

64K (8K x 8-BIT) CMOS FAST STATIC RAM

- 70 AND 120ns ADDRESS ACCESS TIME
- EQUAL ACCESS AND CYCLE TIMES
- STATIC OPERATION NO CLOCKS OR TI-MING STROBES REQUIRED
- LOW VCC DATA RETENTION 2 VOLTS
- ALL INPUTS AND OUTPUTS ARE CMOS AND TTL COMPATIBLE
- LOW POWER OPERATION, 10μA CMOS STAND-BY CURRENT UTILIZING FULL CMOS 6-T CELL
- THREE STATE OUTPUT
- STANDARD 28-PIN PACKAGE IN 600 MIL PLASTIC DIP OR 330 MIL SOIC PACKAGE

Figure 1 : Pin Connections.

N/C	1	•	28 V	cc
A12	2		27 W	V
A7	3		26 E	2
A6	4		25 A	8
A5	5		24 A	9
A4	6 🗆		23 A	11
A3	7		22 G	ī
A2	8		21 A	10
A1	9 🗆	1	20 E	1
AO	10 🗆		19 D	Q7
DQO	11		18 D	Q6
DQ1	12		17 D	Q5
DQ2	13		16 D	Q4
Vss	14		15 D	Q3

DESCRIPTION

The MK48H64 is 65,536-bit organized as 8K x 8 bits. It is fabricated using SGS-THOMSON's low power, high performance, CMOS technology. The device feature fully static operation requiring no external clocks or timing strobes, with equal address access and cycle times. They require a single + 5V \pm 10% supply, and are fully TTL compatible.

The MK48H64 have a Chip Enable power down feature which sustains an automatic standby mode whenever either Chip Enable goes inactive (E1 goes high or E2 goes low). An Output Enable (G) pin provides a high speed tristate control, allowing fast read/write cycles to be achieved with the common-I/O data bus. Operational modes are determined by device control inputs W, G, E1, and E2, as summarized in the truth table.

The MK48H64 is available in a 600 Mil Plastic DIP, or a 330 Mil SOIC Package.

PIN NAMES

A0 - A12	Address Inputs
DQ0 - DQ7	Data Input/Output
E1, E2	Chip Enable
Ŵ	Write Enable
G	Output Enable
Vcc	+ 5V
V _{SS}	Ground
N/C	No Connection

MK48H64-70/120

Figure 2 : Block Diagram.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V ₁	Voltage on any Pin Relative to GND	- 1.0 to + 7.0	V
TA	Ambient Operating Temperature	0 to + 70	°C
Tstg	Storage Temperature	- 55 to + 125	°C
PD	Power Dissipation	1	W
I _O	Output Current per Pin	50	mA

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or other conditions beyond those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

TRUTH TABLE

W	E1	E2	G	Mode	DQ	Power
Х	н	Х	X	Deselect	High-Z	Standby
X	X	L	Х	Deselect	High-Z	Standby
н	L	Н	Н	Read	High-Z	Active
н	L	Н	L	Read	Qout	Active
L	L	Н	Х	Write	D _{IN}	Active

RECOMMENDED DC OPERATING CONDITIONS (0°C \leq T $_{\text{A}} \leq$ 70°C)

Symbol	Parameter	Value				Notes
Symbol	Falameter	Min.	Тур.	Max.		Notes
V _{CC}	Supply Voltage	4.5	5.0	5.5	V	4
GND	Supply Voltage	0	0	0	V	
VH	Logic 1 Voltage, All Inputs	2.2		V _{CC} + 0.3	V	4
VIL	Logic 0 Voltage, All Inputs	- 0.3		0.8	V	4

DC ELECTRICAL CHARACTERISTICS $(0^{\circ}C \le T_A \le 70^{\circ}C) (V_{CC} = 5.0V \pm 10 \text{ percent})$

