

32 K X 8 ZEROPOWER[™] RAM

ADVANCE DATA

FEATURES

- INTEGRATED ULTRA LOW POWER SRAM, POWER-FAIL CONTROL CIRCUIT AND BAT-TERY.
- UNLIMITED WRITE-CYCLES.
- READ-CYCLE TIME EQUALS WRITE-CYCLE TIME.
- PREDICTED BATTERY BACK-UP OF 10 YEARS @ 25°C.
- PIN AND FUNCTION COMPATIBLE WITH JE-DEC STANDARD 32K X 8 SRAMS.
- AUTOMATIC POWER-FAIL CHIP DESELECT / WRITE PROTECTION.
- DUAL WRITE PROTECT VOLTAGE: MK48Z30:4.75VOLTS. MK48Z30A: 4.50 VOLTS.

PIN CONNECTIONS

A 14	1.		28	Vcc
A 12	2		27	w
A7	3		26	A 13
A 6	4		25	A 8
A 5	5		24	A 9
A 4	6		23	A 11
A 3	7	MK48Z32/	22	G
A 2	8	MK48Z32A	21	A 10
A 1	9		20	Ē
A 0	10		19	DQ 7
DQ 0	11		18	DQ 6
DQ 1	12		17	DQ 5
DQ 2	13		16	DQ 4
GND	14		15	DQ 3

PIN NAMES

A0-A14	Address Input	Vcc	+5Volts
F	Chip Enable	W	Write Enable
-	Chip Lhable	G	Output Enable
GND	Ground	DQ0-DQ7 Out	Data IN/Data

DESCRIPTION

Part Number	Access Time	R/W Cy- cle Time	Vcc
MK48Z32 B - 10	100 ns	100 ns	+10 / -5 %
MK48Z32 B - 12	120 ns	120 ns	+10 / -5 %
MK48Z32 B - 15	150 ns	150 ns	+10 / -5 %
MK48Z32AB-10	100 ns	100 ns	+10 / -10%
MK48Z32AB-12	120 ns	120 ns	+10 / -10%
MK48Z32AB-15	150 ns	150 ns	+10 / -10%

October 1989

MK48Z32/32A(B)-10/12/15

DESCRIPTION

The MK48Z32/32A combines an 32K x 8 full CMOS S RAM and a long life carbon mono-fluoride batteries in a single plastic DIP package. The MK48Z32/32A is a nonvolatille pin and function equivalent to any JEDEC standard 32Kx 8 SRAM. it also easily fits into many EPROM and EEPROM sockets, providing the non-volatility of the PROM s without any requiment for special writetiming, or limitations on the number of writes that can be performed.

In addition,the MK48Z32/32A has its own Powerfail Dectect Circuit. The circuit deselect s the device whenever V_{CC} is below tolerance, providing a hight degree of data security in the midst of unpredictable system operations brought on by low V_{CC}.

FIGURE 1 : MK48Z32/32A BLOCK DIAGRAM

TRUTH TABLE (MK48Z32/32A)

Vcc	E	G	W	MODE	DQ	POWER
< Vcc	VIH	Х	Х	Deselect	High Z	Standby
(Max)	VIL	X	VIL	Write	DIN	Active
Vcc	VIL	VIL	VIH	Read	Dout	Active
(Min)	VIL	VIH	VIH	Read	High Z	Active
< V _{PFD} (MIn) > Vso	X	Х	X	Deselect	High Z	CMOS Standby
$\leq V_{SO}$	x	X	X	Deselect	High Z	Battery Back-up Mode

FIGURE 2 : POWER UP/DOWN TIMING

AC ELECTRICAL CHARACTERISTICS (POWER -UP/DOWN TIMING) (0 C \leq T_A \leq +70°C)

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
tpD	E or W at VIH Before Power Down	0		ns	
tF	VPFD (Max) to VPFD (Min) Vcc FallTime	300		μs	2
t _{FB}	VPFD (Min) to VSO VCC FallTime	10		μs	3
tRB	V _{SO} to V _{PFD} (Min) V _{CC} Rise Time	1		μs	
te	VPFD (Min) to VPFD (Max) VCC Rise Time	0		μs	
TREC	E or W at VIH After Power Up	5		ms	

