64 Kbit (8Kb x 8) ZEROPOWER® SRAM - INTEGRATED ULTRA LOW POWER SRAM, POWER-FAIL CONTROL CIRCUIT and BATTERY - UNLIMITED WRITE CYCLES - READ CYCLE TIME EQUALS WRITE CYCLE TIME - AUTOMATIC POWER-FAIL CHIP DESELECT and WRITE PROTECTION - WRITE PROTECT VOLTAGES (V_{PFD} = Power-fail Deselect Voltage): - M48Z08: 4.50V \leq V_{PFD} \leq 4.75V - M48Z18: 4.20V ≤ V_{PFD} ≤ 4.50V - SELF-CONTAINED BATTERY in the CAPHAT DIP PACKAGE - PACKAGING INCLUDES a 28 LEAD SOIC and SNAPHAT® TOP (to be Ordered Separately) - SOIC PACKAGE PROVIDES DIRECT CONNECTION for a SNAPHAT TOP which CONTAINS the BATTERY - PIN and FUNCTION COMPATIBLE with the DS1225 and JEDEC STANDARD 8K x 8 SRAMs #### **DESCRIPTION** The M48Z08/18 ZEROPOWER® RAM is an 8K x 8 non-volatile static RAM which is pin and functional compatible with the DS1225. The monolithic chip is available in two special packages to provide a highly integrated battery backed-up memory solution. **Table 1. Signal Names** | A0-A12 | Address Inputs | |-----------------|-----------------------| | DQ0-DQ7 | Data Inputs / Outputs | | Ē | Chip Enable | | G | Output Enable | | \overline{W} | Write Enable | | Vcc | Supply Voltage | | V _{SS} | Ground | Figure 1. Logic Diagram March 1999 1/18 Figure 2A. DIP Pin Connections Warning: NC = Not Connected. Figure 2B. SOIC Pin Connections Warning: NC = Not Connected. Table 2. Absolute Maximum Ratings (1) | Symbol | Parameter | Value | Unit | |----------------------|---|-----------|------| | T _A | Ambient Operating Temperature | -40 to 85 | °C | | T _{STG} | Storage Temperature (V _{CC} Off) | -40 to 85 | °C | | T _{SLD} (2) | Lead Solder Temperature for 10 seconds | 260 | °C | | V_{IO} | Input or Output Voltages | -0.3 to 7 | V | | V_{CC} | Supply Voltage | -0.3 to 7 | V | | Io | Output Current | 20 | mA | | P _D | Power Dissipation | 1 | W | Notes: 1. Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to the absolute maximum rating conditions for extended periods of time may affect reliability. 2. Soldering temperature not to exceed 260°C for 10 seconds (total thermal budget not to exceed 150°C for longer than 30 seconds). CAUTION: Negative undershoots below -0.3 volts are not allowed on any pin while in the Battery Back-up mode. CAUTION: Do NOT wave solder SOIC to avoid damaging SNAPHAT sockets. Table 3. Operating Modes (1) | | • | | | | | | |----------|---|-----------------|-----------------|-----------------|------------------|----------------------| | Mode | V _{CC} | E | G | W | DQ0-DQ7 | Power | | Deselect | 4.75)// 5.5)/ | V _{IH} | Х | Х | High Z | Standby | | Write | 4.75V to 5.5V
or | V_{IL} | Х | V _{IL} | D _{IN} | Active | | Read | 4.5V to 5.5V | V_{IL} | V_{IL} | V _{IH} | D _{OUT} | Active | | Read | | V_{IL} | V _{IH} | V _{IH} | High Z | Active | | Deselect | V _{SO} to V _{PFD} (min) | X | Х | Х | High Z | CMOS Standby | | Deselect | ≤ V _{SO} | Х | Х | Х | High Z | Battery Back-up Mode | **Note:** 1. $X = V_{IH}$ or V_{IL} ; $V_{SO} = Battery Back-up Switchover Voltage.