MN3114

Vertical Driver (8 channels) for CCD Area Image Sensors

Overview

The MN3114 is an 8-channel vertical driver for twodimensional interline CCD area image sensors that also integrates a single SUB driver channel on the same chip.

Adoption of this IC can reduce both power consumption and parts counts in end products.

Features

• Vertical driver block:

Consists of level shifters and 2-value/3-value output driver circuits.

- SUB driver block: Consists of a level shifter and a 2-value output driver circuit.
- Package: 24-pin SSOP

Applications

• Digital still cameras, video cameras

Block Diagram

VHH and VH: SUB driver block and vertical driver 3-value independent power supply

Pin Descriptions

Pin No.		Pin name	I/O	Description		
8	VDC	Input block high-level supply voltage	Ι	Low-voltage system high-level input		
18	VH	Vertical driver block high-level supply voltage	Ι	High-voltage system high-level input		
24	VHH	SUB driver block high-level supply voltage	Ι	High-voltage system high-level input		
21	VM	Middle-level supply voltage	Ι	High-voltage system middle-level input		
2	VL	Low-level supply voltage	Ι	High-voltage system low-level input		
10	IV1	Transfer pulse input	Ι	Charge transfer pulse input		
14	IV2	Transfer pulse input	Ι	Charge transfer pulse input		
16	IV3	Transfer pulse input	Ι	Charge transfer pulse input		
12	IV4	Transfer pulse input	Ι	Charge transfer pulse input		
11	CH1	Charge pulse input	Ι	Charge readout pulse input		
15	CH2	Charge pulse input	Ι	Charge readout pulse input		
9	CH3	Charge pulse input	Ι	Charge readout pulse input		
17	CH4	Charge pulse input	Ι	Charge readout pulse input		
13	ISUB	SUB pulse input	Ι	Unneeded charge sweep-out pulse input		
5	OV1	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
22	OV2	2-value transfer pulse output	0	2-value transfer pulse output (VM or VL)		
20	OV3	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
4	OV4	2-value transfer pulse output	0	2-value transfer pulse output (VM or VL)		
6	OV5	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
23	OV6	2-value transfer pulse output	0	2-value transfer pulse output (VM or VL)		
19	OV7	3-value transfer pulse output	0	3-value transfer pulse output (VH, VM, or VL)		
3	OV8	2-value transfer pulse output	0	2-value transfer pulse output (VM or VL)		
1	OSUB	SUB pulse output	0	Unneeded charge sweep-out pulse output (VHH or VL)		
7	N.C.		-			

Operating Mode Table

1. 2-value transfer pulse (vertical driver block)

IV2 IV4	OV2, OV6 OV4, OV8
High	Low
Low	Mid

2. 3-value transfer pulse

CH1	IV1	OV1					
CH2	IV3	OV3					
CH3	IV1	OV5					
CH4	CH4 IV3 OV7						
High	High	Low					
	Low	Mid					
Low	High	Low					
	Low	High					

Note) IV1, IV2, IV3, IV4, CH1, CH2

High: VDC

Low: GND

OV1, OV2, OV3, OV4, OV5, OV6, OV7, OV8

High: VH

Mid: VM

Low: VL

3. Unneeded charge sweep-out pulse (SUB driver block)

	-
ISUB	OSUB
High	Low
Low	High
Note) ISUB	
High: VDC	
Low: GND	
OSUB	
High: VHH	
Low: VL	

	Timing Char	ts			
1.	2-value trans	sfer pulse			
	IV2				High
	OV2, OV6				— Mid — Low
2.	2-value trans	sfer pulse			
	IV4				High Low
	OV4, OV8				— Mid — Low
3.	3-value trans	sfer pulse			
	IV1				High Low
	CH1				High
	CH3				— Low — High
	СПЭ				 — Low
	OV1				High Mid Low
	OV5		 		High Mid Low
4.	3-value trans	sfer pulse			
	IV3				— High — Low
	CH2				 — High
					—— Low —— High
	CH4				Low
	OV3				High Mid Low
	OV7				High — Mid — Low
_					
5.	SUB pulse ISUB	[
	1208				— Low
	OSUB				— High

Electrical Characteristics

1. Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Supply voltage 1	VHH-VL	27	V
Supply voltage 2	VH-VL	27	V
Supply voltage 3	VM	VL to 6	V
Supply voltage 4	VDC	0 to 5.5	V
Negative supply voltage	VL	-8.5 to 0	V
Input voltage	VI	VL-0.3 to VDC+0.3	V
Input and output clamp diode current	IIC, IOC	±10	mA
Maximum DC load current	IODC	±3	mA
Maximum load capacitance	CL	5 500	pF/pin
Power dissipation *	PD	260	mW
Operating temperature	Topr	-20 to +75	°C
Storage temperature	Tstg	-50 to +125	°C

Note) 1. The absolute maximum ratings are limit values for stresses applied to the chip so that the chip will not be destroyed. Operation is not guaranteed within these ranges.