Symbol	Parameter		Value			
	Farameter	Min.	Тур.	Max.	- Unit	Notes
lcc1	Average Power Supply Current -120 f = min Cycle -70			90 100	mA	5
I _{SB1}	TTL Standby Current			5	mA	6
I _{SB2}	CMOS Standby Current, MK48H64			1	mA	7
I _{SB2}	CMOS Standby Current, MK48H64L			50	μA	7
I _{IL}	Input Leakage Current (any input pin)	- 1		+ 1	μA	8
lo.	Output Leakage Current (any output pin)	- 10		+ 10	μA	9
V _{OH}	Output Logic 1 Voltage (I _{OUT} = - 4mA)	2.4			V	4
VOL	Output Logic 0 Voltage (IOUT = + 8mA)			0.4	V	4

CAPACITANCE ($T_A = 25^{\circ}C$, f = 1.0MHz)

Gumbal	2					
Symbol	Parameter	Min.	Тур.	Max.	Unit	Notes
C1	Capacitance on Input Pins		4	5	pF	10
C ₂	Capacitance on DQ Pins		8	10	pF	10

Notes : 1. Measured with load shown in Figure 8(A).

2. Measured with load shown in Figure 8(B).

3. $V_{CC} = 3.0V$.

4. All voltages referenced to GND.

5. I_{CC1} is measured as the average AC current with $V_{CC} = V_{CC}$ (max) and with the outputs open circuit. $t_{AVAV} = t_{AVAV}$ (min) duty cycle 100%.

6. E1 = VIH. all other Inputs = Don't Care

- 7. Vcc (max), and E2 < Vss + 0.3V, all other Inputs = Don't Care.
- 8. Input leakage current specifications are valid for all V_{IN} such that $0V < V_{IN} < V_{CC}$. Measured at $V_{CC} = V_{CC}$ (max). 9. Output leakage current specifications are valid for all V_{0UT} such that $0V < V_{0UT} < V_{CC}$. E1 = V_{IH} or E2 = V_{IL} , and

Vcc in valid operating range.

10. Capacitances are sampled and not 100% tested.

AC TEST CONDITIONS

Input Levels	. GND to 3.0V
Transition Times	. 5ns
Input and Output Signal Timing Reference Level	. 1.5V
Ambient Temperature	. 0°C to 70°C
V _{CC}	. 5.0V ± 10%
	. 0.00 1 10/0

Figure 3 : Output Load Circuits.

OPERATIONS

READ MODE

The MK48H64 is in the Read mode whenever Write Enable (W) is high with Output Enable (G) low, and both Chip Enables (E1 and E2) are active. This provides access to data from eight of 65,536 locations in the static memory array. The unique address specified by the 13 Address Inputs defines which one of the 8192 8-bit bytes is to be accessed.

Figure 4 : Read Timing N°1 (Address Access).

Valid data will be available at the eight Output pins within tavov after the last stable address, providing G is low, E1 is low, and E2 is high. If Chip Enable or Output Enable access times are not met, data access will be measured from the limiting parameter (t_{E1LOV} , t_{E2HOV} , or t_{GLOV}) rather than the address. The state of the DQ pins is controlled by the E1. E2, G, and W control signals. Data out may be indeterminate at t_{E1LOX} , t_{E2HOX} , and t_{GLOX} , but data lines will always be valid at tavov.

Note : Chip Enable and Output Enable are presumed valid.

Figure 5 : Read Timing N° 2 ($\overline{W} = V_{IH}$).

READ CYCLE TIMING

Symbol ALT. STD.		Parameter	48H64-70 48H64L-70		48H64-120 48H64L-120		Unit	Notes
			Min.	Max.	Min.	Max.		
t _{RC}	tAVAV	Read Cycle Time	70		120		ns	
t _{AA}	tAVQV	Address Access Time		70		120	ns	1
^t CEA 1 & 2	te1LQV	Chip Enable 1 & 2 Access Time		70 70		120 120	ns ns	1
t _{OEA}	t _{GLQV}	Output Enable Access Time		35		50	ns	1
t _{CEL} 1 & 2	te1LOX	Chip Enable 1 & 2 to Output Low-Z	5 5		5 5		ns ns	2
toel	tGLQX	Output Enable to Low-Z	0		0		ns	2
t _{CEZ} 1 & 2	t _{E1HQZ}	Chip Enable 1 & 2 to High-Z		30 30		40 40	ns ns	2
tOEZ	t _{GHQZ}	Output Enable to High-Z		30		40	ns	2
t _{OH}	tAXQX	Output Hold From Address Change	5		5		ns	1