$ Figure 3. Block Diagram ### **DESCRIPTION** (cont'd) The M48Z08/18 is a non-volatile pin and function equivalent to any JEDEC standard 8K x 8 SRAM. It also easily fits into many ROM, EPROM, and EEPROM sockets, providing the non-volatility of PROMs without any requirement for special write timing or limitations on the number of writes that can be performed. The 28 pin 600mil DIP CAPHAT™ houses the M48Z08/18 silicon with a long life lithium button cell in a single package. The 28 pin 330mil SOIC provides sockets with gold plated contacts at both ends for direct connection to a separate SNAPHAT housing containing the battery. The unique design allows the SNAPHAT battery package to be mounted on top of the SOIC package after the completion of the surface mount process. Insertion of the SNAPHAT housing after reflow prevents potential battery damage due to the high temperatures required for device surface-mounting. The SNAPHAT housing is keyed to prevent reverse insertion. The SOIC and battery packages are shipped separately in plastic anti-static tubes or in Tape & Reel form. **Table 4. AC Measurement Conditions** | Input Rise and Fall Times | ≤ 5ns | |---------------------------------------|---------| | Input Pulse Voltages | 0 to 3V | | Input and Output Timing Ref. Voltages | 1.5V | Note that Output Hi-Z is defined as the point where data is no longer driven. Figure 4. AC Testing Load Circuit Table 5. Capacitance (1, 2) $(T_A = 25 \, {}^{\circ}C)$ | Symbol | Parameter | Test Condition | Min | Max | Unit | |---------------------|----------------------------|----------------|-----|-----|------| | C _{IN} | Input Capacitance | $V_{IN} = 0V$ | | 10 | pF | | C _{IO} (3) | Input / Output Capacitance | $V_{OUT} = 0V$ | | 10 | pF | Notes: 1. Effective capacitance measured with power supply at 5V. Sampled only, not 100% tested. Outputs deselected. Table 6. DC Characteristics $(T_A = 0 \text{ to } 70^{\circ}\text{C}; V_{CC} = 4.75\text{V to } 5.5\text{V or } 4.5\text{V to } 5.5\text{V})$ | Symbol | Parameter | Test Condition | Min | Max | Unit | |--------------------------------|-------------------------------|--------------------------------|------|-----------------------|------| | I _{LI} ⁽¹⁾ | Input Leakage Current | $0V \le V_{IN} \le V_{CC}$ | | ±1 | μΑ | | I _{LO} ⁽¹⁾ | Output Leakage Current | $0V \le V_{OUT} \le V_{CC}$ | | ±5 | μΑ | | Icc | Supply Current | Outputs open | | 80 | mA | | I _{CC1} | Supply Current (Standby) TTL | $\overline{E} = V_{IH}$ | | 3 | mA | | I _{CC2} | Supply Current (Standby) CMOS | $\overline{E} = V_{CC} - 0.2V$ | | 3 | mA | | V _{IL} ⁽²⁾ | Input Low Voltage | | -0.3 | 0.8 | V | | V _{IH} | Input High Voltage | | 2.2 | V _{CC} + 0.3 | V | | V _{OL} | Output Low Voltage | I _{OL} = 2.1mA | | 0.4 | V | | V _{OH} | Output High Voltage | $I_{OH} = -1mA$ | 2.4 | | V | Notes: 1. Outputs deselects. Table 7. Power Down/Up Trip Points DC Characteristics (1) $(T_A = 0 \text{ to } 70^{\circ}\text{C})$ | Symbol | Parameter | Min | Тур | Max | Unit | |-----------------|--------------------------------------|-----|-----|------|-------| | V_{PFD} | Power-fail Deselect Voltage (M48Z08) | 4.5 | 4.6 | 4.75 | V | | V_{PFD} | Power-fail Deselect Voltage (M48Z18) | 4.2 | 4.3 | 4.5 | V | | V _{SO} | Battery Back-up Switchover Voltage | | 3.0 | | V | | t _{DR} | Expected Data Retention Time | 11 | | | YEARS | Note: 1. All voltages referenced to Vss. ### **DESCRIPTION** (cont'd) For the 28 lead SOIC, the battery package (i.e. SNAPHAT) part number is "M4Z28-BR00SH1". The M48Z08/18 also has its own Power-fail Detect circuit. The control circuitry constantly monitors the single 5V supply for an out of tolerance condition. When V_{CC} is out of tolerance, the circuit write protects the SRAM, providing a high degree of data security in the midst of unpredictable system operation brought on by low V_{CC}. As V_{CC} falls below approximately 3V, the control circuitry connects the battery which maintains data until valid power returns. **A**7/ 4/18 ^{2.