MM58342

National Semiconductor

MM58342 High Voltage Display Driver

General Description

The MM58342 is a monolithic MOS integrated circuit utilizing CMOS metal gate low threshold P- and N-channel devices. It is available both in 28-pin molded dual-in-line packages or as dice. The MM58342 is particularly suited for driving high voltage (35V max) vacuum fluorescent (VF) displays (e.g., a 20-digit alphanumeric or dot matrix display).

Applications

- COPS™ or microprocessor-driven displays
- Instrumentation readouts
- Industrial control indicator
- Digital clock, thermostat, counter, voltmeter
- Word processor text displays
- Automotive dashboards

Features

- Direct interface to high voltage display
- Serial data input
- No external resistors required
- Wide display power supply operation
- LSTTL compatible inputs
- Software compatible with NS display driver family
- Compatible with alphanumeric or dot matrix displays
- Display blanking control input
- Simple to cascade

Block Diagram

FIGURE 1

Absolute Maximum Ratings

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at Any Input Pin	V_{DD} + 0.3V to V_{SS} – 0.3V
Voltage at Any Display Pin	V_{DD} to V_{DD} – 36.5V
v _{DD} + Iv _{DIS} I	36.5V
Storage Temperature	-65°C to +150°C
Power Dissipation at 25°C	
Molded DIP Package, Board	
Molded DIP Package, Socke	t Mount 1.83W**
Junction Temperature	130°C
Lead Temperature (Soldering,	10 sec.) 260°C
*Molded DIP Package, Board	d Mount, $\theta_{\rm JA} = 52^{\circ} {\rm C/W}$,
derate 19.2 mW/°C above 2	25°C.

••Molded DIP Package, Socket Mount, $\theta_{JA} = 58^{\circ}C/W$, derate 17.2 mW/°C above 25°C.

DC Electrical Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
I _{DD} I _{DIS}	Power Supply Currents				150 10	μA mA
VIL VIH	Input Logic Levels DATA IN, CLOCK ENABLE, BLANK Logic '0' Logic '1'	(Note 1)	2.4		0.8	v
V _{OL} V _{OH} V _{OH}	Data Output Logic Levels Logic '0' Logic '1' Logic '1'	l _{OUT} = 400 μA l _{OUT} = -10 μA l _{OUT} = -500 μA	V _{DD} - 0.5 2.8		0.4	v v v
IIN	Input Currents DATA IN, CLOCK ENABLE, BLANK	$V_{IN} = 0V \text{ or } V_{DD}$	-10		10	μΑ
C _{IN}	Input Capacitance DATA IN, CLOCK ENABLE, BLANK				15	pF
R _{OFF}	Display Output Impedances Output Off <i>(Figure 3a)</i>	$V_{DD} = 5.5V, V_{SS} = 0V$ $V_{DIS} = -10V$ $V_{DIS} = -20V$ $V_{DIS} = -30V$	55 60 65		250 300 400	κΩ κΩ κΩ
R _{ON}	Output On <i>(Figure 3b)</i>	$V_{DIS} = -10V$ $V_{DIS} = -20V$ $V_{DIS} = -20V$ $V_{DIS} = -30V$		700 600 500	800 750 680	Ω Ω Ω

Note 1: 74LSTTL VOH = 2.7V @ IOUT = -400 µA, TTL VOH = 2.4V @ IOUT = -400 µA.

Display Output Low Voltage

VDOL

Operating Conditions

Min	Max	Units		
4.5	5.5	v		
-30	- 10	v		
-40	+ 85	°C		
	Min 4.5 30	Min Max 4.5 5.5 -30 -10		

v

 $V_{DIS} + 2$

V_{DD} = 5.5V, I_{OUT} = Open Circuit,

 $-30V \le V_{DIS} \le -10V$

VDIS

MM58342

Symbol	Parameter	Conditions	Min	Тур	Max	Units
	Clock Input	(Notes 3 and 4)	7 ×	A 1.40	p. 4	
f _C	Frequency	1			800	kHz
t _H =	High Time	- (300	1		ns
tլ	Low Time		300			ns
	Data Input					
t _{DS}	Set-Up Time		100	1		ns
^t DH	Hold Time		100			ns
	Enable Input	(Note 2)				
ES	Set-Up Time		100			ns
lEH	Hold Time		100			ns
	Data Output	$C_L = 50 pF$		-		
	CLOCK Low to Data Out				500	ns
tCDO	Time					

Note 2: For timing purposes, the signals ENABLE and BLANK can be considered to be totally independent of each other.

Note 3: AC input waveform specification for test purposes: t_r , $t_f \le 20$ ns, f = 800 kHz, 50% $\pm 10\%$ duty cycle.

Note 4: Clock input rise and fall times must not exceed 5 µs.

Connection Diagrams

Plastic Chip Carrier

Functional Description

This product is specifically designed to drive multiplexed or non-multiplexed high voltage alphanumeric or dot matrix vacuum fluorescent (VF) displays. Character generation is done externally in the microprocessor, with a serial data path to the display driver. The MM58342 uses three signals, DATA IN, CLOCK and ENABLE, where ENABLE acts as an external load signal. Display blanking can be achieved by means of the BLANKING CONTROL input, and a logic '1' will turn off all sections of the display. A block diagram of the MM58342 is shown in *Figure 1*. Figure 2 shows the pinout of the MM58342 device, where output 1 (pin 12) is equivalent to bit 1 (i.e., the first bit of data to be loaded into the shift register following ENABLE high). A logic '1' at the input will turn on the corresponding display digit/segment/dot output.

A significant reduction in discrete board components can be achieved by use of the MM58342, because external pulldown resistors are not required. Due to the nature of the output stage, both its on and off impedance values vary as a function of the display voltage applied. However, *Figures 3a*

Functional Description (Continued)

and 3b show that this output impedance will remain constant for a fixed value of display voltage.

Figure 4 demonstrates the critical timing requirements between CLOCK and DATA IN for the MM58342.

To clear (reset) the display driver at power on or any time, the following flushing routine may be used. With the enable signal high, clock in 20 zeroes. Drive the enable signal low and the display will be blank. It is recommended to clear the driver at power on.

In Figure 5, the ENABLE signal acts as an envelope, and only while this signal is at a logic '1' does the circuit accept CLOCK input signals. Data is transferred and shifted in the internal shift register on the rising clock edge, i.e., '0'-'1' transition. When the ENABLE signal goes low, the contents of the shift registers are latched, and the display will show new data. During data transfer, the display will show old data. DATA OUT is also provided on the MM58342 being output on the falling edge. At any time, the display may be blanked under processor control, using the BLANKING CONTROL input.

Figure 6 shows a schematic diagram of a microprocessorbased system where the MM58342 is used to provide the grid drive for a 40-digit 2 line 5 x 7 multiplexed vacuum fluorescent (VF) display. The anode drive in this example is provided by another member of the high voltage display driver family, namely the MM58348, which does not require an externally generated load signal.

