National Semiconductor

MM54C85/MM74C85 4-Bit Magnitude Comparator

General Description

The MM54C85/MM74C85 is a four-bit magnitude comparator which will perform comparison of straight binary or BCD codes. The circuit consists of eight comparing inputs (A0, A1, A2, A3, B0, B1, B2, B3), three cascading Inputs (A > B, A < B and A = B), and three outputs (A > B, A < B and A = B). This device compares two four-bit words (A and B) and determines whether they are "greater than," "less than," or "equal to" each other by a high level on the appropriate output. For words greater than four-bits, units can be cascaded by connecting the outputs (A > B, A < B, and A = B) of the least significant stage to the cascade inputs (A > B, A < B and A = B) of the next-significant stage. In addition the least significant stage must have a high level voltage (VIN(1) applied to the A = B input and low level voltages $(V_{1N(0)})$ applied to A > B and A < B inputs.

Features

- Wide supply voltage range 3.0V to 15V
- Guaranteed noise margin 1.0V
- High noise immunity 0.45 V_{CC} (typ.)
- Low power fan out of 2 TTL compatibility driving 74L
- Expandable to 'N' stages
- Applicable to binary or BCD
- The MM54C85/MM74C85 follows the DM54LS85/DM74LS85 Pinout.

Logic Diagrams

Absolute Maximum Ratings (Note 1)

Voltage at Any Pin	-0.3 V to V _{CC} + 0.3 V
Operating Temperature Range	
MM54C85	-55°C to +125°C
MM74C85	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C

 MM54C85/MM74C85

1

Parameter		Conditions	Min.	Тур.	Max.	Unit
	CMOS to CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	3.5 8.0			v v
V _{IN(0)}	Logical "0" Input Voltage	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$			1.5 2.0	
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0V, I_O = -10 \mu A$ $V_{CC} = 10V, I_O = -10 \mu A$	4.5 9.0			. V V
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_{O} = +10 \mu A$ $V_{CC} = 10V, I_{O} = +10 \mu A$			0.5 1.0	V V
I _{IN(1)}	Logical "1" Input Current	$V_{CC} = 15 V, V_{IN} = 15 V$		0.005	1.0	μΑ
IIN(0)	Logical "0" Input Current	$V_{CC} = 15 V, V_{IN} = 0 V$	- 1.0	-0.005		μA
Icc	Supply Current	$V_{CC} = 15 V$		0.05	300	μA
	CMOS/LPTTL Interface					
V _{IN(1)}	Logical "1" Input Voltage	$\begin{array}{c} 54C, \ V_{CC} = 4.5V \\ 74C, \ V_{CC} = 4.75V \end{array}$	V _{CC} - 1.5 V _{CC} - 1.5			V V
V _{IN(0)}	Logical "0" Input Voltage	$\begin{array}{l} 54C, \ V_{CC} = 4.5 \ V \\ 74C, \ V_{CC} = 4.75 \ V \end{array}$. č.		0.8 0.8	v v
V _{OUT(1)}	Logical "1" Output Voltage	54C, $V_{CC} = 4.5 V$, $I_O = -360 \mu A$ 74C, $V_{CC} = 4.75 V$, $I_O = -360 \mu A$	2.4 2.4		,	v v
V _{OUT(0)}	Logical "0" Output Voltage	54C, $V_{CC} = 4.5$ V, $I_0 = 360 \mu$ A 74C, $V_{CC} = 4.75$ V, $I_0 = 360 \mu$ A			0.4 0.4	v v
	Output Drive (See 54C/74C Fa	mily Characteristics Data Sheet) (short circuit (current)		
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5.0 V, V_{OUT} = 0 V$ $T_A = 25^{\circ}C$	- 1.75	-3.3		mA
SOURCE	Output Source Current (P-Channel)	$V_{CC} = 10V, V_{OUT} = 0V$ $T_A = 25^{\circ}C$	-8.0	- 15		mA
I _{SINK}	Output Sink Current (N-Channel)	$V_{CC} = 5.0 V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	1.75	3.6		mA
Isink	Output Sink Current (N-Channel)	$V_{CC} = 10 V, V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	8.0	16		mA

	$A = 25 C, C_{L} = 50 \text{ pc}$, unless otherwise specified.					
	Parameter	Conditions	Min.	Тур.	Max.	Units
t _{pd}	Propagation Delay from any A or B Data Input to any Data Output	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$	C	250 100	600 300	ns ns
t _{pd}	Propagation Delay Time from any Cascade Input to any Output	$V_{CC} = 5.0 V$ $V_{CC} = 10 V$		200 ,100	500 250	ns ns
CIN	Input Capacitance	Any Input		5.0		рF
C _{PD}	Power Dissipation Capacitance	(Note 3) Per Package		45		рF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: CPD determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note — AN-90.

1

۱

)

Truth Table

COMPARING INPUTS			CA	SCADING INP	UTS		OUTPUTS		
A3, B3	A2, B2	A1, B1	A0, B0	A > B	A < B	A = B	A > B	A < B	A = 8
A3 > B3	×	x	×	x	x	x	н	L	L
A3 < B3	×	x	x ·	×	×	x	L	н	L
A3 = B3	A2 > B2	x	×	x	×	×	н	L	L
A3 = B3	A2 < B2	x	x	x	×	x	ι .	н	L
A3 = B3	A2 = B2	A1 > B1	×	×	×	×	н	L	L
A3 = B3	A2 = B2	A1 < B1	×	×	x	×	<u>ι</u> .	н	L
A3 = B3	A2 = B2	Å1 = B1	A0 > B0	x	x	×	н	L	L
A3 = B3	A2 = B2	A1 ≈ B1	A0 < B0	×	×	×	L	н	L
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	L	н	L	L
A3 = 83	A2 = B2	A1 = B1	A0 = B0	L	н	L	L	н	Ĺ
A3 = B3	' A2 = B2	A1 = B1	A0 = B0	L	L	н	L	L	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	L	н	н	L	н	н
A3 = B3	A2 = B2	A1 = B1	A0 = B0	н	L	н	н	L	н
A3 = B3	A2 = B2	A1 = B1	A0 - B0	н	н	н	н	н	н
A3 = B3	A2 = B2	A1 = B1	A0 = 80	н	н	L	н	н	L
A3 = B3	A2 = B2	A1 = B1	A0 ≑ B0	L	L	L	L	L	L

H = high level, L = low level, X = irrelevant

1-38