} Negative spikes of -1V allowed for up to 10ns once per cycle. Table 8. Power Down/Up Mode AC Characteristics $(T_A = 0 \text{ to } 70^{\circ}\text{C})$ | Symbol | Parameter | Min | Max | Unit | |-------------------------------|----------------------------------------------------------------------------|-----|-----|------| | t _{PD} | E or W at V _{IH} before Power Down | 0 | | μs | | t _F ⁽¹⁾ | V _{PFD} (max) to V _{PFD} (min) V _{CC} Fall Time | 300 | | μs | | t _{FB} (2) | V _{PFD} (min) to V _{SO} V _{CC} Fall Time | 10 | | μs | | t _R | V _{PFD} (min) to V _{PFD} (max) V _{CC} Rise Time | 0 | | μs | | t _{RB} | V _{SO} to V _{PFD} (min) V _{CC} Rise Time | 1 | | μs | | t _{REC} | Ē or W at V _{IH} after Power Up | 1 | | ms | Notes: 1. VPFD (max) to VPFD (min) fall time of less than tr may result in deselection/write protection not occurring until 200 µs after Vcc passes V_{PFD} (min). 2. V_{PFD} (min) to V_{SO} fall time of less than t_{FB} may cause corruption of RAM data. Figure 5. Power Down/Up Mode AC Waveforms Note: Inputs may or may not be recognized at this time. Caution should be taken to keep \overline{E} high as V_{CC} rises past V_{PFD} (min). Some systems may perform inadvertent write cycles after V_{CC} rises above V_{PFD} (min) but before normal system operations begin. Even though a power on reset is being applied to the processor, a reset condition may not occur until after the system clock is running. **Table 9. Read Mode AC Characteristics** $(T_A = 0 \text{ to } 70^{\circ}\text{C}; V_{CC} = 4.75\text{V to } 5.5\text{V or } 4.5\text{V to } 5.5\text{V})$ | | | M48Z08 | | | |-----------------------|-----------------------------------------|--------|-----|------| | Symbol | Parameter | -100 | | Unit | | | | Min | Max | | | t _{AVAV} | Read Cycle Time | 100 | | ns | | t _{AVQV} (1) | Address Valid to Output Valid | | 100 | ns | | t _{ELQV} (1) | Chip Enable Low to Output Valid | | 100 | ns | | t _{GLQV} (1) | Output Enable Low to Output Valid | | 50 | ns | | t _{ELQX} (2) | Chip Enable Low to Output Transition | 10 | | ns | | t _{GLQX} (2) | Output Enable Low to Output Transition | 5 | | ns | | t _{EHQZ} (2) | Chip Enable High to Output Hi-Z | | 50 | ns | | t _{GHQZ} (2) | Output Enable High to Output Hi-Z | | 40 | ns | | t _{AXQX} (1) | Address Transition to Output Transition | 5 | | ns | Notes: 1. $C_L = 100pF$ (see Figure 4). 2. $C_L = 30pF$ (see Figure 4). Figure 6. Read Mode AC Waveforms **Note:** Write Enable (\overline{W}) = High. **Table 10. Write Mode AC Characteristics** $(T_A = 0 \text{ to } 70^{\circ}\text{C}; V_{CC} = 4.75\text{V to } 5.5\text{V or } 4.5\text{V to } 5.5\text{V})$ | | | M48Z08 | | | | |-------------------------------------|--------------------------------------------|--------|------|----|--| | Symbol | Parameter | -1 | -100 | | | | | | Min | Max | | | | t _{AVAV} | Write Cycle Time | 100 | | ns | | | t_{AVWL} | Address Valid to Write Enable Low | 0 | | ns | | | t _{AVEL} | Address Valid to Chip Enable Low | 0 | | ns | | | t _{WLWH} | t _{WLWH} Write Enable Pulse Width | | | ns | | | t _{ELEH} | Chip Enable Low to Chip Enable High | 80 | | ns | | | t _{WHAX} | Write Enable High to Address Transition | 10 | | ns | | | t _{EHAX} | Chip Enable High to Address