National Semiconductor

MM54C86/MM74C86 Quad 2-Input EXCLUSIVE-OR Gate

General Description

Employing complementary MOS (CMOS) transistors to achieve wide power supply operating range, low power consumption and high noise margin these gates provide basic functions used in the implementation of digital integrated circuit systems. The N and P-channel enhancement mode transistors provide a symmetrical circuit with output swing essentially equal to the supply voltage. No dc power other than that caused by leakage current is consumed during static condition. All inputs are protected from damage due to static discharge by diode clamps to V_{CC} and GND.

Features

- Wide supply voltage range 3.0V to 15V
 Guaranteed noise margin 1.0V
 High noise immunity 0.45 V_{CC} (typ.)
 Low power fan out of 2
- TTL compatibility
 driving 74L

 Low power consumption
 10 nW/package (typ.)
- The MM54C86/MM74C86 follows the MM54LS86/MM74LS86 Pinout.

Connection Diagram

Truth Table

MM54C08/MM74C08

INPUTS		UTS	OUTPUT		
	Α	В	Y		
	L	L	L		
$\sim \chi_{\odot}$	L	н	н		
	н	L	н		
	н	н	star L		

H = High Level L= Low Level

1-39

Absolute Maximum Ratings

Voltage at Any Pin (Note 1)	$-0.3V$ to $V_{CC} + 0.3V$
Operating Temperature Range	
MM54C86	-55°C to +125°C
MM74C86	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C
Package Dissipation	500 mW
Operating V _{CC} Range	3.0V to 15V
Absolute Maximum V _{CC}	18V
Lead Temperature (Soldering, 10 s	econds) 300°C

DC Electrical Characteristics

Min/max limits apply across temperature range unless otherwise noted.

Parameter		Conditions	Min.	Тур.	Max.	Units
	CMOS to CMOS					
V _{IN(1)}	Logical "1" Input Voltage	$V_{CC} = 5.0V$ $V_{CC} = 10V$	3.5 8.0			v v
V _{IN(0)}	Logical "0" Input Voltage	V _{CC} = 5.0V V _{CC} = 10V			1.5 2.0	v v
V _{OUT(1)}	Logical "1" Output Voltage	$V_{CC} = 5.0 V$, $I_O = -10 \mu A$ $V_{CC} = 10 V$, $I_O = -10 \mu A$	4.5 9.0			v v
V _{OUT(0)}	Logical "0" Output Voltage	$V_{CC} = 5.0V, I_O = +10\mu A$ $V_{CC} = 10V, I_O = +10\mu A$			0.5 1.0	v v
I _{IN(1)}	Logical "1" Input Current	V _{CC} = 15 V, V _{IN} = 15 V		0.005	1.0	μA
IN(O)	Logical "0" Input Current	$V_{CC} = 15 V, V_{IN} = 0 V$	- 1.0	-0.005		μA
lcc	Supply Current	V _{CC} = 15 V		0.01	15	μA
	CMOS/LPTTL Interface	34				
V _{IN(1)}	Logical "1" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V	V _{CC} – 1.5 V _{CC} – 1.5			v v
V _{IN(0)}	Logical "0" Input Voltage	54C, V _{CC} = 4.5V 74C, V _{CC} = 4.75V			0.8 0.8	v v
V _{OUT(1)}	Logical "1" Output Voltage	54C, $V_{CC} = 4.5V$, $I_O = -360\mu A$ 74C, $V_{CC} = 4.75V$, $I_O = -360\mu A$	2.4 2.4			v v
VOUT(0)	Logical "0" Output Voltage	54C, $V_{CC} = 4.5V$, $I_O = +360\mu A$ 74C, $V_{CC} = 4.75V$, $I_O = +360\mu A$			0.4 0.4	v v
	Output Drive (See 54C/74C Fa	mily Characteristics Data Sheet) (short circuit	current)	•	
ISOURCE	Output Source Current (P-Channel)	$V_{CC} = 5.0 V, V_{OUT} = 0 V$ $T_A = 25^{\circ}C$	-1.75	-3.3		mA
ISOURCE	Output Source Current (P-Channel)	V _{CC} = 10V, V _{OUT} = 0V T _A = 25°C	-8.0	- 15		mA
ISINK	Output Sink Current (N-Channel)	$V_{CC} = 5.0 V$, $V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	1.75	3.6		mA
Isink	Output Sink Current (N-Channel)	$V_{CC} = 10 V$, $V_{OUT} = V_{CC}$ $T_A = 25^{\circ}C$	8.0	16		mA

(MM54C86/MM74C86) $T_A = 25^{\circ}C$, $C_L = 50 \text{ pF}$, unless otherwise specified.

	Parameter	Conditions	Min.	Typ.	Max.	Units
t _{pd}	Propagation Time to Logical	$V_{CC} = 5.0 V$		110	185	ns
	"1" or "0"	$V_{CC} = 10 V$		50	90	ns
CIN	Input Capacitance	Note 2		5.0		pF
CPD	Power Dissipation Capacitance	(Note 3) Per Gate		20		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: Capacitance is guaranteed by periodic testing.

Note 3: C_{PD} determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note — AN-90.