WRITE MODE

The MK48H64 and MK48H65 are in the Write mode whenever the W and E1 pins are low, with E2 high. Either Chip Enable pin or W must be inactive during Address transitions. The Write begins with the concurrence of both Chip Enables being active with W low. Therefore address setup times are referenced to Write Enable and both Chip Enables as t_{AVWL} , t_{AVE1L} , and t_{AVE2H} respectively, and is determined to the latter occurring edge. The Write cycle can be terminated by the earlier rising edge of E1 or W, or the falling edge of E2. If the Output is enabled (E1 = low, E2 = high, \overline{G} = low), then \overline{W} will return the outputs to high impedance within t_{WLQZ} of its falling edge. Care must be taken to avoid bus contention in this type of operation. Data-in must be valid for t_{DVWH} to the rising edge of Write Enable, or to the rising edge of E1 or the falling edge of E2, whichever occurs first, and remain valid t_{WHDX} after the rising edge of E1 or \overline{W} , or the falling edge of E2.

Figure 7 : Write Timing N° 2 (\overline{E}_1) .

WRITE CYCLE TIMING

Symbol		Parameter	48H64-70 48H64L-70		68H64-120 68H64L-120		Unit	Notes
ALT.	STD.		Min.	Max.	Min.	Max.		
twc	tAVAV	Write Cycle Time	70		70		ns	
las	tavwl	Address Set-up Time to Write Enable Low	0		0		ns	
t _{AS}	t _{AVE1L} t _{AVE2H}	Address Set-up Time to Chip Enable	0		0		ns	
t _{AW}	t _{avwh}	Address Valid to End of Write	60		85		ns	
twew	twlwh	Write Pulse Width	60		70		ns	
t _{AH}	t _{WHAX}	Address Hold Time after End of Write	10		10		ns	
t _{CEW}	tE1LE1H tE2HE2L	Chip Enable to End of Write	60		70		ns	
t _{wR}	t _{e1HAX}	Write Recovery Time to Chip Disable	10		10		ns	
t _{DW}	t _{ovwh}	Data Valid to End of Write	40		40		ns	
t _{DH}	t _{whdx}	Data Hold Time	0		0		ns	
t _{WEL}	t _{WHDX}	Write High to Output Low-Z (active)	0		0		ns	2
twez	twLQZ	Write Enable to Output High-Z		30		35	ns	2

Figure 8 : Low Vcc Data Retention Timing.

LOW V_{cc} DATA RETENTION CHARACTERISTICS

Symbol	Parameter	Va	Unit	Notes	
	ratameter	Min.	Max.		NULES
VDR	V _{CC} Data Retention	2.0	V _{CC(min)}	V	
IccDR	Data Retention Power Supply Current, MK48H64		500	μА	3
IccDR	Data Retention Power Supply Current, MK48H64L		25	μA	3
CDR	Chip Deselection to Data Retention Time	0		ns	
ter.	Operation Recovery Time	tavav-		ns	

Note : tavav = Read Cycle Time.

ORDER CODES

Part Number	Access Time	Package Type	Temperature Range
MK48H64N-70	70ns	28 pin 600 mil Plastic DIP	0°C to 70°C
MK48H64N-120	120ns	28 pin 600 mil Plastic DIP	0°C to 70°C
MK48H64S-70	70ns	28 pin 330 mil SOIC	0°C to 70°C
MK48H64S-120	120ns	28 pin 330 mil SOIC	0°C to 70°C
MK48H64LN-70	70ns	28 pin 600 mil Plastic DIP	0°C to 70°C
MK48H64LN-120	120ns	28 pin 600 mil Plastic DIP	0°C to 70°C
MK48H64LS-70	70ns	28 pin 330 mil SOIC	0°C to 70°C
MK48H64LS-120	120ns	28 pin 330 mil SOIC	0°C to 70°C

MECHANICAL DATA

Figure 7 : MK48H64 28-Pin Plastic DIP (N), 600-Mil.

Figure 8 : MK48H64 28-Lead Plastic Micropackage (S), 300-Mil.

SGS-THOMSON

RICROELECTRONICS

