

MK4832(N)/ MK4832L(N)-70/120

256 K (262, 144-bit) 32 K X 8 CMOS SRAM

- BYTEWYDE™ 32K X 8 CMOS SRAM
- EQUAL CYCLE/ACCESS TIMES, 70, 120NS MAX.
- LOW Vcc DATA RETENTION 2 VOLTS
- THREE STATE OUTPUT
- JEDEC STANDARD 28-PIN PACKAGE IN 600 MIL PLASTIC DIP

DESCRIPTION

The MK4832 is a 256K (262,144-bit) CMOS SRAM, organized as 32,768 words x 8 bits. It is fabricated using SGS-Thomson's low power, high performance, CMOS technology. The device features fully static operation requiring no external clocks or timing strobes, with equal address access and cycle times. It requires a single $+5V \pm 10\%$ supply, and all inputs and outputs are TTL compatible.

OPERATIONAL MODES

The MK4832 has a Chip Enable power down feature wich sustains an automatic standby mode whenever Chip Enable (E) goes inactive high. An Output Enable (G) pin provide as high speed tristate control, allowing fast read/write cycles to be achieved with the common-I/O data bus. Operational modes are determined by device control inputs W, G and E. as summurarized in the thruth table.

PIN NAMES

A0-A14	Address Inputs	
DQ0-DQ7	Data In/Data Out	
E	Chip Enable	
G	Output Enable	
W	Write/Read Enable	
Vcc	+ 5V	
Vss	GROUND	

PIN CONNECTIONS

A 14	1		•	28	Vcc
A 12	2			27	W
Α7	3			26	A 13
Α ₆	4			25	A ₈
Α5	5	9		24	A g
A ₄	6	9		23	A 11
Α3	7		MK4832	22	G
A 2	8		10114032	21	A 10
A 1	9			20	E
A ₀	10	C		19	DQ 7
DQ 0	11	C		18	DQ 6
DQ 1	12			17	DQ 5
DQ 2	13			16	DQ 4
Vss	14	E		15	DQ 3

MK4832 THRUTH TABLE

E	W	G	MODE	DQ	POWER
Н	х	Х	Deselect	Hi-Z	Standby
L	н	н	Read	Hi-Z	Active
L	н	L	Read	DOUT	Active

October 1989

READ MODE

The MK4832 is in the Read mode whenever Write Enable (W) is high with Output Enable (G) low, and Chip Enable (E) is active low. This provides access to data from eight of 262,144 locations in the static memory array, specified by the 15 address inputs. Valid data will be available at the eight Output pins within tavov after the last stable address, providing G is low, and E is low. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t_{ELOV} , or t_{GLOV}) rather than the address. Data out may be indeterminate at t_{ELOX} , and t_{GLOX} , but data lines will always be valid at t_{AVOV} .

AC ELECTRICAL CHARACTERISTICS (READ CYCLE) (0 C \leq TA \leq +70 C, V_{CC} = 5. V \pm 10%)

		4832-70/70L		4832-1	20/120L	UNIT	NOTE
SYMBOL	PARAMETER	MIN	МАХ	MIN	MAX	UNIT	NOTE
tELQX	Chip Enable to Q Low-Z	10		10			5
taxox	Output Hold from Address Change	10		10		-	4
tglax	Ouput Enable Access Time	5		5			5
tavav	Read Cycle Time	70		120			
tavov	Address Access Time		70		120	ns	4
t ELQV	Chip Enable Access Time		70		120		4
tglav	Output Enable Access Time		35		60		4
t _{EHQZ}	Chip Enable (E) to Q High-Z	0	30	0	35		5
tGHQZ	Output Disable (G)to Q High-Z	0	30	0	35		5

FIGURE 3 : READ TIMING Nº.2

MK4832(N)/MK4832L(N)-70/120

WRITE MODE

The MK4832 is in the Write mode whenever the W and E pins are low. Either Chip Enable or W must be inactive during Address transitions. The Write begins with the concurrence of Chip Enable being low with W low. Therefore, address setup times are referenced to Write Enable and Chip Enable as tavwL, and taveL respectively, and is determined to the latter occuring edge. The Write cycle can be terminated by the earlier rising edge of \overline{W} or Chip Enable (\overline{E}).

If the Output is enabled ($\overline{E} = low$, $\overline{G} = low$), then \overline{W} will return the outputs to high impedance within twLoz of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-in must be valid for tDVWH to the rising edge of Write Enable, or to the rising edge of \overline{E} , whichever occurs first, and remain valid twHDX.

