General Description

This 4-bit shift register is a monolithic complementary MOS (CMOS) integrated circuit composed of four D flip flops. This register will perform right-shift or left-shift operations dependent upon the logical input level to the mode control. A number of these registers may be connected in series to form an N -bit right-shift or left-shift register.
When a logical " 0 " level is applied to the mode control input, the output of each flip flop is coupled to the D input of the succeeding flip flop. Right-shift operation is performed by clocking at the clock 1 input, and serial data entered at the serial input, clock 2 and parallel inputs A through D are inhibited. With a logical " 1 " level applied to the mode control, outputs to succeeding stages are decoupled and parallel loading is possible, or with external interconnection, shift-left operation can be accomplished by connecting the output of each flip flop to the parallel input of the previous flip flop and serial data is entered at input D.

Features

- Medium speed operation
- High noise immunity
- Low power
- Tenth power TTL compatible
- Wide supply voltage range
- Synchronous parallel load
- Parallel inputs and outputs from each flip flop
- Negative edge triggered clocking
- The MM54C95/MM74C95 follows the MM54L95/MM74L95 Pinout.

Applications

■ Data terminals	$■$ Alarm systems
■ Instrumentation	$■$ Remote metering
■ Automotive	$■$ Industrial electronics
\square Medical electronics	$■$ Computers

Data terminals

- Remote metering
- Computers

Block and Connection Diagrams

$\mathrm{O}^{\mathrm{Il}} \mathrm{CND}$

Mode control $=0$ for right shift
Mode control $=I$ for left shift of parallel load

Function Table

INPUTS								OUTPUTS			
MODE CONTROL	CLOCKS		SERIAL	PARALLEL				O_{4}	$\mathrm{O}_{\mathbf{8}}$	a_{c}	00
	2 (L)	1 (R)		A	B	c	D				
H	H	x	x	X	\times	x	\times	O_{40}	$\mathrm{O}_{\text {во }}$	O_{co}	000
H	1	x	x	a	-	c	d	0	b	c	d
H	1	x	x	$\mathrm{a}_{0}{ }^{\text {t }}$	$0_{C}{ }^{\dagger}$	$0_{0}{ }^{\dagger}$	d	O_{Bn}	$a_{c_{n}}$	0_{0}	d
L	L	H	X	\times	x	x	x	$\mathrm{O}_{\text {AO }}$	O_{80}	O_{co}	0_{00}
1	x	1	H	x	x	x	x	H	O_{An}	$\mathrm{O}_{\text {bn }}$	$0_{\text {c. }}$
1	X	1	L	x	x	x	x	L	$0_{\text {An }}$	$\mathrm{O}_{\text {日 }}$	O_{c} n
\dagger	L	L	X	x	x	x	x	$0_{A 0}$	O_{80}	$\mathrm{O}_{\text {co }}$	0_{00}
1	L	L	x	x	x	x	x	$a_{A 0}$	O_{80}	$O_{\text {co }}$	0_{00}
\downarrow	L	H	x	x	x	x	x	$a_{A O}$	O_{80}	$\mathrm{O}_{\text {co }}$	0_{00}
\dagger	H	L	x	x	x	x	x	$0_{A O}$	O_{80}	O_{60}	00
\dagger	H	H	x	x	x	x	x	$0_{A 0}$	O_{80}	$\mathrm{O}_{\text {co }}$	0_{00}
\dagger	L.	H	x	x	x	x	x	Unde			
1	H	L	X	X	x	X	x	Oper	9 Con	ions	

[^0]Absolute Maximum Ratings (Note 1)

Voltage at Any Pin	-0.3 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
Operating Temperature	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
MM54C95	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
MM74C95	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Maximum $V_{\text {cc }}$ Voltage	18 V
Package Dissipation	500 mW
Operating $V_{c c}$ Range	+3 V to +15 V
Lead Temperature (Soldering, 10 sec.)	$300^{\circ} \mathrm{C}$

DC Electrical Characteristics Max./min. limits apply across temperature range unless otherwise noted.