Transition | 10 | | ns | | | t _{DVWH} | Input Valid to Write Enable High | 50 | | ns | | | t _{DVEH} | Input Valid to Chip Enable High | 30 | | ns | | | t _{WHDX} | Write Enable High to Input Transition | 5 | | ns | | | t _{E1HDX} | Chip Enable High to Input Transition | 5 | | ns | | | t _{WLQZ} ^(1, 2) | Write Enable Low to Output Hi-Z | | 50 | ns | | | t _{AVWH} | Address Valid to Write Enable High | 80 | | ns | | | t _{AVEH} | Address Valid to Chip Enable High | 80 | | ns | | | t _{WHQX} ^(1, 2) | Write Enable High to Output Transition | 10 | | ns | | Notes: 1. C_L= 30pF (see Figure 4). 2. If E goes low simultaneously with W going low, the outputs remain in the high impedance state. ### **READ MODE** The M48Z08/18 is in the Read Mode whenever \overline{W} (Write Enable) is high and \overline{E} (Chip Enable) is low. The device architecture allows ripple-through access of data from eight of 65,536 locations in the static storage array. Thus, the unique address specified by the 13 Address Inputs defines which one of the 8,192 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within Address Access time (tAVQV) after the last address input signal is stable, providing that the \overline{E} and \overline{G} access times are also satisfied. If the \overline{E} and G access times are not met, valid data will be available after the latter of the Chip Enable Access time (t_{ELQV}) or Output Enable Access time (t_{GLQV}). The state of the eight three-state Data I/O signals is controlled by \overline{E} and \overline{G} . If the outputs are activated before t_{AVQV}, the data lines will be driven to an indeterminate state until tAVQV. If the Address Inputs are changed while \overline{E} and \overline{G} remain active, output data will remain valid for Output Data Hold time (tAXQX) but will go indeterminate until the next Address Access. #### **WRITE MODE** The M48Z08/18 is in the Write Mode whenever \overline{W} and \overline{E} are active. The start of a write is referenced from the latter occurring falling edge of \overline{W} or \overline{E} . A write is terminated by the earlier rising edge of \overline{W} or E. The addresses must be held valid throughout the cycle. E or W must return high for a minimum of tehax from Chip Enable or twhax from Write Enable prior to the initiation of another read or write cycle. Data-in must be valid town prior to the end of write and remain valid for twhox afterward. G should be kept high during write cycles to avoid bus contention; although, if the output bus has been activated by a low on \overline{E} and \overline{G} , a low on \overline{W} will disable the outputs t_{WLQZ} after \overline{W} falls. Figure 7. Write Enable Controlled, Write AC Waveforms Figure 8. Chip Enable Controlled, Write AC Waveforms #### **DATA RETENTION MODE** With valid V_{CC} applied, the M48Z08/18 operates as a conventional BYTEWIDE™ static RAM. Should the supply voltage decay, the RAM will automatically power-fail deselect, write protecting itself when V_{CC} falls within the V_{PFD}(max), V_{PFD}(min) window. All outputs become high impedance, and all inputs are treated as "don't care." **Note:** A power failure during a write cycle may corrupt data at the currently addressed location, but does not jeopardize the rest of the RAM's content. At voltages below VPFD(min), the user can be assured the memory will be in a write protected state, provided the