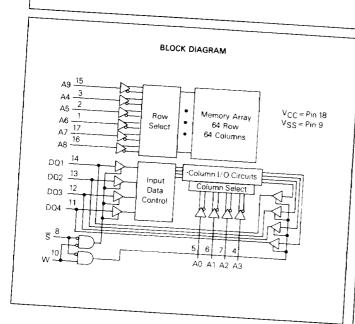
The MCM2114 is designed for memory applications where simple interfacing is the design objective. The MCM2114 is assembled in 18-pin dual-in-line packages with the industry standard pin-out. A separate chip select (S) lead allows easy selection of an individual package when

- Single +5 Volt Supply
- 1024 Words by 4-Bit Organization
- Fully Static: Cycle Time = Access Time
- No Clock or Timing Strobe Required
- Maximum Access Time

200 ns - MCM2114-20

250 ns - MCM2114-25

300 ns - MCM2114-30 450 ns - MCM2114-45


- Power Dissipation: 100 mA Maximum (Active)
- Common Data Input and Output
- Three-State Outputs for OR-Ties
- Industry Standard 18-Pin Configuration
- Fully TTL Compatible

Mos

(N-CHANNEL, SILICON-GATE)

4096-BIT STATIC RANDOM ACCESS MEMORY

A6 01 18 DVCC A5 0 17 **b** A7 16 TA8 A3 1 4 15 A9 A0 **5** 14 DQ1 A106 13 DQ2 A2 **d** 7 12 0003 **₹**\$ 11 DDQ4 Vss**d**9 10 b W

PIN ASSIGNMENT

	PIN NAMES
A0-A9 ₩	Address Input
Š	Write Enable
DQ1-DQ4	Chip Select
VCC	Data input Output
VSS	. Power ! + 5 VI
	Graund

MCM2114

ABSOLUTE MAXIMUM RATINGS (See Note)

Rating	Value	Unit
Temperature Under Bias	- 10 to +80	°C
Voltage on Any Pin With Respect to VSS	-0.5 to +7.0	٧
DC Output Current	5.0	mΑ
Power Dissipation	1.0	Watt
Operating Temperature Range	0 to +70	°C
Storage Temperature Range	- 65 to + 150	°C

NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to RECOMMENDED OPERATING CONDITIONS. Exposure to higher than recommended voltages for extended periods of time could affect device reliability.

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit.

DC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and temperature range unless otherwise noted.)

RECOMMENDED DC OPERATING CONDITIONS

Paramete	r	Symbol	Min	Тур	Max	Uni
		Vcc	4.75	5.0	5.25	I v
Supply Voltage		VSS	0	0	0	Ľ
Logic 1 Voltage, All Inputs		٧ _{IH}	2.0	-	6.0	V
Logic G Voltage, All Inputs		VIL	0.5	-	0.8	L^{v}

DC CHARACTERISTICS

	Southel	٨]		
Parameter	Symbol	Min	Тур	Max	Unit
Input Load Current (All Input Pins, V _{in} = 0 to 5.5 V)	1LI	-	_	10	μΑ
I/O Leakage Current (S = 2.4 V, VDQ = 0.4 V to VCC)	llLol	-	-	10	μА
Power Supply Current (V _{in} = 5.5 V, I _{DQ} = 0 mA, T _A = 25°C)	ICC1		80	95	mA
Power Supply Current (V _{in} = 5.5 V, IDQ = 0 mA, TA = 0°C)	ICC2		-	100	mΑ
Output Low Current (VOL = 0.4 V)	loL	2.1	6.0		mΑ
Output High Current (VOH = 2.4 VI	- 10н	-	- 1.4	1.0	mΑ

CAPACITANCE (f = 1.0 MHz, TA = 25°C, periodically sampled rather than 100% tested)

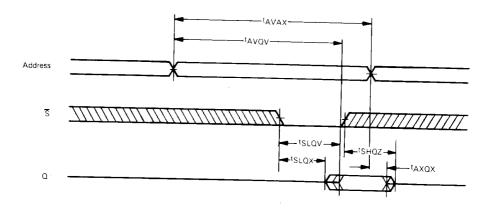
Characteristic	Symbol	Max	Unit
input Capacitance (V _{in} = 0 V)	Cin	5.0	pF
Input/Output Capacitance (VDQ=0 V)	CI/O	5.0	pF

Capacitance measured with a Boonton Meter or effective capacitance calculated from the equation: $C = I\Delta_t/\Delta V$.

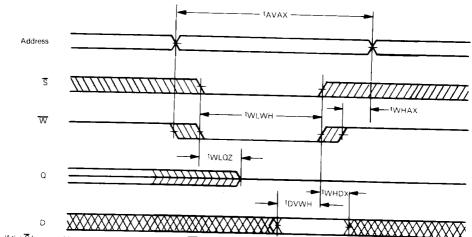
AC OPERATING CONDITIONS AND CHARACTERISTICS

(Full operating voltage and termpature range unless otherwise noted.)

