

FEATURES

- \square Extended operating temperature range -55°C \leq T_C \leq 110°C
- Utilizes two industry standard MKB4116 devices in chip carriers mounted on an 18-pin ceramic motherboard DIP
- 200ns access time, 375ns cycle (MKM4332-83)
 250ns access time, 410ns cycle (MKM4332-84)
- □ Separate RAS, CAS Clocks

FUNCTIONAL DIAGRAM

- $\Box \pm 10\%$ tolerance on all power supplies (+12V, \pm 5V)
- □ Low power: 482mW active, 40mW standby (max)
- Output data controlled by CAS and unlatched at end of cycle to allow two dimensional chip selection and extended page boundary
- □ Common I/O capability using "early write" operation

- □ Read-Modify-Write, RAS-only refresh capability
- □ All inputs TTL compatible, low capacitance, and protected against static charge
- □ 128 refresh cycles (2 msec refresh interval)
- □ Pin compatible to MKB4116, MKB4516 and MKB4164
- Detailed test flows for the individual MKB4116 chip carriers and the completed D-package motherboard assembly are presented in the last pages of this data sheet.

DESCRIPTION

The MKM4332 is a new generation MOS dynamic random access memory circuit organized as 32,768 words by 1 bit. As a state-of-the-art MOS memory device, the MKM4332 (32K RAM) incorporates advanced circuit techniques

PIN CONNECTIONS AND MKB4116 COMPATIBILITY

Ao-Ao	Address Inputs	WRITE	Read/Write Input
CAS	Column Address	V _{BB}	Power (-5)
	Strobe		
DIN	Data In	V _{cc}	Power (+5V)
DOUT	Data Out	VDD	Power (+12V)
RAS	Row Address Strobe	V	Ground
		55	

XII-59

ABSOLUTE MAXIMUM RATINGS*

Voltage on any pin relative to V _{BB}	0.5V to +20V
Voltage on V _{DD} , V _{CC} supplies relative to V _{SS}	
$V_{BB} - V_{SS} (V_{DD} - V_{SS} > 0V)$	OV
Operating Temperature, T _C (case operating)	
Storage Temperature (Ambient)	
Short Circuit Output Current	
Power Dissipation	1 Watt
*Strasses greater than those listed under "Absolute Maximum Patings" may cause normanent damage to the device. This is a stress ration only	v and functional operation of the

*Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

RECOMMENDED DC OPERATING CONDITIONS⁶

 $(0^{\circ}C \le T_{C} \le 110^{\circ}C)$

SYM	PARAMETER	MIN	ТҮР	MAX	UNITS	NOTES
V _{DD}	Supply Voltage	10.8	12.0	13.2	v	2
v _{cc}	Supply Voltage	4.5	5.0	5.5	v	2,3
V _{SS}	Supply Voltage	0	0	0	V	2
V _{BB}	Supply Voltage	-4.5	-5.0	-5.5	v	2
V _{IHC}	Input High (Logic 1) Voltage RAS, CAS, WRITE	2.4	-	7.0	v	2
VIH	Input High (Logic 1) Voltage all inputs except RAS, CAS, WRITE	2.2	_	7.0	v	2
V _{IL}	Input Low (Logic 0) Voltage, all inputs	-1.0	_	.8	v	2

DC ELECTRICAL CHARACTERISTICS

(0°C \leq T_C \leq 110°C) (V_{DD} = 12.0V \pm 10%; V_{CC} = 5.0V \pm 10%; –5.5V \leq V_{BB} \leq -4.5V; V_{SS} = 0V)

SYM	PARAMETER	MIN	MAX	UNITS	NOTES
I _{DD1} I _{CC1}	OPERATING CURRENT Average power supply operating current		37.5	mA	4 5
I _{BB1}	(RAS, CAS cycling; t _{RC} = t _{RC} Min)		400	μA	
I _{DD2}	STANDBY CURRENT		4.5	mA	
I _{CC2} I _{BB2}	Power supply standby current ($RAS = V_{IHC}$ D _{OUT} = High Impedance)	-20	20	μΑ μΑ	
			27		4
I _{DD3} I _{CC3}	REFRESH CURRENT Average power supply current, refresh mode	-20	20	mA μA	4
BB3			400	μA	
I _{DD4}	PAGE MODE CURRENT		29.5	mA	4
ICC4	Average power supply current, page-mode operation				5
I _{BB4}	$(RAS = V_{IL}, CAS cycling; t_{PC} = t_{PC} Min)$		400	μA	Ŭ
I _{KL)}	INPUT LEAKAGE	-20	20	μΑ	
	Input leakage current, any input (V _{BB} = –5V, 0V \leq V _{IN} \leq +7.0V, all other pins not under test = 0 volts)				

SYM	PARAMETER	MIN	МАХ	UNITS	NOTES
I _{O(L)}	OUTPUT LEAKAGE Output leakage current (D $_{\rm OUT}$ is disabled, OV \leq V $_{\rm OUT}$ \leq +5.5V)	-20	20	μΑ	
V _{OH} V _{OL}	OUTPUT LEVELS Output high (Logic 1) voltage (I _{OUT} = -5mA) Output low (Logic 0) voltage (I _{OUT} = 4.2mA)	2.4	0.4	V V	3

NOTES

1. T_C is specified here for operation at frequencies to $t_{RC} \leq t_{RC}$ (min). Operation at higher cycle rates with reduced ambient temperatures and higher power dissipation is permissible, however, provided AC operating parameters are met. See supplemental MK4332 data sheet for AC derating curves.