CVUROL	PARAMETER	MK483	2-70/70L	MM4832	-120/120L	UNITS	NOTES
STMBOL		MIN	MAX	MIN	MAX	UNITS	NUTES
t avav	Write Cycle Time	70		120			
tavwl	Address Set-up Time to W Low	0		0			
tavel	Address Set-up Time to E Low	0		0			
tavwh	address valid to W HiGh	60		85			
twlwh	Write Pulse Width	45		65			
twhax	Address Hold After End Of Write	5		5		ns	
t ELEH	Chip Enable Active To End Of Write	60		85			
t _{EHAX}	Address Hold Time From Chip Enable	5		5			
t _{DVWH}	Data Valid To End Of Write	25		45			
twhox	Data Hold Time	0		0			
twhax	W High to Q Active	5		5			5
twLoz	W Low to Q High-Z	0	40	0	40		5

AC ELECTRICAL CHARACTERISTICS (WRITE CYCLE)

FIGURE 4: WRITE CONTROL CYCLE TIMING

FIGURE 5 : CHIP ENABLE CONTROL WRITE CYCLE TIMING

STANDBY MODE CHARACTERISTICS

 $(0^{\circ}C \le T_A \le +70^{\circ}C, VCC = 5.0V \pm 10\%)$

SYMBOL	PARAMETERS	MK4832/4832L- 70 MK4832/4832			4832L-120	UNITS	
STINDOL	FARAMETERS	MAX	MIN	MAX	MAX MIN		
t _{PU}	Chip Enable to Power-Up	0		0		пs	
tPD	Chip Enable to Power-Down		70		120	ns	

FIGURE 6 : STANDBY MODE TIMING

LOW VCC DATA RETENTION CHARACTERISTICS

 $(0^{\circ}C \leq T_{A} \leq +70^{\circ}C, VCC = 5.0 \pm 10\%)$

SYMBOL	PARAMETERS		MAX	MAX	UNIT	NOTE
VDR	V _{CC} Data Retentionmode		2.0		V	9
lccDR ⁽¹⁾	IccDR ⁽¹⁾ Data Retention Pwr.supply Current Test Condition: Vcc = 3.0	MK4832		500	μА	9
ICCUR	Test Condition: Vcc = 3.0	MK4832L		20	μA	9
t CDR	Chip Deselect To Data Retenti	on Mode	0		nS	9
t _R	Operation Recovery Tin	ne	tavav (2)		nS	9

FIGURE 7: LOW Vcc DATA RETENTION

SGS-THOMSON

571

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	VALUE	UNIT
VI	Voltage On Any Pin Relative to Ground	-0.5 to +7.0	V
TA	Ambient Operating Temperature	0 to 70	°C
TSTG	Storage Temperature	-65 to 150	.с
P _D Power Dissipation		1	Watt
lo	Output Current (1)	50	mA

⁴ This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may effact reliability. (1) Output current absolute maximum rating is specified for one output at atime, not to exceed a duration of 1 second.

RECOMMENDED DC OPERATING CONDITIONS

$(0^{\circ}C \leq T_A \leq +70^{\circ}C)$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	NOTES
Vcc	Supply Voltage	4.75	5.0	5.5	V	1
Vss	Supply Voltage	0	0	0	V	1
VIH	Logic "1" Voltage All Inputs	2.2		Vcc + 0.3v	V	1
VIL	Logic "0" Voltage All Inputs	-0.3		0.8	V	1

DC ELECTRICAL CHARACTERISTICS

$(0^{\circ}C \leq T_A \leq +70^{\circ}C)$

SYMBOL	PARAMETER		MIN	MAX	UNITS	NOTES
ICC1	Average Vcc Power Supply Current			70	mA	6
I _{SB}	TTL Standby Current (E= V _{IH})			3	mA	7
I _{SB1}	CMOS Standby Current (E= Vcc -0.2v)	MK4832		1	mA	8
	MK4832			50	μА	8
ILI	Input Leakage Current (Any Input)		-1	+1	μА	2
ILO	Ouput Leakage Current		-2	+2	μА	2
VOH	Output Logic "1" Voltage (Iout =-4.0 mA)		2.4		V	1
Vol	Output Logic "0" Voltage (I _{OUT} = +8.0 mA)			0.4	V	1

NOTES :

- 1. All voltages referenced to GND.
- 2. Negative spikes of -1.0 volts allowed for up to 10 nS once per Cycle.
- 3. Icc1 measured with outputs open.
- 4. 1mA typical.
- 5. Measured with Vcc ≥ V₁ ≥ GND and outputs deselected.

MK4832(N)/MK4832L(N)-70/120

AC TEST CONDITIONS

Inputs Levels	
Transition Time5ns	
Input And Output TimingReference Levels	

FIGURE 8 : OUPUT LOAD DIAGRAM

CAPACITANCE

 $(T_A = 25^{\circ}C, f = 1.0MHz)$

SYMBOL	PARAMETERS	MAX	UNITS	NOTES
CI	capacitance on all pins (except dQ)	8.0	pF	10
CDQ	capacitance on DQ pins	10.0	pF	3,10

ORDERING I NFORMATION

PART NUMBER	ACCESS TIME	PLACKGE TYPE	TEMPERATURE RANGE
MK4832N-70	70ns	28 PIN 600 Mil. Pllastic DIP	0°C to 70°C
MK4832N-120	120ns	28 PIN 600 Mil. Pllastic DIP	0°C to 70°C
MK4832LN-70	70ns	28 PIN 600 Mil. Pllastic DIP	0°C to 70°C
MK4832LN-120	120ns	28 PIN 600 Mil. Pllastic DIP	0°C to 70°C

FIGURE 9 : PACKAGE MECHANICAL DATA