2. *: Four-layers glass epoxy board. (Maximum $T_a = 75^{\circ}C$)

2. Operating Conditions at $T_a = -20^{\circ}C$ to $+75^{\circ}C$

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Negative supply voltage	VL		-8.5	_	-4	V
Supply voltage 1	VDC		2.7		5.5	V
Supply voltage 2	VHH		11.5		18.5	V
Supply voltage 3	VH		11.5		18.5	V
Supply voltage 4	VM		-2		2	V
Input frequency	fIN				500	kHz

3. DC Characteristics at VHH = 15.0 V, VH = 15.0 V, VL = -7.5 V, VDC = 2.7 V to 3.6 V, T_a = -20° C to $+75^{\circ}$ C

Quiescent supply currentIDDSTVHH, VH, VL, VDC Total VI = VDC——10 μ AOperating supply currentIVHHDDDYN IVHDDDYNRefer to Test conditions, 2. Input pulse timing chart and 3. Load circuit IVMDDDYN——0.5mAIVHDDDYN IVMDDDYNchart and 3. Load circuit connection diagram.——8.5IVDCDDDYN IVDCDDDYNVI = GND, VDC——11) Input pins: IV1, IV2, IV3, IV4, CH1, CH2, CH3, CH4, ISUBVDC × 0.7—VDC × 0.3High-level voltageVIL0.0—VDC × 0.3V						а	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Parameter	Symbol	Condition	Min	Тур	Max	Unit
Operating supply currentIVHHDDDYN IVHDDDYNRefer to Test conditions, Test conditions,——0.5mAIVHDDDYN2. Input pulse timing——0.5mAIVMDDDYNchart and 3. Load circuit——8IVLDDDYNconnection diagram.——8.5IVDCDDDYNVI = GND, VDC——11) Input pins: IV1, IV2, IV3, IV4, CH1, CH2, CH3, CH4, ISUBVDC × 0.7—VDC × 0.7High-level voltageVIL0.0—VDC × 0.3V	Quiescent supply current	IDDST		—		10	μΑ
IVHDDDYN2. Input pulse timing chart and 3. Load circuit——0.5IVMDDDYNchart and 3. Load circuit——8IVLDDDYNconnection diagram.——8.5IVDCDDDYNVI = GND, VDC——11) Input pins: IV1, IV2, IV3, IV4, CH1, CH2, CH3, CH4, ISUBVDC \times 0.7—VDCHigh-level voltageVIHVDC \times 0.7—VDC \times 0.3			Total $VI = VDC$				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Operating supply current	IVHHDDDYN	Refer to Test conditions,	—	—	0.5	mA
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		IVHDDDYN	2. Input pulse timing			0.5	
IVDCDDDYNVI = GND, VDC11) Input pins: IV1, IV2, IV3, IV4, CH1, CH2, CH3, CH4, ISUBHigh-level voltageVIHLow-level voltageVIL0.0VDC \times 0.3V		IVMDDDYN	chart and 3. Load circuit	—	—	8	
1) Input pins: IV1, IV2, IV3, IV4, CH1, CH2, CH3, CH4, ISUBHigh-level voltageVIHUbw-level voltageVIL 0.0 $$ VDC × 0.3V		IVLDDDYN	connection diagram.			8.5	
High-level voltageVIH $VDC \times 0.7$ VDC V Low-level voltageVIL 0.0 $$ $VDC \times 0.3$ V		IVDCDDDYN	VI = GND, VDC			1	
Low-level voltage VIL 0.0 VDC × 0.3 V	1) Input pins: IV1, IV2, IV3, IV	/4, CH1, CH2,	CH3, CH4, ISUB				
	High-level voltage	VIH		$VDC \times 0.7$	—	VDC	V
Input leakage current IILK $VI = 0$ to VDC -1.0 — 1.0 μ A	Low-level voltage	VIL		0.0		$VDC \times 0.3$	V
	Input leakage current	IILK	VI = 0 to VDC	-1.0		1.0	μΑ

Electrical Characteristics (continued)

3.	DC Characteristics (continued) a	at VHH = 15.0 V, VH = 15.0 V, VL	$L = -7.5$ V, VDC = 2.7 V to 3.6 V, $T_a = -20^{\circ}$ C to $+75^{\circ}$ C
----	----------------------------------	----------------------------------	--