2. All voltages referenced to VSS.

 Output voltage will swing from V_{SS} to V_{CC} when activated with no current loading. For purposes of maintaining data in standby mode, V_{CC} may be reduced to V_{SS} without affecting refresh operations or data retention. However, the V_{OH} (min) specification is not guaranteed in this mode.

- 4. IDD1, IDD3, and IDD4 depend on cycle rate.
- 5. I_{CC1} and I_{CC4} depend upon output loading. During readout of high level data V_{CC} is connected through a low impedance (135 Ω typ) to data out. At all other times I_{CC} consists of leakage currents only.

ELECTRICAL CHARACTERISTICS AND RECOMMENDED AC OPERATING CONDITIONS(6,7,8)

 $(0^{\circ}\text{C} \leq \text{T}_{\text{C}} \leq 110^{\circ}\text{C})^{\text{!`}} (\text{V}_{\text{DD}} = 12.0\text{V} \pm 10\%; \text{V}_{\text{CC}} = 5.0\text{V} \pm 10\%, \text{V}_{\text{SS}} = 0\text{V}, -5.5\text{V} \leq \text{V}_{\text{BB}} \leq -4.5\text{V})$

		МКМ4	332-83	МКМ4	332-84		
SYM	PARAMETER	MIN	MAX	MIN	MAX	UNITS	NOTES
t _{RC}	Random read or write cycle time	375		410		ns	9
t _{RWC}	Read-write cycle time	375		425		ns	9
t _{RMW}	Read modify write cycle time	405		500		ns	9
t _{PC}	Page mode cycle time	225		275		ns	9
t _{RAC}	Access time from RAS		200		250	ns	10,12
tCAC	Access time from CAS		135		165	ns	11,12
tOFF	Output buffer turn-off delay	0	50	0	60	ns	13
t _T	Transition time (rise and fall)	3	50	3	50	ns	8
t _{RP}	RAS precharge time	120		150		ns	
t _{RAS}	RAS pulse width	200	5000	250	5000	ns	
t _{RSH}	RAS hold time	135		165		ns	
t _{CSH}	CAS hold time	200		250		ns	
t _{CAS}	CAS pulse width	135	5000	165	5000	ns	
t _{RCD}	RAS to CAS delay time	25	65	35	85	ns	14
t _{CRP}	CAS to RAS precharge time	0		0		ns	
t _{ASR}	Row Address set-up time	0		0		ns	
t _{RAH}	Row Address hold time	25		35		ns	
t _{ASC}	Column Address set-up time	0		0		ns	
t _{CAH}	Column Address hold time	55		75		ns	

	PARAMETER	МКМ4	MKM4332-85 MKM4332-84				
SYM		MIN	MAX	MIN	MAX	UNITS	NOTES
t _{AR}	Column Address hold time referenced to RAS	120		160		ns	
t _{RCS}	Read command set-up time	0		0		ns	
t _{RCH}	Read command hold time	0		0		ns	
t _{WCH}	Write command hold time	55		75		ns	
^t WCR	Write command hold time referenced to RAS	120		160		ns	
t _{WP}	Write command pulse width	55		75		ns	
t _{RWL}	Write command to RAS lead time	70		85		ns	
t _{CWL}	Write command to CAS lead time	70		85		ns	
t _{DS}	Data-in set-up time	0		0		ns	15
^t DH	Data-in hold time	55		75		ns	15
t _{DHR.}	Data-in hold time referenced to RAS	120		160		ns	
t _{CP}	CAS precharge time (for page-mode cycle only)	80		100		ns	
t _{REF}	Refresh period		2		2	ms	
twcs	WRITE command set-up time	0		0		ns	16
t _{CWD}	CAS to WRITE delay	80		90		ns	16
t _{RWD}	RAS to WRITE delay	145		175		ns	16

NOTES

6. Several cycles are required after power-up before proper device operation is achieved. Any 8 cycles which perform refresh are adequate for this purpose.

7. AC measurements assume t_T = 5ns.

- $^{8}\cdot$ VIHC (min) or VIH (max) are reference levels for measuring timing of input signals. Also, transition times are measured between VIHC or VIH and VIL.
- 9. The specifications for tR_C (min) t_{RMW} (min) and t_{RWC} (min) are used only to indicate cycle time at which proper operation over the full temperature range (-55°C \leq T_C \leq 110°C) is assured.
- 10. Assumes that $t_{RCD} \leq t_{RCD}$ (max). If t_{RCD} is grater than the maximum recommended value shown in this table, t_{RAC} will increase by the amount that t_{RCD} exceeds the value shown.
- 11. Assumes that $t_{RCD} \ge t_{RCD}$ (max).
- 12. Measured with a load equivalent to 2 TTL loads and 100pF.

