National Semiconductor MM74C912 6-Digit BCD Display Controller/Driver MM74C917 6-Digit Hex Display Controller/Driver

General Description

The MM74C912, MM74C917 display controllers are interface elements, with memory, that drive a 6-digit, 8-segment LED display.

The display controllers receive data information through 5 data inputs A, B, C, D and DP, and digit information through 3 address inputs K1, K2 and K3.

The input data is written into the register selected by the address information when CHIP ENABLE, CE, and WRITE ENABLE, WE, are low and is latched when either CE or WE return high. Data hold time is not required. A self-contained internal oscillator sequentially presents the stored data to a decoder where 4 data bits control the format of the displayed character and 1 bit controls the decimal point. The internal oscillator is controlled by a control input labeled OSCILLATOR ENABLE, OSE, which is tied low in normal operation. A high level at OSE prevents automatic refresh of the display.

The 7-segment plus decimal point output information directly drives a LED display through high drive (100 mA typ) output drivers. The drivers are active when the control pin labeled SEGMENT OUTPUT ENABLE, SOE, is low and go into TRI-STATE® when SOE is high. This feature allows for duty cycle brightness control and for disabling the output drivers for power conservation.

The MM74C912 segment decoder converts BCD data into 7-segment format. The MM74C917 converts binary data into hex format.

All inputs are TTL compatible and do not clamp to the VCC supply.

Features

- Direct segment drive (100 mA typ) TRI-STATEABLE
- 6 registers addressed like RAM
- Internal oscillator and scanning circuit
- Direct base drive to digit transistor (20 mA typ)

Input Control

- Internal segment decoder 2
- TTL compatible inputs

			1	nput Co	πτρι	
	CE	DIG	T ADDR	ESS	WE	
	CE	К3	К2	К1	WE	OPERATION
	0	0	0	0	0	Write Digit 1
	0	0	0	0	1	Latch Digit 1
	0	0	0	1	0	Write Digit 2
	0	0	0	1	1	Latch Digit 2
	0	0	1	0	0	Write Digit 3
	0	0	1	0	1	Latch Digit 3
	0	0	1	1	0	Write Digit 4
	0	0	1	1	1	Latch Digit 4
	0	1	0	0	0	Write Digit 5
	0	1	0	0	1	Latch Digit 5
	0	1	0	1	0	Write Digit 6
	0	1	0	1	1	Latch Digit 6
	0	1	1	0	0	Write Null Digit
į	0	1	1	0	1	Latch Null Digit
	0	1	1	1	0	Write Null Digit
	0	1	1	1	1	Latch Null Digit
	1	X	X	х	х	Disable Writing

X = don't care

Output Control

SOE	OSE	OPERATION
0	0	Refresh Display
0	1	Stop Oscillator*
1	0	Disable Segment Outputs
1	1	Standby Mode

*Segment drive may exceed maximum display dissipation.

MM74C912, MM74C917

Absolute Maximum Ratings (Notes 1 and 2)

Voltage at Any Pin Except Inputs	-0.3V to V _{CC} +0.3V
Voltage at Any Input	-0.3V to +15V
Operating Temperature Range (T _A)	-40°C to +85°C
Storage Temperature Range	-65°C to +150°C

 Package Dissipation
 Refer to PD MAX vs TA Graph

 Operating VCC Range
 3V to 6V

 Absolute Maximum VCC
 6.5V

 Lead Temperature (Soldering, 10 seconds)
 300°C

DC Electrical Characteristics Min/max limits apply at $40^{\circ}C \le T_J \le 85^{\circ}C$, unless otherwise noted.

	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
CMOS TO	CMOS					L
VIN(1)	Logical "1" Input Voltage	V _{CC} = 5V	3.0			v
VIN(0)	Logical "O" Input Voltage	V _{CC} = 5V		r	1.5	v
^I IN(1)	Logical "1" Input Current	V _{CC} = 5V, V _{IN} = 15V		0.005	1.0	μA
^I IN(0)	Logical "0" Input Current	V _{CC} = 5V, V _{IN} = 0V	-1.0	-0.005		μΑ
lcc	Supply Current	V _{CC} = 5V, Outputs Open		0.5	2	mA
ιουτ	TRI-STATE Output Current	V _{CC} = 5V, V _O = 5V		0.03	10	μA
		V _{CC} = 5V, V _O = 0V	-10	-0.03		μΑ
CMOS/LP	TTL INTERFACE					
VIN(1)	Logical "1" Input Voltage	V _{CC} = 4.75V	V _{CC} -2.0			v
VIN(0)	Logical "0" Input Voltage	V _{CC} = 4.75V			0.8	v
OUTPUT	DRIVE	• • • • • • •				
ISH	High Level Segment Current	V _{CC} = 5V, V _O = 3.4V,				mA
		TJ = 25°C	-60	-100		
		Tj = 100°C	-40	-60		mA
ŀDH	High Level Digit Current	$V_{CC} = 5V, V_{O} = 1V,$	100 8			
		Tj = 25°C	-10	-20		mA
		Tj = 100°C	-7	-15		mA
VOUT(1)	Logical "1" Output Voltage Any Digit	V _{CC} = 5V, I _O = -360 μA	4.6			v
VOUT(0)	Logical "0" Output Voltage Any Output	V _{CC} = 5V, I _O = 360 µA	S		0.4	v
ALO	Thermal Resistance	(Note 3)		100		°c/w