DC ELECTRICAL CHARACTERISTICS (POWER-UP/ DOWN TRIP POINTS) (0°C \leq T_A \leq +70°C)

SYMBOL	PARAMETER		VALUES	UNITS	NOTES	
STMBUL	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
Vpfd	Power- Fail Deselect Voltage (MK48Z30)	4.5	4.6	4.75	V	1
VPFD	Power- Fail Deselect Voltage (MK48Z30A)	4.2	4.3	4.5	V	1
Vso	Battery Back-Up Switchover Voltage		3.0		V	1
ton	Expected Data Retention Time	10			YEARS	4

NOTES:

1. All voltages referenced to GND.

2. VPFD(Max) to VPFD(Min) fall times of less trmay result in deselection/write protection not occuring until 40 µs after V_{CC} passes VPFD (Min). VPFD (Max) to (Min) fall times of less than 10 µs may cause corruption of RAM data.

3 . VPFD(Min) to Vso fall times of less than tFB may cause corruption of RAM data.

4. 25 °C ambient condition.

READ MODE

The MK48Z32/32A is in the Read Mode whenever W (Write Enable) is high and E is low. The device architecture allows ripple-through access of data from eight of 262,144 locations in the static storage array. Thus, the unique address specified by the 14 Address inputs defines which one of the 32,768 bytes of data is to be accessed. Valid data will be available at the Data I/O pins within tavQv after the last address input signal is stable, providing that the Chip Enable and G access times are satisfied. If

FIGURE 3 : READ CYCLE TIMING

Chip Enable or G access times are not met, valid data will be available at the Chip Enable Access Time (t_{ELOV}) or at Output Enable Access Time (t_{GLOV}).

The state of the eight three-state Data I/O signals is controlled by Chip Enable and G. If the Outputs are activated before t_{AA}, the data lines will be driven to an indeterminate state until tAVQV. If the Address inputs are changed while Chip Enable and G remain low, output data will remain valid for

AC ELECTRICAL CHARACTERISTICS (READ CYCLE) ($0^{\circ}C \le T_A \le + 70^{\circ}C$, VCC = 5.0 V +10% / -5% or -10%)

ALT.	STD.		48Z)	(X-10	48Z)	(X-12	48Z)	(X-15		
SYMBOL	SYMBOL	PARAMETER	MIN	MAX	MIN	МАХ	MIN	MAX	UNIT	NOTE
tac	tavav	Read Cycle Time	100		120		150			
taa	tavov	Address Access Time		100		120		150		
tCEA1	telav	E1 Access Time		100		120		150		
tcez	tehoz	Chip Enable Off Time		50		60		75		
toea	tGLQV	Output Enable Access Time		50		60		75	ns	
toez	tgнaz	Output Enable Data Off Time		40		50		60		
toel	tGLOX	Output Enable To Q Low-z	5		5		5			
tcel	telax	Chip Enable To Q Low-z	10		10		10			
toн	t _{DHAX}	Output Hold From Address	5		5		5			

SGS-THOMSON 51.

Output Data Hold Time (t_{DHAX}) but will go indeterminate until the next Address Access.

WRITE MODE

The MK48Z32/32A is in the Write Mode whenever Write Enable and Chip select are active. The start of a write is referenced to the latter occurring falling edge of \overline{W} or \overline{E} . A write is terminated by the earlier rising edge of W or \overline{E} . The addresses must be held valid throughout the cycle. \overline{E} or W must return high or for minimum of $t_{WR}\,$ prior to the initiation of another read or write cycle. Data-in must be valid

AC ELECTRICAL CHARACTERISTICS (WRITE CYCLE)

