

Description

The MIC8114 is an inexpensive microprocessor reset circuit that monitor power supplies in microprocessor based systems.

The function of this device is to assert a reset if either the power supply drops below a designated reset threshold level or $\overline{\text{MR}}$ is forced low.

The MIC8114 has an active low RESET output. The reset output is guaranteed to remain asserted for a minimum of 790ms after VCC has risen above the designated reset threshold level. The MIC8114 comes in a 4-pin SOT-143 package.

Typical Applications

- Portable Equipment
- Intelligent Instruments
- Critical Microprocessor Power Monitoring
- Printers/Computers
- Controllers

MIC8114

Microprocessor Reset Circuit

Pin Configuration

Top View

Features

- RESET Remains Valid with VCC as Low as 1.4V
- Precision Voltage Monitor for 3.3V Power Supplies
- Available in 4-Pin SOT-143 Package
- <15µA Supply Current</p>
- 790ms Minimum Reset Pulse Width
- Manual Reset Input
- Specifically tailored to the reset requirements of the AMD Elan SC400/410

Typical Operating Circuit

Ordering Information

Part_	Package	Temp. Range
MIC8114TU	4-Lead SOT-143	-40°C to +85°C

Place the device suffix of desired reset threshold voltage from table above in blank to complete the part number.

Absolute Maximum Ratings

Terminal Voltage	
VCC	3V to 6.0V
MR0.3V to (V(CC + 0.3V
Input Current, VCC, MR	20mA
Output Current, RESET	20mA
Rate of Rise, VCC	. 100V/µs

Operating	Temperature	Range
oporating	romporataro	rungo

MIC8114TU	40°C to 85°C
Storage Temperature Range	65°C to 150°C
Lead Temperature (Soldering - 10 sec.)	
Power Dissipation (TA = +70°C)	320mW

Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability. Operating ranges define those limits between which the functionality of the device is guaranteed.

Electrical Characteristics

V_{CC} = 3.3V for MIC8114T, T_A = Operating Temperature Range, unless otherwise noted.

Parameter	Conditions	Min	Тур	Мах	Units
Operating Voltage Range, V _{CC}	$T_A = 0^{\circ}C \text{ to } 70^{\circ}C$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$	1.4 1.6		5.5 5.5	V
Supply Current, ICC			9	15	μA
Reset Voltage Threshold, VTH		3.00	3.08	3.15	V
Reset Timeout Period		790	1200	1800	ms
RESET Output Voltage, VOH	ISource = 500μA	0.8 X VCC			V
RESET Output Voltage, VOL	V _{CC} =VTH Min., I _{Sink} =1.2mA V _{CC} >1.4V, I _{Sink} =50μA, TA = 0°C to 70°C V _{CC} >1.6V, I _{Sink} =50μA, TA = -40°C to 85°C			0.3 0.3 0.3	V V V
MR Minimum Pulse Width		10			μs
MR to Reset Delay			0.5		μs
MR Input Threshold, VIH		0.7 X VCC			V
MR Input Threshold, VIL				0.25 X VCC	V
MR Pull-Up Resistance		10	20	30	kΩ
MR Glitch Immunity			100		ns

Pin Functions

Pin Name	Pin No.	Description
GND	1	IC Ground Pin.
RESET	2	$\overrightarrow{\text{RESET}} \text{ goes low if either V}_{CC} \text{ falls below the supply reset threshold or if } \overrightarrow{\text{MR}} \text{ is asserted.} \\ \overrightarrow{\text{RESET}} \text{ remains asserted for one reset timeout period (790ms min.) after both V}_{CC} \text{ exceeds the supply reset threshold and } \overrightarrow{\text{MR}} \text{ is deasserted.} \\ \end{aligned}$
MR	3	Manual reset input. A logic low on $\overline{\text{MR}}$ forces a reset. The reset will remain asserted as long as $\overline{\text{MR}}$ is held low and for one reset timeout period (790ms) min.) after $\overline{\text{MR}}$ goes high. This input can be shorted to ground via a switch or driven from CMOS or TTI logic. Pulled high internally through a 20k Ω resistor. Float if unused.
v _{cc}	4	Power supply input.

Block Diagram

Figure 1. MIC8114 Block Diagram

Circuit Description

Microprocessor Reset

The RESET pin is asserted whenever VCC falls below the reset threshold voltage or if $\overline{\text{MR}}$ (manual reset) is forced low. The reset pin remains asserted for a period of at least 790ms after VCC has risen above the reset threshold voltage or $\overline{\text{MR}}$ has returned high. The reset function ensures the microprocessor is properly reset and powers up into a known condition after a power failure. RESET will remain valid with VCC as low as 1.4V.

VCC Transients

The MIC8114 is relatively immune to negative-going V_{CC} glitches below the reset threshold. Typically, a negative-going transient 125mV below the reset threshold with a duration of $25\mu s$ or less will not cause an unwanted reset.

Figure 2. Reset Timing Diagram

Figure 3. RESET Valid to VCC = 0V.

RESET Valid to 0V

A resistor can be added from the $\overline{\text{RESET}}$ pin to ground to ensure the $\overline{\text{RESET}}$ output remains low with V_{CC} down to 0V. A 100K Ω resistor connected from $\overline{\text{RESET}}$ to ground is recommended. The size of the resistor should be large enough to not load the $\overline{\text{RESET}}$ output and small enough to pull-down any stray leakage currents.

Packaging Information

U Package, 4-Pin SOT-143 Small-Outline Transistor Package

Dimensions are in inches.

Device Marking Information

Lot Code NVXX = MIC8114

Packaging Information

Tape and Reel Information

Dimensions are in millimeters.