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Range" they are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: All voltages reference to ground.

Note 3: Θ_{JA} measured in free air with device soldered into printed circuit board.

AC Electrical Characteristics $V_{CC} = 5V$, $t_r = t_f = 20 \text{ ns}$, $C_L = 50 \text{ pF}$

	PARAMETER	CONDITIONS	MIN	ТҮР	MAX	UNITS
tCW	Chip Enable to Write Enable Setup Time	T」= 25°C T」= 125°C	35 50	15 20		ns ns
tAW	Address to Write Enable Setup Time	Tj = 25°C Tj = 125°C	35	15 20		ns
tww	Write Enable Width	TJ = 25°C TJ = 125°C	400	225 250	÷	ns

	PARAMETER	CONDITIONS	MIN	ΤΥΡ	MAX	UNITS	
tDW	Data to Write Enable Setup Time	TJ = 25°C TJ = 125°C	390 430	225 250		ns ns	
twd	Write Enable to Data Hold Time	Тј = 25°С Тј = 125°С	0 0	-10 -15		ns ns	
twa	Write Enable to Address Hold Time	Тј = 25°С Тј = 125°С	0 0	-10 -15		ns ns	
tWC	Write Enable to Chip Enable Hold Time	Тј = 25°С Тј = 125°С	50 75	30 40		ns ns	
t1H, tOH	Logical "1", Logical "0" Levels Into TRI-STATE	R _L = 10k, T _J = 25°C C _L = 10 pF, T _J = 125°C		275 325	500 600	ns ns	
^t H1, ^t H0	TRI-STATE to Logical "1" to Logical "0" Level	RL = 10k, TJ = 25°C CL = 50 pF, TJ = 125°C		325 375	600 700	ns ns	
tIB	Interdigit Blanking Time	Тј = 25°С Тј = 125°С	5 10	10 20		μs μs	
fMUX	Multiplex Scan Frequency	Тј = 25°С Тј = 125°С		350 250		Hz Hz	
CIN	Input Capacitance	Note 4		5	7.5	pF	
Соит	TRI-STATE Output Capacitance	Note 4		30	50	pF	

Note 4: Capacitance is guranteed by periodic testing.

Switching Time Waveforms

MM74C912, MM74C917

1

Multiplexing Output Waveforms

Functional Description

Character Font																		
MM74C917	Hi-Z	[]		/	Ξ	4	5	5	7	Π		Ħ	Ŀ	Γ	_	E	F	F.
MM74C912	Hi-Z	[]		/		Ч	5	E	7	Ē	9		[]	T	1	1		•
Input A 2 ⁰ Data B 2 ¹	X X	0	1 0	0	1	0	1 0	0	1 1	0 0	1	0	1	0 0	1 0	0	1	1
C 2 ² D 2 ³	X X	0	0 0	0 0	0 0	1 0	1 0	1 0,	1 0	0 1	0	0	0 1	1 1	1 1	1	1 1	1 1
DP Output Enable SOE	X 1	0	0 0	0	0 0	0 0	0 0	0 0	0 0	0 0	0	0 0	0	0 0	0 0	0	0 0	1 0

Segment Identification

A

The MM74C912, MM74C917 display controllers are manufactured using metal gate CMOS technology. A single 5V 74 series TTL supply can be used for power and should be bypassed at the VCC pin.

All inputs are TTL compatible; the segment outputs drive the LED display directly through current limiting resistors. The digit outputs are designed to directly drive the base of a grounded emitter digit transistor without the need of a Darlington configuration.

As seen in the block diagram, these display controllers contain six 5-bit registers; any one of which may be randomly written. The internal multiplexer scans the registers and refreshes the display. This combination of write only memory and self-scan display makes the display controller a "refreshing experience" for an overburdened microprocessor.

Block Diagram

2-31

MM74C912, MM74C917

Typical Applications

MM74C912, MM74C917