Input Pulse Levels	0.8 Volt and 2.4 Volts	Input and Output Timing Levels
Japut Rice and Fall Times	10 ns	Output Load
input nise and i all risios		2


READ (NOTE 1), WRITE (NOTE 2) CYCLES

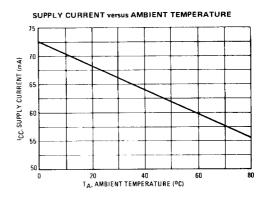
	Symbol	MCM2114-20		MCM2114-25		MCM2114-30		MCM2114-45		Unit
Parameter		Min	Max	Min	Max	Min	Max	Min	Max	1
Address Valid to Address Don't Care	tAVAX	200		250	-	300		450		ns
Address Valid to Output Valid	1AVQV	_	200	-	250	_	300		450	ns
Chip Select Low to Output Valid	tSLQV	_	70	_	85	1	100	_	120	ns
Chip Select Low to Output Don't Care	¹SLQX	20	Γ-	20		20	_	20		ns
Chip Select High to Output High Z	SHQZ	-	60	-	70		80	-	100	ns
Address Don't Care to Output Don't Care	†AXQX	50	_	50		50		50		ns
Write Low to Write High	tWLWH	120	_	135	_	150		200		ns
Write High to Address Don't Care	twhax	0	T -	0		0	_	0	_	ns
Write Low to Output High Z	tWLQZ	_	60	-	70		80		100	ns
Data Valid to Write High	tDVWH	120	-	135	-	150	_	200		ns
Write High to Data Don't Care	1WHDX	0	_	0	_	0	_	0		ns

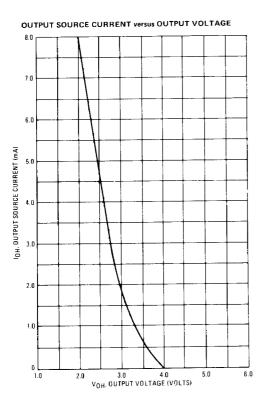

NOTES: 1. A Read occurs during the overlap of a low \overline{S} and a high \overline{W} .

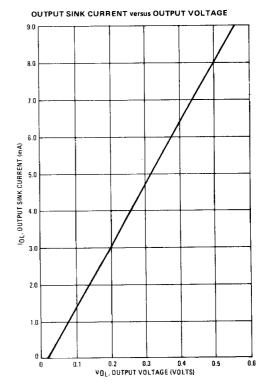
^{2.} A Write occurs during the overlap of a low \overline{S} and a low \overline{W} .

READ CYCLE TIMING (W HELD HIGH)

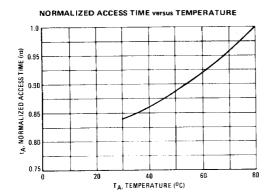
WRITE CYCLE TIMING (NOTE 3)

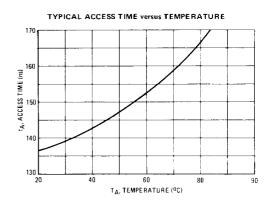


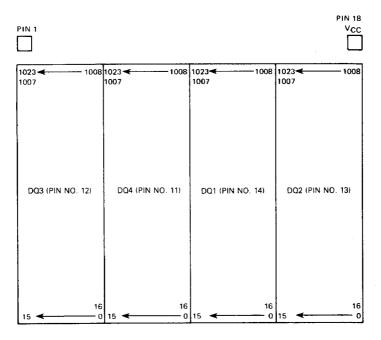

3. If the \overline{S} low transition occurs simultaneously with the \overline{W} low transition, the output buffers remain in a high-impedance state.


WAVEFORMS Waveform Input Output Symbol MUST BE WILE BE VALID CHANGE FROM H TO L WILL CHANGE FROM H TO L CHANGE FROM L TO H WILL CHANGE FROM L TO H DON T CAHE ANY CHANGE PERMITTED CHANGING UNKNOWN нісн IMPEDANCE

TYPICAL CHARACTERISTICS







MCM2114

MCM2114 BIT MAP

To determine the precise location on the die of a word in memory, reassign address numbers to the address pins as in the table below. The bit locations can then be determined directly from the bit map.

PIN NUMBER	REASSIGNED ADDRESS NUMBER	PIN NUMBER	REASSIGNED ADDRESS NUMBER
1	A6	6	A1
2	A5	7	A2
3	A4	15	Ā9
4	A3	16	A8
5	A0	17	Ā7