$(0 C \le T_A \le 70 C, V_{CC} = 5.0 V + 10\% / -5\% \text{ or } -10\%)$

ALT.	STD.		48Z)	(X-10	48Z)	(X-12	48Z)	(X-15		
SYMBOL	SYMBOL	PARAMETER	MIN	мах	MIN	мах	MIN	мах	UNITS	NOTE
twc	tavav	Write Cycle Time	100		120		150			
tas	tavwl	Address Setup Time W Low	0		0		0			
tas	tavel	Address Setup Time E Low	0		0		0			
tcew	teleh	Chip Enable to End Of Write	80		100		130			
taw	tavwh	Address Valid to End Off Write	80		100		130			
taw	taven	Address Valid to End Off Write	80		100		130			
twew	twilwh	Write Pulse Width	50		70		100			
TCEZ	tehoz	E Data of Time		50		60		75	ns	
twez	twLaz	W Data of Time		50		60		75		
twa	twhax	W High to Address Change	10		10		10			1
twa	t ehax	E High to Address Change	10		10		10		1	2
twa	twnwL	W High to W Low Next Cycle	10		10		10		1	
tos	tovwн	Data Setup Time to W High	50		60		70			1
t _{DS}	tdveн	Data Setup Time to E High	50		60		70			2
tон	twhox	Data Hold Time W High	5		5		5			1
tон	tehdx.	Data Hold Time E High	5		5		5			2

NOTES:

1. In a W Controlled Cycle.

2. In a E Controlled Cycle.

MK48Z32/32A(B)-10/12/15

FIGURE 4 : WRITE CYCLE TIMING

ABSOLUTE MAXIMUM RATINGS

PARAMETER	VALUES	UNITS
Voltage on any Pin Relative to GND	-0.3 to + 7.0	V
Ambient Operating (V _{CC} On) Temperature (t _A)	0 to 70	.с
Ambient Storage (V _{CC} Off) Temperature	-40 to +70	.с
Total Device Power Dissipation	1.0	W
Output Current Per Pin (one Output at a Time)	50	mA

Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is net implied. Exposure to the absolute maximum ratings conditions for extended periods of time may affect reliability.

CAUTION

Negative undershoots below -0.3 volts are not allowed on any pinb while in the Battery Back-up mode

RECOMMENDED DC OPERATING CONDITIONS

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
Vcc	Supply Voltage (MK48Z30)	4.75	5.5	V	1
Vcc	Supply Voltage (MK48Z30A)	4.5	5.5	V	1
GND	Supply Voltage	0	0	V	1
VIH	Logic "1" Voltage All Inputs	2.2	Vcc + 0.3v	V	1
ViL	Logic "0" Voltage All Inputs	-0.3	0.8	V	1,2

DC ELECTRICAL CHARACTERISTICS (0 C \leq T_A \leq +70°C) (Vcc (min) \leq Vcc \leq Vcc (max))

SYMBOL	PARAMETER	MIN	MAX	UNITS	NOTES
lcc1	Average Vcc Power Supply Current		90	mA	3
lcc2	TTL Standby Current (E1= VIH or E2=VIL)		5	mA	
lcc3	CMOS Standby Current (E1= Vcc -0.2v)		2	mA	4
h	Input Leakage Current (Any Input)	-2	2	μΑ	5
IOL	Onput Leakage Current	-2	2	μΑ	5
Vон	Output Logic "1" Voltage (I _{OUT} =-1.0 mA)	2.4		V	
Vol	Output Logic "0" Voltage (I _{OUT} = +2.1 mA)		0.4	V	

NOTES :

1. All voltages referenced to GND.

2. Negative spikes of -1.0 volts allowed for up to 10 nS once per Cycle.

3. Icci measured with outputs open.

4. 1mA typical.

5. Measured with Vcc ≥ V1 ≥ GND and outputs deselected.

MK48Z32/32A(B)-10/12/15

AC TEST CONDITION

FIGURE 5: OUPUT LOAD DIAGRAM

CAPACITANCE (T_A = 25 C)

SYMBOL	PARAMETER	MAX	UNITS	NOTES
Ct	Capacitance on All Pins (except DQ)	10.0	pF	1
CDQ	Capacitance on DQ Pins	10.0	pF	1,2

ORDERING INFORMATION

PART NUMBER	ACCESS TIME (ns)	SUPPLY VOLTAGE	TEMPERATURE RANGE
MK48Z32(B)-10	100	5V+10%/-5%	0°C-70°C
MK48Z32(B)-12	120	5V+10%/-5%	0°C-70°C
MK48Z32(B)-15	150	5V+10%/-5%	0°C-70°C
MK48Z32A(B)-10	100	5V+10%/-10%	0°C-70°C
MK48Z32A(B)-12	120	5V+10%/-10%	0°C-70°C
MK48Z32A(B)-15	150	5V+10%/-10%	0°C-70°C