V_{CC} fall time is not less than t_F. The M48Z08/18 may respond to transient noise spikes on V_{CC} that reach into the deselect window during the time the device is sampling V_{CC}. Therefore, decoupling of the power supply lines is recommended. When V_{CC} drops below V_{SO}, the control circuit switches power to the internal battery which preserves data and powers the clock. The internal button cell will maintain data in the M48Z08/18 for an accumulated period of at least 11 years when V_{CC} is less than V_{SO}. As system power returns and V_{CC} rises above V_{SO}, the battery is disconnected, and the power supply is switched to external V_{CC}. Write protection continues until V_{CC} reaches V_{PFD} (min) plus t_{REC} (min). E should be kept high as V_{CC} rises past V_{PFD}(min) to prevent inadvertent write cycles prior to system stabilization. Normal RAM operation can resume trec after Vcc exceeds V_{PFD}(max). For more information on Battery Storage Life refer to the Application Note AN1012. #### SYSTEM BATTERY LIFE The useful life of the battery in the M48Z08/18 is expected to ultimately come to an end for one of two reasons: either because it has been discharged while providing current to the RAM in the battery back-up mode, or because the effects of aging render the cell useless before it can actually be completely discharged. The two effects are virtually unrelated, allowing discharge or Capacity Consumption, and the effects of aging or Storage Life, to be treated as two independent but simultaneous mechanisms. The earlier occurring failure mechanism defines the battery system life of the M48Z08/18. Figure 9. Predicted Battery Storage Life versus Temperature 4 ### **Cell Storage Life** Storage life is primarily a function of temperature. Figure 9 illustrates the approximate storage life of the M48Z08/18 battery over temperature. The results in Figure 9 are derived from temperature accelerated life test studies performed at SGS-THOMSON. For the purpose of the testing, a cell failure is defined as the inability of a cell stabilized at 25°C to produce a 2.4V closed circuit voltage across a 250 k Ω load resistor. The two lines, $t_{1\%}$ and t50%, represent different failure rate distributions for the cell's storage life. At 70°C, for example, the t_{1%} line indicates that an M48Z08/18 has a 1% chance of having a battery failure 28 years into its life while the t50% shows the part has a 50% chance of failure at the 50 year mark. The t_{1%} line represents the practical onset of wear out and can be considered the worst case Storage Life for the cell. The t_{50%} can be considered the normal or average ### **Calculating Storage Life** The following formula can be used to predict stor- {[(TA1/TT)/SL1]+[(TA2/TT)/SL2]+...+[(TAN/TT)/SLN]} where. - TA1, TA2, TAN = time at ambient temperature 1, 2, etc. - TT = total time = TA1+TA2+...+TAN - SL1, SL2, SLN = storage life at temperature 1, 2, etc. For example, an M48Z08/18 is exposed to temperatures of 55°C or less for 8322 hrs/yr, and temperatures greater than 60°C but less than 70°C for the remaining 438 hrs/yr. Reading predicted t_{1%} values from Figure 9, - SL1 \cong 200 yrs, SL2 = 28 yrs - -TT = 8760 hrs/yr - TA1 = 8322 hrs/yr, TA2 = 438 hrs/yr Predicted storage life ≥ or 154 years. As can been seen from these calculations and the results, the expected lifetime of the M48Z08/18 should exceed most system