MM54C933/MM74C933 Address Bus Comparator

General Description

The MM54C933/MM74C933 Bus Comparator compares two binary words of up to 7 bits in length, and determines whether they are equal (bit for bit). Both enable (EN) inputs must be low to enable the comparison. The output, which is normally high, goes low when inputs $\mathrm{A}_{0}-\mathrm{A}_{6}$ and $\mathrm{B}_{0}-\mathrm{B}_{6}$ are equal.

The ' A ' set of inputs is provided with latches which allow the inputs to flow through when ALE is high, and are latched when ALE is brought low.

Features

- Silicon Gate CMOS techinology used for high speed
- Wide supply voltage range 3-6V
- 2 active low enables for cascading and control
- One set of latched inputs for easy interfacing to multiplexed $\mu \mathrm{P}$ busses
- Active low output compatible with memory and $\mu \mathrm{P}$ peripherals

Typical Applications

- Microprocessor Address/Data Bus decoders
- Equality detectors

Logic and Connection Diagrams

Absolute Maximum Ratings (Note 1)

Voltage at Any Pin
Operating Temperature Range

MM54C933

MM74C933
Storage Temperature Range
Package Dissipation
Operating V_{CC} Range
Absolute Maximum $V_{C C}$
Lead Temperature (Soldering, 10 seconds)
-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
500 mW
3.0 V to 6.0 V
7.0 V
$300^{\circ} \mathrm{C}$

DC Electrical Characteristics Min./max. limits apply across temperature range unless otherwise noted.

	Parameter	Conditions	Min.	Typ.	Max.	Units
CMOS to CMOS						
V_{IH}	Input High Voltage	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$ or 4.5 V	3.5			V
$V_{\text {IL }}$	Input Low Voltage	$\mathrm{V}_{\text {CC }}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0.5 \mathrm{~V}$ or 4.5 V			1.5	V
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-1 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \end{aligned}$	4.95			V
V_{OL}	Output Low Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, I_{0}=1 \mu \mathrm{~A} \\ & V_{I N}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \end{aligned}$			0.05	V
IOH	Output High Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \end{aligned}$	-2.0			mA
$\mathrm{lOL}_{\text {O }}$	Output Low Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \text { or } 5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \end{aligned}$	+2.0			mA
$I_{\text {IN(1) }}$	Logical "1" Input Current	$\mathrm{V}_{C C}=6.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$		0.005	1.0	$\mu \mathrm{A}$
$1 \mathrm{IN}(0)$	Logical " 0 " Input Current	$\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}, \mathrm{~V}_{1 \mathrm{~N}}=0 \mathrm{~V}$	-1.0	-0.005		$\mu \mathrm{A}$
$I_{\text {cc }}$	Supply Current	$V_{C C}=15 \mathrm{~V}$		0.05	300	$\mu \mathrm{A}$
CMOSILSTTL Interface (MM54C933: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$, MM74C933: $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%$)						
$\mathrm{V}_{\mathrm{IN}(1)}$	Logical "1" Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.4 \\ & \mathrm{I}_{\mathrm{O}}= \pm 10 \mu \mathrm{~A} \end{aligned}$	$V_{C C}-1.5$			V
$V_{\text {IN(0) }}$	Logical " 0 ' Input Voltage	$\begin{aligned} & V_{O}=0.4 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{CC}}-0.4 \\ & \mathrm{I}_{\mathrm{O}}= \pm 10 \mu \mathrm{~A} \end{aligned}$			0.8	V
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & V_{I N}=4.0 \mathrm{~V} \text { or } 1.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=-2.0 \mathrm{~mA} \end{aligned}$	2.4			V
Vout(0)	Logical "0" Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=4.0 \mathrm{~V} \text { or } 1.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{O}}=+2.0 \mathrm{~mA} \end{aligned}$			0.4	V
Output Drive (See 54C174C Family Characteristics Data Sheet)						
Isource	Output Source Current (P-Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C} \end{aligned}$	16			mA
$I_{\text {SINK }}$	Output Sink Current (N-Channel)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \\ & T_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	16			mA

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, unless otherwise specified.

Parameter		Conditions	Min.	Typ.	Max.	Units
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay A to OUT	$\begin{aligned} & \mathrm{ALE}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} \\ & \mathrm{ALE}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=100 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 50 \\ & 60 \end{aligned}$		ns ns
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay B to OUT	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 40 \\ & 50 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLH }}, t_{\text {PHL }}$	Propagation Delay EN1 or EN2 to OUT	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 10 \\ & 20 \end{aligned}$		$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Propagation Delay ALE to OUT	$\begin{aligned} & C_{L}=15 \mathrm{pF} \\ & C_{L}=100 \mathrm{pF} \end{aligned}$		$\begin{aligned} & 30 \\ & 40 \end{aligned}$		ns ns
ts	Time prior to ALE that A must be present		-	5.0		ns
t_{H}	Time after ALE that A must be present			5.0		ns
$t_{\text {w }}$	Minimum ALE Pulse Width			10		ns
${ }_{t}$	Ourput Transition Time	$C_{L}=15 \mathrm{pF}$		10		ns
C_{IN}	Input Capacitance	(Note 2)		10		pF
$\mathrm{CPD}^{\text {P }}$	Power Dissipation Capacitance	(Note 3)		100		pF

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{\text {PD }}$ determines that no load AC power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note, AN-90.

Truth Tables

EN1 or EN2	$\mathrm{A}_{\mathbf{N}}$	$\mathbf{B}_{\mathbf{N}}$	$\overline{\mathrm{OUT}}$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	X	X	1

ALE	Function
0	A_{N} Inputs Latched
1	A_{N} Inputs Flow-Through

Switching Time Waveforms

