National Semiconductor

MM54C173/MM74C173 TRI-STATE® Quad D Flip-Flop

General Description

The MM54C173/MM74C173 TRI-STATE guad D flip flop is a monolithic complementary MOS (CMOS) integrated circuit constructed with N- and P-channel enhancement transistors. The four D-type flip flops operate synchronously from a common clock. The TRI-STATE output allows the device to be used in bus-organized systems. The outputs are placed in the TRI-STATE mode when either of the two output disable pins are in the logic "1" level. The input disable allows the flip flops to remain in their present states without disrupting the clock. If either of the two input disables are taken to a logic "1" level, the Q outputs are fed back to the inputs and in this manner the flip flops do not change state.

Clearing is enabled by taking the input to a logic "1" level. Clocking occurs on the positive-going transition.

Logic Truth Table and Connection Diagrams

Features

- Supply voltage range
- Tenth power TTL compatible
- High noise immunity
- Low power
- Medium speed operation
- High impedance TRI-STATE
- Input disable without gating the clock

Applications

- Automotive
- Data terminals
- Instrumentation .
- Medical electronics
- Alarm systems
- Industrial electronics

Truth Table (Both Output Disables Low)

tn	t _{n+1}		
DATA INPUT DISABLE	DATA INPUT	OUTPUT	
Logic "1" on One or Both Inputs	x	Qn	
Logic "O" on Both Inputs	1	1	
Logic "O" on Both Inputs	0	0	

3 V to 15 V

0.45 V_{CC} (typ.)

Drive 2 LPTTL loads

- Remote metering

Absolute Maximum Ratings (Note 1)

-0.3 V to V _{CC} + 0.3 V
-55°C to +125°C
-40°C to +85°C
-65°C to +150°C
18 V
500 mW
3 V to 15 V
300°C

DC Electrical Characteristics Max./min. limits apply across temperature range, unless otherwise noted.

	Parameter	Conditions	Min.	Typ.	Max.	Units
	CMOS to CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	3.5 8.0		э	V V
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$			1.5 2.0	v v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	4.5 9.0			V V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0 V,$ $V_{CC} = 10 V$			0.5 1.0	v v
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15 V$		0.005	1.0	μΑ
I _{IN(0)}	Logical "0" Input Current		-1.0	-0.005		μΑ
0	Output Current in High Impedance State		-1.0	0.001 0.001	1.0	μΑ μΑ
Icc	Supply Current	$V_{CC} = 15 V$		0.05	300	μA
	Low Power TTL/CMOS Interf	ace	-			
V _{IN(1)}	Logical "1" Input Voltage	$\begin{array}{ccc} 54C & V_{CC} = 4.5 V \\ 74C & V_{CC} = 4.75 V \end{array}$	V _{CC} - 1.5 V _{CC} - 1.5			V v
VIN(0)	Logical "0" Input Voltage	$\begin{array}{ccc} 54C & V_{CC} = 4.5 \ V \\ 74C & V_{CC} = 4.75 \ V \end{array}$			0.8 0.8	V V
V _{OUT(1)}	Logical "1" Output Voltage	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2.4 2.4			v v
V _{OUT(O)}	Logical "0" Output Voltage	54C $V_{CC} = 4.5 V$, $I_O = 360 \mu A$ 74C $V_{CC} = 4.75 V$, $I_O = 360 \mu A$			0. 4 0.4	V V
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical "0" or Logical "1" from Clock	V _{CC} = 5.0 V, C _L = 50 pF, T _A = 25°C		500		ns
	Output Drive (See 54C/74C F	amily Characteristics Data Sheet	(Short Circ	uit Current	t)	
ISOURCE	Output Source Current	$V_{CC} = 5.0 V, V_{IN(0)} = 0 V$ $T_A = 25^{\circ}C, V_{OUT} = 0 V$	-1.75			mA
ISOURCE	Output Source Current	$V_{CC} = 10 V, V_{IN(0)} = 0 V$ $T_A = 25^{\circ}C, V_{OUT} = 0 V$	-8.0			mA
I _{SINK}	Output Sink Current	$V_{CC} = 5.0 \text{ V}, V_{IN(1)} = 5.0 \text{ V}$ $T_A = 25^{\circ}\text{C}, V_{OUT} = V_{CC}$	1.75			mA
ISINK	Output Sink Current	$V_{CC} = 10 V, V_{IN(1)} = 10 V$ $T_A = 25^{\circ}C, V_{OUT} = V_{CC}$	8.0			mA

AC Electrical Characteristics T_A = 25°C, C_L = 50 pF, unless otherwise noted

	Parameter	Conditions	Min.	Тур.	Max.	Units		
t _{pd0} , t _{pd1}	Propagation Delay Time to a Logical "0" or Logical "1" from Clock to Output	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		220 80	400 200	ns ns		
ts	Input Data Set-up Time	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		40 15	80 30	ns ns		
t _H	Input Data Hold Time	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	0	0 0	ns 0	ns		
ts	Input Disable Set-up Time, t _{S DISS}	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		100 35	200 70	ns ns		
t _H _	Input Disable Hold Time, t _{H DISS}	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		0	0 0	ns ns		
t _{1H} , t _{OH}	Delay from Output Disable to High Impedance State (from Logical "1" or Logical "0" Level)	$V_{CC} = 5.0 V, R_L = 10 k$ $V_{CC} = 10 V, R_L = 10 k$		170 70	340 140	ns ns		
t _{H1}	Delay from Output Disable to Logical "1" Level (from High Impedance State)	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		170 70	340 140	ns ns		
t _{HO}	Delay from Output Disable to Logical "0" Level (from High Impedance State)	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		170 70	340 140	ns ns		
t _{pd0} , t _{pd1}	Propagation Delay from Clear to Output	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		240 90	490 180	ns ns		
f _{MAX}	Maximum Clock Frequency	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	3.0 7.0	4.0 12		MHz MHz		
tw	Minimum Clear Pulse Width	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		150 70		ns ns		
t _r , t _f	Maximum Clock Rise and Fall Time	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	10 5.0			μs μs		
CIN	Input Capacitance	(Note 2)		5.0		рF		
CPD	Power Dissipation Capacitance	(Note 3)						

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note AN-90.

Switching Time Waveforms

1-78