	Parameter	Conditions	Min.	Typ.	Max.	Units
CMOS to CMOS						
$V_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & V_{C C}=5.0 V \\ & V_{C C}=10 V \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{1 N(0)}$	Logical " 0 " Input Voltage	$\begin{aligned} & V_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \mathbf{v} \\ & \mathbf{v} \end{aligned}$
VOUT(1)	Logical "1" Output Voltage	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{\mathrm{CC}}=10 \mathrm{~V} \end{aligned}$	$\begin{gathered} 4.5 \\ 9 \end{gathered}$			$\begin{aligned} & V \\ & V \end{aligned}$
Vout(0)	Logical "0" Output Voltage	$\begin{aligned} & V_{c C}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$			$\begin{gathered} 0.5 \\ 1 \end{gathered}$	$\begin{aligned} & \mathbf{V} \\ & \mathbf{V} \end{aligned}$
$\mathrm{I}_{\mathbf{N}(1)}$	Logical "1" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$			1	$\mu \mathrm{A}$
$I_{\text {IN(0) }}$	Logical "0" Input Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$	-1			$\mu \mathrm{A}$
ICC	Supply Current	$\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$		0.050	300	$\mu \mathrm{A}$
Low Power TTL/CMOS Interface						
$V_{\text {IN(1) }}$	Logical "1" Input Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$	$\left.\begin{array}{\|l\|} \hline V_{C C}-1.5 \\ V_{C C}-1.5 \end{array} \right\rvert\,$			$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
$\mathrm{V}_{\text {IN(0) }}$	Logical "0" Input Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V} \end{aligned}$			$\begin{aligned} & 0.8 \\ & 0.8 \end{aligned}$	V
Vout(1)	Logical "1" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{C C}=4.5 \mathrm{~V}, \quad I_{O}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{0}=360 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$			$\begin{aligned} & \text { V } \\ & \text { V } \end{aligned}$
Vout(0)	Logical "0" Output Voltage	$\begin{aligned} & 54 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \\ & 74 \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=4.75 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=360 \mu \mathrm{~A} \end{aligned}$			$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & V \\ & V \end{aligned}$
Output Drive (See 54C/74C Family Characteristics Data Sheet)						
Isource	Output Source Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{I N(0)}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=0 \mathrm{~V} \end{aligned}$	-1.75			mA
Isource	Output Source Current	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{I N(0)}=0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=0 \mathrm{~V} \end{aligned}$	-8.0			mA
$I_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{I N(1)}=5.0 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=V_{C C} \end{aligned}$	1.75			mA
$I_{\text {SINK }}$	Output Sink Current	$\begin{aligned} & V_{C C}=10 \mathrm{~V}, V_{I N(1)}=10 \mathrm{~V} \\ & T_{A}=25^{\circ} \mathrm{C}, V_{O U T}=V_{C C} \end{aligned}$	8.0			mA

AC Electrical Characteristics $T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, unless otherwise noted.

	Parameter	Conditions	Min.	Typ.	Max.	Units
$t_{\text {pd }}$	Propagation Delay Time to a Logical "0" or Logical "1" from Clock to Q or Q	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 80 \end{gathered}$	$\begin{aligned} & 400 \\ & 160 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$
$t_{s 0}, t_{s 1}$	Time Prior to Clock Pulse that Data must be Preset	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{c c}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 60 \\ & 25 \end{aligned}$	$\begin{aligned} & 30 \\ & 10 \end{aligned}$		ns ns
$t_{H 0}, t_{H 1}$	Time After Clock Pulse that Data must be Held	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 25 \\ & 10 \end{aligned}$	$\begin{aligned} & 10 \\ & 50 \end{aligned}$		ns ns
$t_{\text {PW }}$	Minimum Clock Pulse Width (${ }_{\text {WL }}=t_{W H}$)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$		$\begin{gathered} 100 \\ 50 \end{gathered}$		ns ns
${ }^{\prime}$ SM	Time Prior to Clock Pulse that Mode Control must be Preset	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	$\begin{gathered} 100 \\ 50 \end{gathered}$		ns ns
$f_{\text {MAX }}$	Maximum Input Clock Frequency	$\begin{aligned} & V_{c c}=5.0 \mathrm{~V} \\ & V_{C C}=10 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3 \\ 6.5 \end{gathered}$	$\begin{gathered} 5 \\ 10 \end{gathered}$		MHz MHz
$\mathrm{CIN}_{\text {I }}$	Input Capacitance	Any Input. (Note 2)		5		pF
$\mathrm{CPD}^{\text {P }}$	Power Dissipation Capacitance	(Note 3)		100		pF
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electical Characteristics" provides conditions for actual device operation. Note 2: Capacitance is guaranteed by periodic testing. Note 3: $\mathrm{C}_{\text {po }}$ determines the no load AC power consumption of any CMOS device. For complete explanation see 54C174C Family Characteristics application note AN-90.						

[^0]: 'Snifting left requires external connection of O_{B} to A, O_{C} to B, and α_{D} to C. Serial data is entered at indut D
 $H=$ high level lstesay state), L I low level isteady statel, $X=$ irrelevant lany input, including transtionsi
 A : tansition from high to low levet. 1 a transition from low to high level
 a. b. c. σ. the level of steadr. state indut at inputs A, B, C or D, respectivel
 $0_{A 0}$. $a_{80}, a_{C O}, a_{00}{ }^{-}$the levet of $a_{A} . a_{B}$. Q_{C}, or a_{D}, respectively, before the indicated steadry state input conditions werte established

