SUPPLEMENT

FEATURES

- □ Industry standard 16-pin DIP (MK 4096) configuration
- 250ns access time, 380ns cycle
- \Box ±10% tolerance on all supplies (+12V, ±5V)
- \Box ECL compatible on V_{BB} power supply (-5.7V)

Low Power: 462mW active (max) 27mW standby (max)

DESCRIPTION

The MK 4027 is a 4096 word by 1 bit MOS random access memory circuit fabricated with MOSTEK's N-channel silicon gate process. This process allows the MK 4027 to be a high performance state-of-theart memory circuit that is manufacturable in high volume. The MK 4027 employs a single transistor storage cell utilizing a dynamic storage technique and dynamic control circuitry to achieve optimum performance with low power dissipation.

A unique multiplexing and latching technique for the address inputs permits the MK 4027 to be packaged in a standard 16-pin DIP on 0.3 in. centers. This package size provides high system-bit densities and is compatible with widely available automated testing and insertion equipment.

- □ Improved performance with "gated CAS", "RAS only" refresh and page mode capability
- □ All inputs are low capacitance and TTL compatible
- □ Input latches for addresses, chip select and data in
- Three-state TTL compatible output
- Output data latched and valid into next cycle
- □ MKB version screened to MIL-STD-883

System oriented features include direct interfacing capability with TTL, only 6 very low capacitance address lines to drive, on-chip address and data registers which eliminates the need for interface registers, input logic levels selected to optimize noise immunity, and two chip select methods to allow the user to determine the appropriate speed/power characteristics of his memory system. The MK 4027 also incorporates several flexible operating modes. In addition to the usual read and write cycles, readmodify write, page-mode, and RAS-only refresh cycles are available with the MK 4027. Page-mode timing is very useful in systems requiring Direct Memory Access (DMA) operation.

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to VBB0.5V to +20V
Voltage on VDD, VCC relative to VSS1.0V to +15V
$V_{BB}-V_{SS}$ ($V_{DD}-V_{SS} > 0$)0V
Operating temperature, TA (Ambient) 0°C to + 70°C
Storage temperature (Ambient)(Ceramic)65°C to + 150°C
Storage temperature (Ambient)(Plastic)55°C to + 125°C
Short Circuit Output Current
Power dissipation 1 Watt

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED DC OPERATING CONDITIONS ⁴

	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
VDD	Supply Voltage	10.8	12.0	13.2	volts	2
Vcc	Supply Voltage	4.5V	5.0	5.5	volts	2,3
VSS	Supply Voltage	0	0	0	volts	2
VBB	Supply Voltage	-4.5	-5.0	-5.7	volts	2
VIHC	Logic 1 Voltage, RAS, CAS, WRITE	2.4		7.0	volts	2
VIH	Logic 1 Voltage, all inputs except RAS, CAS, WRITE	2.2		7.0	volts	2
VIL	Logic 0 Voltage, all inputs	-1.0		.8	volts	2

DC ELECTRICAL CHARACTERISTICS ⁴

 $(0^{\circ}C \le T_{A} \le 70^{\circ}C)^{1}$ (VDD = 12.0V ± 10%; VCC = 5.0V ± 10%; VSS = 0V; -5.7V ≤ V_{BB} ≤ -4.5V)

	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
DD1	Average VDD Power Supply Current			35	mA	5
DD2	Standby VDD Power Supply Current			2	mA	8
IDD3	Average VDD Power Supply Current during "RAS only" cycles			25	mA	
ICC	V _{CC} Power Supply Current				mA	6
IBB	Average VBB Power Supply Current			150	μΑ	
- Ч(L)	Input Leakage Current (any input)			10	μA	7
lO(L)	Output Leakage Current			10	μA	8,9
Vон	Output Logic 1 Voltage @ IOUT = -5mA	2.4			volts	
VOL	Output Logic 0 Voltage @ IOUT = 3.2mA			0.4	volts	

NOTES

- 1. T_A is specified for operation at frequencies to $t_{BC} \ge t_{BC}$ (min).
- 2. All voltages referenced to $\mathsf{V}_{\ensuremath{\mathsf{SS}}\xspace}$
- 3. Output voltage will swing from V_{SS} to V_{CC} when enabled, with no output load. For purposes of maintaining data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH} (min) specification is not guaranteed in this mode.
- Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.
- Current is proportional to cycle rate.IDD1 (max) is measured at the cycle rate specified by t_{RC} (min). See figure 1 for IDD1 limits at other cycle rates.
- I_{CC} depends on output loading. During readout of high level data V_{CC} is connected through a low impedance (135% typ) to Data Out, At all other times I_{CC} consists of leakage currents only.