Parameter	Symbol	Condition	Min	Тур	Max	Unit
2) Output pins 1 (2-value outp		4, OV6, OV8		51		
Mid-level output voltage	VOM1	IOM1 = -1 mA	- 0.1		VM	V
Low-level output voltage	VOL1	IOL1 = 1 mA	VL		-7.4	V
Mid-level output on resistance	RONM1	IOM1 = -10 mA			40	Ω
Low-level output on resistance	RONL1	IOL1 = 10 mA			30	Ω
3) Output pins 2 (3-value outp	ut): OV1, OV	73, OV5, OV7	L			
High-level output voltage	VOH2	IOH2 = 1 mA	14.9		VH	V
Mid-level output voltage	VOM2	IOM2 = 1 mA	- 0.1		VM	V
Low-level output voltage	VOL2	IOL2 = 1 mA	VL		-7.4	V
Output on resistance (high level)	RONH2	IOH2 = 10 mA	_		40	Ω
Output on resistance (mid level)	RONM2	$IOM2 = \pm 10 \text{ mA}$			30	Ω
Output on resistance (low level)	RONL2	IOL2 = 10 mA	—		30	Ω
4) Output pins 3 (SUB output)	: OSUB	·				
High-level output voltage	VOHH3	IOHH3 = -1 mA	14.9		VHH	V
Low-level output voltage	VOL3	IOL3 = 1 mA	VL	_	-7.4	V
Output on resistance (high level)	RONHH3	IONHH3 = -10 mA	_		40	Ω
Output on resistance (low level)	RONL3	IOL3 = 10 mA	_		30	Ω

4. AC Characteristics at VHH = 15.0 V, VH = 15.0 V, VL = -7.5 V, VDC = 2.7 V to 3.6 V, T_a = -20°C to +75°C

Parameter	Symbol	Condition	Min	Тур	Max	Unit
1) Output pins 1 (2-value outp	out): OV2, OV	74, OV6, OV8				
Transmission delay time	TPLM TPML	No load		100	200	ns
Rise time Fall time	TTLM TTML	Load circuit	_	200	400	ns
2) Output pins 2 (3-value outp	ut): OV1, OV	73, OV5, OV7		I		
Transmission delay time	TPLM TPML	No load		100	200	ns
	TPMH TPHM	-		100	200	
Rise time Fall time	TTLM TTML	Load circuit		200	400	ns
	TTMH TTHM	-	—	200	400	
3) Output pins 3 (SUB output)	: OSUB					
Transmission delay time	TPLHH TPHHL	No load		100	200	ns
Rise time Fall time	TTLHH TTHHL			200	400	ns

Test Conditions

1. Transmission delay time, rise time, and fall time

Note) *: tr = tf = 20 ns (typ.)

- Test Conditions (continued)
- 2. Input pulse timing chart

Test Conditions (continued)

3. Load circuit connection diagram

Usage Notes

- 1. If the SUB driver is not used:
 - 1) Connect VHH to VH.
- 2) Connect ISUB to VDC.
- 3) Leave OSUB (pin 1) open.
- Connect bypass condensers to the MN3114 power supply pins VHH, VH, VM, VL, and VDC. Locate these bypass condensers as close to the IC as possible.
- Guarantee period after opening the sealed packing: The guarantee period after opening the sealed desiccated packing is three weeks under environment temperature and humidity conditions of 30°C and 70% RH.
- 4. The recommended reflow temperature is 230°C.

Application Circuit Example

Package Dimensions (unit: mm)

• SSOP024-P-0300C (Lead-free package)

Request for your special attention and precautions in using the technical information and semiconductors described in this material

- (1) An export permit needs to be obtained from the competent authorities of the Japanese Government if any of the products or technologies described in this material and controlled under the "Foreign Exchange and Foreign Trade Law" is to be exported or taken out of Japan.
- (2) The technical information described in this material is limited to showing representative characteristics and applied circuits examples of the products. It neither warrants non-infringement of intellectual property right or any other rights owned by our company or a third party, nor grants any license.
- (3) We are not liable for the infringement of rights owned by a third party arising out of the use of the product or technologies as described in this material.
- (4) The products described in this material are intended to be used for standard applications or general electronic equipment (such as office equipment, communications equipment, measuring instruments and household appliances).

Consult our sales staff in advance for information on the following applications:

- Special applications (such as for airplanes, aerospace, automobiles, traffic control equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.
- Any applications other than the standard applications intended.
- (5) The products and product specifications described in this material are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (6) When designing your equipment, comply with the guaranteed values, in particular those of maximum rating, the range of operating power supply voltage, and heat radiation characteristics. Otherwise, we will not be liable for any defect which may arise later in your equipment. Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.
- (7) When using products for which damp-proof packing is required, observe the conditions (including shelf life and amount of time let standing of unsealed items) agreed upon when specification sheets are individually exchanged.
- (8) This material may be not reprinted or reproduced whether wholly or partially, without the prior written permission of Matsushita Electric Industrial Co., Ltd.