MILITARY/HIGH-REL PRODUCTS PROCESSED TO MIL-STD 883, METHOD 5004, CLASS B 1024 x 8-Bit Static RAM MKB4801A(P/J/E)-870/890/81

FEATURES

- □ Static operation
- □ Organization: 1K x 8 bit RAM JEDEC pinout
- □ Pin compatible with Mostek's BYTEWYDE™ memory family
- □ 24/28 pin ROM/PROM compatible pin configuration
- □ CE and OE functions facilitate bus control

DESCRIPTION

The MKB4801A uses Mostek's Scaled POLY 5[™] process and advanced circuit design techniques to package 8,192 bits of static RAM on a single chip. Static operation is achieved with high performance and low power dissipation by utilizing Address Activated[™] circuit design techniques.

TRUTH TABLE

CE	ŌĒ	WE	Mode	DQ
VIH	×	×	Deselect	High Z
V _{IL}	×	VIL	Write	D _{IN}
V _{IL}	V _{IL}	VIH	Read	D _{OUT}
V _{IL}	V _{IH}	V _{IH}	Read	High Z

X = Don't Care

- □ -55°C to 125°C operating temperature
- □ High performance

Part No.	Access Time	R∕W Cycle Time
MKB4801A-870	70 nsec	70/80 nsec
MKB4801A-890	90 nsec	90/100 nsec
MKB4801A-81	120 nsec	120 nsec

The MKB4801A excels in high speed memory applications where the organization requires relatively shallow depth with a wide word format. The MKB4801A presents the user a high density cost effective alternative to bipolar and previous generation N-MOS fast memory.

PIN CONNECTIONS Figure 2

A7 1 [0	⊒24 Vcc	A7 NC NC NC VCC NC	VC
A 6 2 □		23 A8	4 3 2 1 32 31	30
A5 3 ⊡		⊒22 A 9	A _{62.5}	29 C A8
A4 4 🖂			A52.6	28 CA9
A35				27 ONC
A ₂₆		19 NC		26 CWE
A1 7			TOP VIEW	26 0 OE
AOBEL			A 10 10	24 CNC
		17 DQ7	A02 11	23 CE
		□16 DQ 6	NC (450 mil x 550 mi JEDEC type E)	22 DO,
		15 DQ5	DEDEC type C)	21 DO6
		14 DQ4	14 15 16 17 18 19	20
v _{ss12} ∟		13 DQ 3	DQ1DQ2VssNCDQ3DQ	DQ5

PIN NAMES							
A ₀ -A ₉ CE	Address Inputs	WE	Write Enable				
CE	Chip Enable	OE	Output Enable				
V _{SS}	Ground	NC	No Connection				
V _{CC}	Power (+5 V)	DQ0-DQ7	Data In/Data Out				

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V _{SS}	0.3 V to +7.0 V
Operating Temperature T _A (Ambient)	55°C to +125°C
Storage Temperature (Ambient) (Ceramic)	65°C to +150°C
Power Dissipaion	1 Watt
Output Current	20 mA
*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress	

operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS⁸

 $(-55^{\circ}C \le T_{A} \le +125^{\circ}C)$

SYM	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
V _{cc}	Supply Voltage	4.75	5.0	5.25	V	1
V _{ss}	Supply Voltage	0	0	0	V	1
VIH	Logic "1" Voltage All Inputs	2.4		7.0	v	1
VIL	Logic "0" Voltage All Inputs	-0.3		.65	v	1, 10

DC ELECTRICAL CHARACTERISTICS^{1,8}

(-55°C \leq T_A \leq +125°C) (V_{CC} = 5.0 volts ±5%)

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
I _{CC1}	Average V _{CC} Power Supply Current		120	mA	9
I _{CC1}	Average V_{CC} Power Supply Current (T _A = 125°C)		90	mA	9, 11
l _{IL}	Input Leakage Current (Any Input)	-10	10	μΑ	2
I _{OL}	Output Leakage Current	-50	50	μА	2
V _{OH}	Output Logic "1" Voltage I _{OUT} = -1 mA	2.4		v	
VOL	Output Logic "0" Voltage I _{OUT} = 4 mA		0.4	v	

AC ELECTRICAL CHARACTERISTICS^{3,4}

(-55°C \leq T_A \leq 125°C) (V_{CC} = 5.0 volts \pm 5%)