13. tOFF (max) defines the time at which the output achieves the open circuit condition and is not referenced to output voltage levels.

- 14. Operation within the t_{RCD} (max) limit insures that t_{RAC} (max) can be met. t_{RCD} (max) is specified as a reference point only; if t_{RCD} is greater than the specified t_{RCD} (max) limit, then access time is controlled exclusively ty t_{CAC}.
- 15 These parameters are referenced to CAS leading edge in early write cycles and to WRITE leading edge in delayed write or read-modify-write cycles.
- 16. twCS, tcWD and tRWD are restrictive operating parameters in read-write and read-modify-write cycles only. If tWCS \leq tWCS (min), the cycle is an early write cycle and the data out pin will remain open circuit (high impedance) throughout the entire cycle. If tCWD \leq tcWD (min) and tRWD \leq tRWD (min), the cycle is a read-write cycle and the data out will contain data read from the selected cell. If neither of the above sets of conditions is satisfied the condition of the data out (at access time) is indeterminate.
- 17. Effective capacitance calculated from the equation C $1\Delta t/\Delta V$ with ΔV 3 volts and power supplies at nominal levels.
- 18. CAS = VHK to disable DOUT.

AC ELECTRICA	AL CHARACTERISTICS

(-55°C \leq T_C \leq 110°C) (V_{DD} = 12.0V \pm 10%; V_{SS} = 0V; -5.5V \leq V_{BB} \leq -4.5)

SYM	PARAMETER	ТҮР	MAX	UNITS	NOTES
C ₁₁	Input Capacitance (A ₀ - A ₆), D _{IN}	8	10	pF	17
C ₁₂	Input Capacitance RAS, CAS	8	10	pF	17
C ₀	Output Capacitance (D _{OUT})	10	14	pF	17,18
C _{I3}	Input Capacitance WRITE	16	20	pF	17

	PROCESS STEP	CONDITION	LIMITS
o	Die Inspect	Method 2010 Condition B	100%
⊚	Preseal Inspect	Method 2010 Condition B	100%
\	Stabilization Bake	24 hrs., 150°C	100%
¢	Temp Cycle	-65∕+150°C, 10 cycles	100%
	Centrifuge	30 Kg, Y ₁	100%
¢.	Fine Leak	5 x 10 ⁻⁸ cc/sec	100%
¢	Gross Leak	Method 1014, Condition C	100%
φ	Pre-Stress Electrical Test 1	Max Rated Temperature	100%
¢.	Voltage/Temp Stress	12 hr., +125°C, Dynamic	100%
Ċ.	Post Stress Electrical Test 2	Max Rated Temperature	100%
þ	Burn-in	160 hr., +125°C, Dynamic	100%
φ	Final Electrical Tests 3, 4	Max. Rated Temperature	100%
		Min. Rated Temperature	100%
þ	Q.A. Lot Acceptance	Method 5005.5, Group A, Class B	
ø	Fine Leak Sample	5 x 10 ⁻⁸ cc∕ sec	AQL = .4%
¢.	Gross Leak Sample	Method 1014, Condition C	AQL = .4%
φ.	External Visual		100%
ģ	Q.C. Final Inspect		AQL = 2.5%
ø	Q.C. Pre-Shipment Inspect		AQL = 1.0%

□ = Quality Control Check

MKM4332D D PACKAGE (MOTHERBOARD) PROCESSING

	PROCESS STEP	CONDITION	LIMITS
Q	Motherboard Assembly		
@-'\$	Visual Inspection		100%
4	Electrical Test	Max. Rated Temp.	100%
4	Visual Inspection		100%
þ	Fine Leak Sample	5 x 10 ⁻⁸ cc/sec	
þ	Gross Leak Sample	Method 1014, Condition C	AQL = .4%
þ	Group A Electrical Lot Acceptance	Method 5005.5, Group A, Subgroups 2, 5, 8 Max, 10	
Ø	QC Final Inspection		AQL = 2.5%

回 = Quality Control Check

DESCRIPTION (Continued)

designed to provide wide operating margins, both internally and to the system user.

The technology used to fabricate the MKM4332 is Mostek's double-poly, N-channel silicon gate, POLY IITM process. This process, coupled with the use of a single transistor dynamic storage cell, provides the maximum possible circuit density and reliability, while maintaining high performance capability. The use of dynamic circuitry throughout, including sense amplifiers, assures that power dissipation is minimized without any sacrifice in speed or operating

margin. These factors combine to make the MKM4332 a truly superior RAM product.

Multiplexed address inputs (a feature pioneered by Mostek for its 4K RAMs) permits the MKM4332to be packaged in a standard 18-pin DIP. This standard package configuration, is compatible with widely available automated testing and insertion equipment, and it provides the highest possible system bit densities and simplifies system upgrade from 16K to 64K RAMs for new generation applications. Noncritical clock timing requirements allow use of the multiplexing technique while maintaining high performance.