MM54C73/MM74C73/MM54C76/MM74C76/MM54C107 MM74C107 Dual J-K Flip-Flops with Clear and Preset

General Description

These dual J-K flip-flops are monolithic complementary MOS (CMOS) integrated circuits constructed with N-and P-channel enhancement transistors. Each flip-flop has independent J, K, clock and clear inputs and Q and Q outputs. The MM54C76/MM74C76 flip flops also include preset inputs and are supplied in 16 pin packages. These flip-flops are edge sensitive to the clock input and change state on the negative going transition of the clock pulses. Clear or preset is independent of the clock and is accomplished by a low level on the respective input.

Features

- Supply voltage range
$3 V$ to 15 V
- Tenth power TTL compatible
- High noise immunity
- Low power
- Medium speed operation
$0.45 \mathrm{~V}_{\mathrm{CC}}$ (typ.)
50 nW (typ.)
10 MHz (typ.) with 10 V supply

Applications

Logic and Connection Diagrams

Absolute Maximum Ratings

Voltage at Any Pin (Note 1)
Operating Temperature Range MM54CXX MM74CXX
Storage Temperature
Package Dissipation
Lead Temperature (Soldering, 10 seconds)
Operating V_{Cc} Range
DC Electrical Characteristic
DC

	Parameter	Conditions	Min.	Typ.	Max.	Units
CMOS to CMOS						
$V_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			V
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 9.0 \end{aligned}$			V
V OUT(0)	Logical "0" Output Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$			0.5 1.0	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{I}_{\text {IN(1) }}$	Logical "1" Input Current	$\mathrm{V}_{C C}=15.0 \mathrm{~V}$			1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IN(0) }}$	Logical "0" Input Current	$\mathrm{V}_{C C}=15.0 \mathrm{~V}$	-1.0			$\mu \mathrm{A}$
$I_{\text {cc }}$	Supply Current	$\mathrm{V}_{\mathrm{CC}}=15.0 \mathrm{~V}$		0.050	60	$\mu \mathrm{A}$
Low Power TTL to CMOS Interface						
$\mathrm{V}_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & 54 C, V_{C C}=4.5 V \\ & 74 C, V_{C C}=4.75 V \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}-1.5$			V
$V_{\text {IN(0) }}$	Logical "0" Input Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{C C}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{C C}=4.75 \mathrm{~V} \end{aligned}$			0.8	V
$V_{\text {OUT(1) }}$	Logical "1" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=-360 \mu \mathrm{~A} \end{aligned}$	2.4			V
$\mathrm{V}_{\text {OUT(0) }}$	Logical "0' Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			0.4	V
Output Drive (See 54C174C Family Characteristics Data Sheet) (short circuit current)						
Isource	Output Source Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{I N(0)}=0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$	-1.75			mA
Isource	Output Source Current	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{1 N(0)}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \end{aligned}$	-8.0			mA
ISINK	Output Sink Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\text {IN(1) }}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{\text {OUT }}=V_{C C} \end{aligned}$	1.75			mA
$\mathrm{I}_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, \mathrm{~V}_{\text {IN(1) }}=10 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{OUT}}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$	8.0			mA

AC Electrical Characteristics $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise noted.

	Parameter	Conditions	Min.	Typ.	Max.	Units
C_{IN}	Input Capacitance	Any Input		5		pF
$t_{\text {pd } 0}, t_{\text {pd } 1}$	Propagation Delay Time to a Logical " 0 " or Logical " 1 " from Clock to Q or Q	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 180 \\ 70 \end{array}$	$\begin{aligned} & 300 \\ & 110 \end{aligned}$	ns ns
$t_{\text {pdo }}$	Propagation Delay Time to a Logical "0" from Preset or Clear	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 200 \\ 80 \end{array}$	$\begin{aligned} & 300 \\ & 130 \end{aligned}$	ns ns
$t_{\text {pd }}$	Propagation Delay Time to a Logical "1" from Preset or Clear	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 200 \\ 80 \end{array}$	$\begin{aligned} & 300 \\ & 130 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
t_{s}	Time Prior to Clock Pulse that Data must be Present	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 110 \\ 45 \end{array}$	$\begin{array}{r} 175 \\ 70 \end{array}$	ns ns
$t_{\text {H }}$	Time after Clock Pulse that J and K must be Held	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & -40 \\ & -20 \end{aligned}$	0	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PW }}$	Minimum Clock Pulse Width $t_{W L}=t_{W H}$	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$		$\begin{array}{r} 120 \\ 50 \end{array}$	$\begin{array}{r} 190 \\ 80 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{\text {PW }}$	Minimum Preset and Clear Pulse Width	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 90 \\ & 40 \end{aligned}$	$\begin{array}{r} 130 \\ 60 \end{array}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$f_{\text {MAX }}$	Maximum Toggle Frequency	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 7.0 \end{aligned}$	$\begin{array}{r} 4.0 \\ 11.0 \end{array}$		$\begin{aligned} & \mathrm{MHz} \\ & \mathrm{MHz} \end{aligned}$
$t_{\text {f }}, t_{f}$	Clock Pulse Rise and Fall Time	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$			$\begin{array}{r}15 \\ 5 \\ \hline\end{array}$	$\begin{aligned} & \mu \mathrm{S} \\ & \mu \mathrm{~s} \end{aligned}$

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.
Note 2: Capacitance is guaranteed by periodic testing.
Note 3: $\mathrm{C}_{P D}$ determines the no load ac power consumption of any CMOS device. For complete explanation see 54C/74C Family Characteristics application note - AN-90.

AC Test Circuit

Truth Table

t_{n}		t_{n+1}
J	K	Q
0	0	Q_{n}
0	1	0
1	0	1
1	1	\bar{O}_{n}

$t_{n}=$ bit time before clock pulse. $t_{n+1}=$ bit time after clock pulse.

Preset	Clear	O_{n}	$\overline{\mathrm{O}}_{\mathrm{n}}$
0	0	0	0
0	1	1	0
1	0	0	1
1	1	${ }^{\circ} \mathrm{O}_{\mathrm{n}}$	${ }^{\bullet} \overline{\mathrm{Q}}_{\mathrm{n}}$

- No change in output from previous state.

Typical Applications

Ripple Binary Counters

74C Compatibility

Guaranteed Noise Margin as a Function of VCC

Switching Time Waveforms