requirements. #### **Estimated System Life** Since either storage life or capacity consumption can end the battery's life, the system life is marked by which ever occurs first. #### **Reference for System Life** Each M48Z08/18 is marked with a nine digit manufacturing date code in the form of H99XXYYZZ. For example, H995B9431 is: H = fabricated in Carrollton, TX 9 = assembled in Muar, Malaysia, 9 = tested in Muar, Malaysia, 5B = lot designator, 9431 = assembled in the year 1994, work week 31. ### POWER SUPPLY DECOUPLING and UNDER-**SHOOT PROTECTION** I_{CC} transients, including those produced by output switching, can produce voltage fluctuations, resulting in spikes on the V_{CC} bus. These transients can be reduced if capacitors are used to store energy, which stabilizes the V_{CC} bus. The energy stored in the bypass capacitors will be released as low going spikes are generated or energy will be absorbed when overshoots occur. A ceramic bypass capacitor value of 0.1µF (as shown in Figure 10) is recommended in order to provide the needed filter- In addition to transients that are caused by normal SRAM operation, power cycling can generate negative voltage spikes on V_{CC} that drive it to values below Vss by as much as one Volt. These negative spikes can cause data corruption in the SRAM while in battery backup mode. To protect from these voltage spikes, it is recommeded to connect a schottky diode from V_{CC} to V_{SS} (cathode connected to Vcc, anode to Vss). Schottky diode 1N5817 is recommended for through hole and MBRS120T3 is recommended for surface mount. VCC ۷сс Figure 10. Supply Voltage Protection **:** 0.1μF DEVICE ۷ss AI02169 #### ORDERING INFORMATION SCHEME - Notes: 1. The M48Z08 part is offered with the PCDIP28 (i.e. CAPHAT) package only. 2. The SOIC package (SOH28) requires the battery package (SNAPHAT) which is ordered separately under the part number "M4Z28-BR00SH1" in plastic tube or "M4Z28-BR00SH1TR" in Tape & Reel form. 3. Delivery may include either the 2-pin version of the SOIC/SNAPHAT or the 4-pin version of the SOIC/SNAPHAT. Both are - functionally equivalent (see package drawing section for details). 4. Temperature range available for M48Z18 product only. Caution: Do not place the SNAPHAT battery package "M4Z28-BR00SH1" in conductive foam since this will drain the lithium button-cell For a list of available options (Speed, Package, etc...) or for further information on any aspect of this device, please contact the STMicroelectronics Sales Office nearest to you. ## PCDIP28 - 28 pin Plastic DIP, battery CAPHAT | Symb | | mm | | | | | |--------|-----|-------|-------|-----|-------|-------| | Syllib | Тур | Min | Max | Тур | Min | Max | | А | | 8.89 | 9.65 | | 0.350 | 0.380 | | A1 | | 0.38 | 0.76 | | 0.015 | 0.030 | | A2 | | 8.38 | 8.89 | | 0.330 | 0.350 | | В | | 0.38 | 0.53 | | 0.015 | 0.021 | | B1 | | 1.14 | 1.78 | | 0.045 | 0.070 | | С | | 0.20 | 0.31 | | 0.008 | 0.012 | | D | | 39.37 | 39.88 | | 1.550 | 1.570 | | Е | | 17.83 | 18.34 | | 0.702 | 0.722 | | e1 | | 2.29 | 2.79 | | 0.090 | 0.110 | | e3 | | 29.72 | 36.32 | | 1.170 | 1.430 | | eA | | 15.24 | 16.00 | | 0.600 | 0.630 | | L | | 3.05 | 3.81 | | 0.120 | 0.150 | | N | | 28 | | | 28 | | Drawing is not to scale. ## SOH28 - 28 lead Plastic Small Outline, 4-socket battery SNAPHAT | Symb | | mm | | | inches | | |--------|------|-------|-------|-------|--------|-------| | Cyllid | Тур | Min | Max | Тур | Min | Max | | Α | | | 3.05 | | | 0.120 | | A1 | | 0.05 | 0.36 | | 0.002 | 0.014 | | A2 | | 2.34 | 2.69 | | 0.092 | 0.106 | | В | | 0.36 | 0.51 | | 0.014 | 0.020 | | С | | 0.15 | 0.32 | | 0.006 | 0.012 | | D | | 17.71 | 18.49 | | 0.697 | 0.728 | | E | | 8.23 | 8.89 | | 0.324 | 0.350 | | е | 1.27 | _ | _ | 0.050 | - | _ | | eВ | | 3.20 | 3.61 | | 0.126 | 0.142 | | Н | | 11.51 | 12.70 | | 0.453 | 0.500 | | L | | 0.41 | 1.27 | | 0.016 | 0.050 | | α | | 0° | 8° | | 0° | 8° | | N | | 28 | | | 28 | | | СР | | | 0.10 | | | 0.004 | Drawing not to scale. ## SOH28 - 28 lead Plastic Small Outline, 2-socket battery SNAPHAT | Symb - | mm | | | inches | | | |--------|------|-------|-------|--------|-------|-------| | | Тур | Min | Max | Тур | Min | Max | | Α | | | 3.05 | | | 0.120 | | A1 | | 0.05 | 0.36 | | 0.002 | 0.014 | | A2 | | 2.34 | 2.69 | | 0.092 | 0.106 | | В | | 0.36 | 0.51 | | 0.014 | 0.020 | | С | | 0.15 | 0.32 | | 0.006 | 0.012 | | D | | 17.71 | 18.49 | | 0.697 | 0.728 | | E | | 8.23 | 8.89 | | 0.324 | 0.350 | | е | 1.27 | _ | _ | 0.050 | - | _ | | eВ | | 3.20 | 3.61 | | 0.126 | 0.142 | | Н | | 11.51 | 12.70 | | 0.453 | 0.500 | | L | | 0.41 | 1.27 | | 0.016 | 0.050 | | α | | 0° | 8° | | 0° | 8° | | N | 28 | | | 28 | | | | СР | | | 0.10 | | | 0.004 | Drawing not to scale. ## SH - 4-pin SNAPHAT Housing for 49 mAh Battery | Symb | mm | | | inches | | | |------|-----|-------|-------|--------|-------|-------| | | Тур | Min | Max | Тур | Min | Max | | А | | | 9.78 | | | 0.385 | | A1 | | 6.73 | 7.24 | | 0.265 | 0.285 | | A2 | | 6.48 | 6.99 | | 0.255 | 0.275 | | A3 | | | 0.38 | | | 0.015 | | В | | 0.46 | 0.56 | | 0.018 | 0.022 | | D | | 21.21 | 21.84 | | 0.835 | 0.860 | | Е | | 14.22 | 14.99 | | 0.560 | 0.590 | | eA | | 15.55 | 15.95 | | 0.612 | 0.628 | | eВ | | 3.20 | 3.61 | | 0.126 | 0.142 | | L | | 2.03 | 2.29 | | 0.080 | 0.090 | Drawing not to scale. ## SH - 2-pin SNAPHAT Housing for 49 mAh Battery | Symb | mm | | | inches | | | |------|-----|-------|-------|--------|-------|-------| | | Тур | Min | Max | Тур | Min | Max | | Α | | | 9.78 | | | 0.385 | | A1 | | 6.73 | 7.24 | | 0.265 | 0.285 | | A2 | | 6.48 | 6.99 | | 0.255 | 0.275 | | А3 | | | 0.38 | | | 0.015 | | В | | 0.46 | 0.56 | | 0.018 | 0.022 | | D | | 21.21 | 21.84 | | 0.835 | 0.860 | | E | | 14.22 | 14.99 | | 0.560 | 0.590 | | eВ | | 3.20 | 3.61 | | 0.126 | 0.142 | | L | | 2.03 | 2.29 | | 0.080 | 0.090 | Drawing not to scale. ## SH - 2-pin SNAPHAT Housing for 130 mAh Battery | Symb | mm | | | inches | | | |------|-----|-------|-------|--------|-------|-------| | | Тур | Min | Max | Тур | Min | Max | | Α | | | 10.54 | | | 0.415 | | A1 | | 8.00 | 8.51 | | 0.315 | 0.335 | | A2 | | 7.24 | 8.00 | | 0.285 | 0.315 | | А3 | | | 0.38 | | | 0.015 | | В | | 0.46 | 0.56 | | 0.018 | 0.022 | | D | | 21.21 | 21.84 | | 0.835 | 0.860 | | E | | 17.27 | 18.03 | | 0.680 | 0.710 | | eВ | | 3.20 | 3.61 | | 0.126 | 0.142 | | L | | 2.03 | 2.29 | | 0.080 | 0.090 | Drawing not to scale. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics © 1999 STMicroelectronics - All Rights Reserved ® TIMEKEEPER and SNAPHAT are registered trademarks of STMicroelectronics ™ CAPHAT and BYTEWIDE are trademarks of STMicroelectronics All other names are the property of their respective owners STMicroelectronics GROUP OF COMPANIES Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands - Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A. http://www.st.com