- All device pins at 0 volts except V_{BB} which is at -5 volts and the pin under test which is at +10 volts.
- Output is disabled (high-impedance) and RAS and CAS are both at a logic 1. Transient stabilization is required prior to measurement of this parameter.
- 9. 0V ≤ V_{OUT} ≤+ 10V.
- 10. Effective capacitance is calculated from the equation:

$$C = \Delta Q$$
 with $\Delta V = 3$ volts.

- 11. A.C. measurements assume t_T = 5ns.
- 12. The specifications for tRC (min) and tRWC (min) are used only to indicate cycle time at which proper operation over the full temperature range ($0^{\circ} \leq TA \leq 70^{\circ}$ C) is assured.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS^(4, 11, 17)

 $(0^{\circ} C \le T_A \le 70^{\circ} C)^1 (V_{DD} = 12.0 V \pm 10\%, V_{CC} = 5.0 V \pm 10\%, V_{SS} = 0V, -5.7 V \le V_{BB} \le -4.5 V)$

			027-4		
	PARAMETER	MIN	MAX	UNITS	NOTES
RC	Random read or write cycle time	380		ns	12
RWC	Read write cycle time	395		ns	12
RMW	Read modify write cycle time	470		ns	12
^t PC	Page mode cycle time	285		ns	12
^t RAC	Access time from row address strobe		250	ns	13,15
¹ CAC	Access time from column address strobe		165	ns	14,15
OFF	Output buffer turn-off delay	0	60	ns	
^t RP	Row address strobe precharge time	120		ns	
RAS	Row address strobe pulse width	250	10,000	ns	
RSH	Row address strobe hold time	165		ns	
CAS	Column address strobe pulse width	165		ns	
^t CSH	Column address strobe hold time	250		ns	
RCD	Row to column strobe delay	35	85	ns	16
ASR	Row address set-up time	0		ns	
RAH	Row address hold time	35		ns	
ASC	Column address set-up time	-10		ns	
САН	Column address hold time	75		ns	
AR	Column address hold time referenced to RAS	160		ns	
csc	Chip select set-up time	-10		ns	
СН	Chip select hold time	75		ns	
CHR	Chip select hold time referenced to RAS	160		ns	
Т	Transition time (rise and fall)	3	50	ns	17
RCS	Read command set-up time	0		ns	
RCH	Read command hold time	0		ns	
WCH	Write command hold time	75		ns	
WCR	Write command hold time referenced to RAS	160		ns	
WP	Write command pulse width	75		ns	
RWL	Write command to row strobe lead time	85		ns	
CWL	Write command to column strobe lead time	85		ns	
DS	Data in set-up time	0		ns	18
DH	Data in hold time	75		ns	18
DHR	Data in hold time referenced to RAS	160	1	ns	
CRP	Column to row strobe precharge time	0		ns	
CP	Column precharge time	110		ns	
RFSH	Refresh period		2	ms	
WCS	Write command set-up time	0		ns	19
CWD	CAS to WRITE delay	90	1	ns	19
RWD	RAS to WRITE delay	175		ns	19
DOH	Date out hold time	10		μs	

Notes Continued

13. Assumes that $t_{RCD} \leq t_{RCD}$ (ma.).

14. Assumes that $t_{RCD} \ge t_{RCD}$ (max).

- 15. Measured with a load circuit equivalent to 2 TTL loads and 100pF
- 16. Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively by t_{CAC} .
- V_{IHC} (min) or V_{IH} (min) and V_{IL} (max) are reference levels for measuring timing of input signals. Also, transition times are measured between V_{IHC} or V_{IH} and V_{IL}.

 These parameters are referenced to CAS leading edge in random write cycles and to WRITE leading edge in delayed write or readmodify-write cycles.

19. tWCS, tCWD, and tRWD are restrictive operating parameters in a read/write or read/modify/write cycle only. If tWCS ≥ tWCS (min), the cycle is an early write cycle and Data Out will contain the data written into the selected cell. If tCWD ≥ tCWD (min) and tRWD ≥ tRWD (min), the cycle is a read-write cycle and Data Out will contain data read from the selected cell. If netther of the above sets of conditions is satisfied, the condition of Data Out (at access time) is indeterminate.

AC ELECTRICAL CHARACTERISTICS

$(0^{\circ}C \leq T_A \leq 70^{\circ}C)$ (VDD = 12.0V ± 10%; VSS = 0V;-5.7V \leq VBB \leq -4.5V)

	PARAMETER	ТҮР	MAX	UNITS	NOTES
C 11	Input Capacitance (A0-A5), DIN, CS	4	5	pF	10
C 12	Input Capacitance RAS, CAS, WRITE	8	10	pF	10
С ₀	Output Capacitance (DOUT)	5	7	pF	8,10

MAXIMUM IDD1 vs. CYCLE RATE FOR DEVICE OPERATION AT EXTENDED FREQUENCIES

Figure 1

