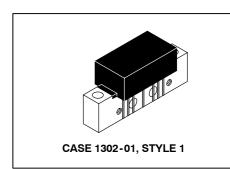
. reescale Semiconductor Technical Data

Document Number: MHW1304L

Rev. 3, 1/2001


Low Distortion Wideband Reverse Amplifier Module

Designed specifically for broadband applications requiring low distortion characteristics. Specified for use as return amplifiers for low-split 2-way cable TV systems. Features all gold metallization system.

- Guaranteed Broadband Power Gain
- Guaranteed Broadband Noise Figure
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- Circuit Design Optimized for Good RF Stability Under High VSWR Load
- Transformers Designed to Ensure Good Low Frequency Gain Stability versus Temperature

MHW1304L

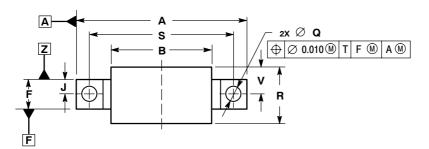
30 dB 50 MHz 24 Vdc **CATV LOW CURRENT AMPLIFIER**

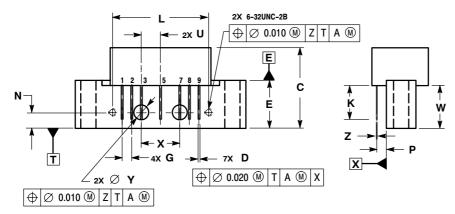
Table 1. Maximum Ratings*

Parameter	Symbol	Value	Unit
DC Supply Voltage	V _{CC}	+28	Vdc
RF Input Voltage (Single Tone)	V _{IN}	+70	dBmV
Operating Case Temperature Range	T _C	- 20 to +100	°C
Storage Temperature Range	T _{stg}	- 40 to +100	°C

Table 2. Electrical Characteristics (V_{CC} = 24 Vdc, T_C = 30°C, 75 ohm system, unless otherwise noted)

	Characteristic	Symbol	Min	Max	Unit
Bandwidth	All	BW	5.0	50	MHz
Power Gain	(f = 5.0 MHz)	Gp	29.2	30.8	dB
Slope	(f = 50-65 MHz)	S	-0.2	_	dB
Return Loss	(@ f = 5.0-50 MHz) (@ f = 65 MHz)	RL	18 16		dB
Second Order Distortion	(V _{out} = +50 dBmV/ch)	IMD	=	-70	dBc
Cross Modulation	(V _{out} = +50 dBmV/ch)	XMD ₄	_	-57	dBc
Triple Beat Distortion	$(V_{out} = +50 \text{ dBmV/ch})$	TB ₃	_	-66	dBc
Noise Figure	(f = 50 MHz)	NF	_	4.5	dB
DC Current		I _{DC}	100	135	mA


NOTES


ARCHIVE INFORMATION

ARCHIVE INFORMATION

PACKAGE DIMENSIONS

CASE 1302-01 ISSUE B

- NOTES:
 1. DIMENSIONS ARE IN INCHES.
 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α		1.775		45.085	
В		1.085		27.559	
С		0.840		21.336	
D	0.015	0.021	0.381	0.533	
Ε	0.465	0.510	11.811	12.954	
F	0.300	0.325	7.62	8.255	
G	0.100 BSC		2.540 BSC		
J	0.156 BSC		3.962 BSC		
K	0.315	0.355	8.001	9.017	
L	1.000 BSC		25.400 BSC		
N	0.165 BSC		4.191 BSC		
P	0.100 BSC		2.540 BSC		
Q	0.148	0.168	3.759	4.267	
R		0.600		15.24	
S	1.500 BSC		38.100 BSC		
U	0.200 BSC		5.080 BSC		
٧		0.250		6.350	
W	0.435		11.049		
Х	0.400	BSC	10.160 BSC		
Υ	0.152	0.163	3.861	4.140	
Z	0.009	0.011	0.229	0.279	

- STYLE 1:
 PIN 1. RF INPUT
 2. GROUND
 3. GROUND
 4. DELETED
 5. VDC
 6. DELETED
 7. GROUND
 8. GROUND
 9. RF OUTPUT

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd.
Technical Information Center
2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale [™] and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2001, 2006. All rights reserved.

Document Number: MHW1304L

Rev. 3, 1/2001