		MKB48	01A-870	MKB48	0 1A-890	MKB48	301A-81		
SYM	PARAMETER	MIN	MAX	MIN	MAX	MIN	MAX	UNITS	NOTES
t _{RC}	Read Cycle Time	70		90		120		ns	
t _{AA}	Address Access Time		70		90		120	ns	5
t _{CEA}	Chip Enable Access Time		35		45		60	ns	5
t _{CEZ}	Chip Enable Data Off Time	5	20	5	30	5	30	ns	
t _{OEA}	Output Enable Access Time		35		45		60	ns	5
t _{OEZ}	Output Enable Data Off Time	5	20	5	30	5	30	ns	
t _{AZ}	Address Data Off Time	10		10		10		,ns	
t _{wc}	Write Cycle Time	80		100		120		ns	
t _{AS}	Address Setup Time	0		0		0		ns	see text
t _{AH}	Address Hold Time	20		30		40		ns	see text
t _{DSW}	Data To Write Setup Time	5		5		10		ns	
t _{DHW}	Data From Write Hold Time	10		10		15		ns	
t _{WD}	Write Pulse Duration	30		40		45	<u> </u>	ns	see text
twez	Write Enable Data Off Time	5	15	5	25	5	30	ns	
t _{WPL}	Write Pulse Lead Time	50		60		75		ns	

CAPACITANCE^{1,8}

(-55°C \leq T_A \leq +125°C) (V_{CC} = +5.0 volts \pm 5%)

SYM	PARAMETER	ТҮР	MAX	NOTES
C _I	All pins (except D/Q)	4 pF		6
C _{D∕Q}	D/Q pins	10 pF		6,7

NOTES:

- 1. All voltages referenced to V_{SS}. 2. Measured with .4 \leq VI \leq 5.0 V, outputs deselected and V_{CC} = 5 V.
- 3. AC measurements assume Transition Time = 5 ns; levels V_{SS} to 3.0 V.
- 4. Input and output timing reference levels are at 1.5 V.
- 5. Measured with a load as shown in Figure 3.
- 5. Measured with a load as shown in Figure 3. 6. Effective capacitance calculated from the equation $C = \frac{\Delta Q}{\Delta V}$ with $\Delta V = 3$ volts and power supplies at nominal levels.
- 7. Output buffer is deselected.
- 8. A minimum of 2 ms time delay is required after application of V_{CC} (+5 V) before proper device operation can be achieved.
- 9. I_{CC1} measured with outputs open.
- 10. Negative undershoots to a minimum of -1.5 V are allowed with a maximum of 50 ns pulse width. DC value of low level input must not exceed -0.3 V.
- 11. Power supply current decreases with increasing temperature.

TIMING DIAGRAM Figure 5

DESCRIPTION (Cont.)

The MKB4801A features a fast \overline{CE} (50% of Address Access) function to permit memory expansion without impacting system access time. A fast \overline{OE} (50% of access time) is included to permit data interleaving for enhanced system performance.

The MKB4801A is pin compatible with Mostek's BYTEWYDE™ memory family of RAMs, ROMs and EPROMs.

OPERATION

Read Mode

The MKB4801A is in the READ MODE whenever the Write Enable Control input (WE) is in the high state.

In the READ mode of operation, the MKB4801A provides a fast address ripple-through access of data from 8 of 8192 locations in the static storage array. Thus, the unique address specified by the 10 Address Inputs (An) define which 1 of 1024 bytes of data is to be accessed.

A transition on any of the 10 address inputs will disable the 8 Data Output Drivers after t_{AZ} . Valid Data will be available to the 8 Data Output Drivers within t_{AA} after the last address input signal is stable, providing that the CE and OE access times are satisfied. If CE or OE access times are not met, data access will be measured from the limiting parameter $(t_{CEA} \text{ or } t_{OEA})$ rather than the address. The state of the 8 data 1/O signals is controlled by the Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) control signals.

Write Mode

The MKB4801A is in the Write Mode whenever the Write Enable (\overline{WE}) and Chip Enable (\overline{CE}) control inputs are in the low state.

The WRITE cycle is initiated by the \overline{WE} pulse going low provided that \overline{CE} is also low. The leading edge of the \overline{WE} pulse is used to latch the status of the address bus.

NOTE: In a write cycle the latter occurring edge of either \overline{WE} or \overline{CE} will determine the start of the write cycle. Therefore, t_{AS}, t_{WD} and t_{AH} are referenced to the latter occurring edge of \overline{CE} or \overline{WE} . Addresses are latched at this time. All write cycles whether initiated by \overline{CE} or \overline{WE} must be terminated by the rising edge of \overline{WE} . If the output bus has been enabled (\overline{CE} and \overline{OE} low) then \overline{WE} will cause the output to go to the high Z state in t_{WE7} .

Data In must be valid t_{DSW} prior to the low to high transition of WE. The Data In lines must remain stable for t_{DHW} after WE goes inactive. The write control of the MKB4801A disables the data out buffers during the write cycle; however, \overrightarrow{OE} should be used to disable the data out buffers to prevent bus contention between the input data and data that would be output upon completion of the write cycle.